首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Density-functional calculations have been used to examine the electronic structure and bonding in the recently reported complex [(PMe(3))(CO)(2)Fe(mu-pdt)(mu-CO)Fe(CO)(IMes)](+) (1(+), IMes=1,3-bis(2,4,6-trimethylphenyl)-imidazol-2-ylidene). This mixed valent Fe(II)Fe(I) complex features a rotated geometry that places a carbonyl ligand in a semi-bridging position, which makes it an accurate model of the S =(1/2) resting state of the [FeFe]-hydrogenase active site. Calculations indicate that the unpaired electron in this complex lies almost entirely on the rotated iron center, implying that this iron remains in the Fe(I) oxidation state, while the unrotated iron has been oxidized to Fe(II). The frontier molecular orbitals in 1(+) are compared with those in the neutral Fe(I)Fe(I) precursor (PMe(3))(CO)(2)Fe(mu-pdt)(mu-CO)Fe(CO)(IMes) at both its optimized geometry (1) and constrained to a rotated geometry (1(rot)). These theoretical results are used to address the role of the bridging CO ligand in 1(+) and to predict reactivity patterns; they are related back to the intricate biological mechanism of [FeFe]-hydrogenase.  相似文献   

2.
Mono- and di-phosphine diiron azadithiolate complexes [{(mu-SCH(2))(2)N(4-NO(2)C(6)H(4))}Fe(2)(CO)(5)(PMe(3))] (2), [{(mu-SCH(2))(2)N(4-NO(2)C(6)H(4))}{Fe(CO)(2)L}(2)] (3, L=PMe(3); 4, PMe(2)Ph) and the mu-hydride diiron complex [3(FeHFe)](+)[PF(6)](-) were prepared as biomimetic models of the active site of Fe-only hydrogenases. The complexes 2-4 and [3(FeHFe)](+)[PF(6)](-) were characterized by IR, (31)P, (1)H and (13)C NMR spectra and their molecular structures were determined by single crystal X-ray analyses. The PMe(3) ligand in complex 2 lies on the basal position. The PMe(3)-disubstituted complex 3 exists as two configuration isomers, transoid basal/basal and apical/basal, in the crystalline state, while two PMe(2)Ph ligands of 4 are in an apical/basal orientation. The variable temperature (31)P NMR spectra of 2 and 3 were made to have an insight into the existence of the possible conformation isomers of 2 and 3 in solution. The [3(FeHFe)](+) cation possesses the sole transoid ba/ba geometry as other reported mu-hydride diiron analogues. The electrocatalytic property of {(mu-SCH(2))(2)NC(6)H(5)}[Fe(CO)(2)PMe(3)](2) (5) was studied for proton reduction in the presence of HOAc.  相似文献   

3.
Three diiron dithiolate complexes containing rigid and conjugated bridges, [mu-SC(6)H(4)-2-(CO)S-mu]Fe(2)(CO)(6) (1), [2-mu-SC(5)H(3)N-3-(CO)S-mu]Fe(2)(CO)(6) (2), and the PPh(3)-monosubstituted complex [mu-SC(6)H(4)-2-(CO)S-mu]Fe(2)(CO)(5)(PPh(3)) (1-P), were prepared as biomimetic models for the [FeFe]-hydrogenase active site. The structures of complexes 1 and 2 were determined by single crystal X-ray analysis, which shows that each complex features a rigid coplanar dithiolate bridge with a 2-3 degrees deviation from the bisect plane of the molecule. The influence of the rigid bridge on the reduction potentials of complexes 1, 2 and 1-P was investigated by electrochemistry. The cyclic voltammograms of complexes 1 and 2 display large positive shifts for the primary reduction potentials, that is, 380-480mV in comparison to that of the pdt-bridged (pdt=propane-1,3-dithiolato) complex (mu-pdt)Fe(2)(CO)(6) and 160-260mV to that of the bdt-bridged (bdt=benzene-1,2-dithiolato) analogue (mu-bdt)Fe(2)(CO)(6).  相似文献   

4.
Lucia Forzi  R. Gary Sawers 《Biometals》2007,20(3-4):565-578
Hydrogenases catalyze the reversible oxidation of dihydrogen. Catalysis occurs at bimetallic active sites that contain either nickel and iron or only iron and the nature of these active sites forms the basis of categorizing the enzymes into three classes, the [NiFe]-hydrogenases, the [FeFe]-hydrogenases and the iron sulfur cluster-free [Fe]-hydrogenases. The [NiFe]-hydrogenases and the [FeFe]-hydrogenases are unrelated at the amino acid sequence level but the active sites share the unusual feature of having diatomic ligands associated with the Fe atoms in the these enzymes. Combined structural and spectroscopic studies of [NiFe]-hydrogenases identified these diatomic ligands as CN- and CO groups. Major advances in our understanding of the biosynthesis of these ligands have been achieved primarily through the study of the membrane-associated [NiFe]-hydrogenases of Escherichia coli. A complex biosynthetic machinery is involved in synthesis and attachment of these ligands to the iron atom, insertion of the Fe(CN)2CO group into the apo-hydrogenase, introduction of the nickel atom into the pre-formed active site and ensuring that the holoenzyme is correctly folded prior to delivery to the membrane. Although much remains to be uncovered regarding each of the individual biochemical steps on the pathway to synthesis of a fully functional enzyme, our understanding of the initial steps in CN- synthesis have revealed that it is generated from carbamoyl phosphate. What is becoming increasingly clear is that the metabolic origins of the carbonyl group may be different.  相似文献   

5.
[FeFe]-Hydrogenases are complex metalloproteins that catalyze the reversible reduction of protons to molecular hydrogen utilizing a unique diiron subcluster bridged to a [4Fe4S] subcluster. Extensive studies have concentrated on the nature and catalytic activity of the active site, yet relatively little information is available concerning the mechanism of proton transport that is required for this activity. Previously, structural characterization of [FeFe]-hydrogenase from Clostridium pasteurianum indicated a potential proton transport pathway involving four residues (Cys-299, Glu-279, Ser-319, and Glu-282) that connect the active site to the enzyme surface. Here, we demonstrate that substitution of any of these residues resulted in a drastic reduction in hydrogenase activity relative to the native enzyme, supporting the importance of these residues in catalysis. Inhibition studies of native and amino acid-substituted enzymes revealed that Zn(2+) specifically blocked proton transfer by binding to Glu-282, confirming the role of this residue in the identified pathway. In addition, all four of these residues are strictly conserved, suggesting that they may form a proton transport pathway that is common to all [FeFe]-hydrogenases.  相似文献   

6.
Irreversible inhibition by molecular oxygen (O(2)) complicates the use of [FeFe]-hydrogenases (HydA) for biotechnological hydrogen (H(2)) production. Modification by O(2) of the active site six-iron complex denoted as the H-cluster ([4Fe4S]-2Fe(H)) of HydA1 from the green alga Chlamydomonas reinhardtii was characterized by x-ray absorption spectroscopy at the iron K-edge. In a time-resolved approach, HydA1 protein samples were prepared after increasing O(2) exposure periods at 0 °C. A kinetic analysis of changes in their x-ray absorption near edge structure and extended X-ray absorption fine structure spectra revealed three phases of O(2) reactions. The first phase (τ(1) ≤ 4 s) is characterized by the formation of an increased number of Fe-O,C bonds, elongation of the Fe-Fe distance in the binuclear unit (2Fe(H)), and oxidation of one iron ion. The second phase (τ(2) ≈ 15 s) causes a ~50% decrease of the number of ~2.7-? Fe-Fe distances in the [4Fe4S] subcluster and the oxidation of one more iron ion. The final phase (τ(3) ≤ 1000 s) leads to the disappearance of most Fe-Fe and Fe-S interactions and further iron oxidation. These results favor a reaction sequence, which involves 1) oxygenation at 2Fe(H(+)) leading to the formation of a reactive oxygen species-like superoxide (O(2)(-)), followed by 2) H-cluster inactivation and destabilization due to ROS attack on the [4Fe4S] cluster to convert it into an apparent [3Fe4S](+) unit, leading to 3) complete O(2)-induced degradation of the remainders of the H-cluster. This mechanism suggests that blocking of ROS diffusion paths and/or altering the redox potential of the [4Fe4S] cubane by genetic engineering may yield improved O(2) tolerance in [FeFe]-hydrogenase.  相似文献   

7.
Jin S  Kurtz DM  Liu ZJ  Rose J  Wang BC 《Biochemistry》2004,43(11):3204-3213
The X-ray crystal structure of recombinant Desulfovibrio vulgaris rubrerythrin (Rbr) that was subjected to metal constitution first with zinc and then iron, yielding ZnS(4)Rbr, is reported. A [Zn(SCys)(4)] site with no iron and a diiron site with no appreciable zinc in ZnS(4)Rbr were confirmed by analysis of the anomalous scattering data. Partial reduction of the diiron site occurred during the synchrotron X-ray irradiation at 95 K, resulting in two different diiron site structures in the ZnS(4)Rbr crystal. These two structures can be classified as containing mixed-valent Fe1(III)(mu-OH(-))(mu-GluCO(2)(-))(2)Fe2(II) and Fe1(II)(mu-GluCO(2)(-))(2)Fe2(III)-OH(-) cores. The data do not show any evidence for alternative positions of the protein or solvent ligands. The iron and ligand positions of the solvent-bridged site are close to those of the diferric site in all-iron Rbr. The diiron site with only the two carboxylato bridges differs by an approximately 2 A shift in the position of Fe1, which changes from six- to four-coordination. The Fe1- - -Fe2 distance (3.6 A) in this latter site is significantly longer than that of the site with the additional solvent bridge (3.4 A) but significantly shorter than that previously reported for the diferrous site (4.0 A) in all-iron Rbr. The apparent redox-induced movement of Fe1 at 95 K in the ZnS(4)Rbr crystal implies an extremely low activation barrier, which is consistent with the rapid (approximately 30 s(-1)) room temperature turnover of the all-iron Rbr during its catalysis of two-electron reduction of hydrogen peroxide. ZnS(4)Rbr does not show peroxidase activity, presumably because the [Zn(SCys)(4)] site, unlike the [Fe(SCys)(4)] site, cannot mediate electron transfer to the diiron site. One or both of the diiron site structures in the cryoreduced ZnS(4)Rbr crystal are likely to represent that (those) of transient mixed-valent diiron site(s) that must occur upon return of the diferric to the diferrous oxidation level during peroxidase turnover.  相似文献   

8.
Diiron model complexes (micro-SCH(2)CH(2)CH(2)S)Fe(2)(CO)(5)L with thioether-substitution, L=S(CH(2)CH(3))(2) (2), S(CH(2)CH(3))(CH(2)CH(2)Cl) (3), S(CH(2)CH(3))(C(6)H(5)) (4), or sulfoxide-substitution, L=SO(CH(2)CH(2)CH(3))(2) (5), SO(CH(3))(2) (6), were synthesized as active site analogues of Fe-only hydrogenase. The organosulfur ligands were introduced into the diiron centers via moderately stable intermediates following two routes. The X-ray crystallographic structures of complexes 2-6 show the apical positions of terminal organosulfur ligands. The electrochemical behaviors of the model complexes were investigated, especially for the interesting properties of the derivative of 6 which is proposed to be the first model with weak donor ligand similar to CO.  相似文献   

9.
[FeFe]-hydrogenases are superior hydrogen conversion catalysts. They bind a cofactor (H-cluster) comprising a four-iron and a diiron unit with three carbon monoxide (CO) and two cyanide (CN?) ligands. Hydrogen (H2) and oxygen (O2) binding at the H-cluster was studied in the C169A variant of [FeFe]-hydrogenase HYDA1, in comparison to the active oxidized (Hox) and CO-inhibited (Hox-CO) species in wildtype enzyme. 57Fe labeling of the diiron site was achieved by in vitro maturation with a synthetic cofactor analogue. Site-selective X-ray absorption, emission, and nuclear inelastic/forward scattering methods and infrared spectroscopy were combined with quantum chemical calculations to determine the molecular and electronic structure and vibrational dynamics of detected cofactor species. Hox reveals an apical vacancy at Fed in a [4Fe4S-2Fe]3 ? complex with the net spin on Fed whereas Hox-CO shows an apical CN? at Fed in a [4Fe4S-2Fe(CO)]3 ? complex with net spin sharing among Fep and Fed (proximal or distal iron ions in [2Fe]). At ambient O2 pressure, a novel H-cluster species (Hox-O2) accumulated in C169A, assigned to a [4Fe4S-2Fe(O2)]3 ? complex with an apical superoxide (O2?) carrying the net spin bound at Fed. H2 exposure populated the two-electron reduced Hhyd species in C169A, assigned as a [(H)4Fe4S-2Fe(H)]3 ? complex with the net spin on the reduced cubane, an apical hydride at Fed, and a proton at a cysteine ligand. Hox-O2 and Hhyd are stabilized by impaired O2 protonation or proton release after H2 cleavage due to interruption of the proton path towards and out of the active site.  相似文献   

10.
Hydrogenase expression in Chlamydomonas reinhardtii can be artificially induced by anaerobic adaptation or is naturally established under sulphur deprivation. In comparison to anaerobic adaptation, sulphur-deprived algal cultures show considerably higher expression rates of the [FeFe]-hydrogenase (HydA1) and develop a 25-fold higher in vitro hydrogenase activity. Based on this efficient induction principle we have established a novel purification protocol for the isolation of HydA1 that can also be used for other green algae. From an eight liter C. reinhardtii culture 0.52 mg HydA1 with a specific activity of 741 micromol H2 min(-1) mg(-1) was isolated. Similar amounts were also purified from Chlorococcum submarinum and Chlamydomonas moewusii. The extraordinarily large yields of protein allowed a spectroscopic characterization of the active site of these smallest [FeFe]-hydrogenases for the first time. An initial analysis by EPR spectroscopy shows characteristic axial EPR signals of the CO inhibited forms that are typical for the Hox-CO state of the active site from [FeFe]-hydrogenases. However, deviations in the g-tensor components have been observed that indicate distinct differences in the electronic structure between the various hydrogenases. At cryogenic temperatures, light-induced changes in the EPR spectra were observed and are interpreted as a photodissociation of the inhibiting CO ligand.  相似文献   

11.
The synthesis and crystallographic characterization of a series of diiron(II) complexes with sterically hindered terphenyl carboxylate ligands and alkyl amine donors are presented. The compounds [Fe(2)(mu-O(2)CAr(Tol))(4)(L)(2)] (L=NH(2)(CH(2))(2)SBn (1); NH(2)(CH(2))(3)SMe (2); NH(2)(CH(2))(3)CCH (3)), where (-)O(2)CAr(Tol) is 2,6-di(p-tolyl)benzoate, and [Fe(2)(mu-O(2)CAr(Xyl))(2)(O(2)CAr(Xyl))(2)(L)(2)] (L=NH(2)(CH(2))(3)SMe (4); NH(2)(CH(2))(3)CCH (5)), where (-)O(2)CAr(Xyl) is 2,6-di(3,5-dimethylphenyl)benzoate, were prepared as small molecule mimics of the catalytic sites of carboxylate-bridged non-heme diiron enzymes. The compounds with the (-)O(2)CAr(Tol) carboxylate form tetrabridged structures, but those containing the more sterically demanding (-)O(2)CAr(Xyl) ligand have only two bridging ligands. The ancillary nitrogen ligands in these carboxylate-rich complexes incorporate potential substrates for the reactive metal centers. Their oxygenation chemistry was studied by product analysis of the organic fragments following decomposition. Compound 1 reacts with dioxygen to afford PhCHO in approximately 30% yield, attributed to oxidative dealkylation of the pendant benzyl group. Compound 3 decomposes to form Fe(II)Fe(III) and Fe(III)Fe(IV) mixed-valence species by established bimolecular pathways upon exposure to dioxygen at low temperatures. Upon decomposition, the alkyne-substituted amine ligand was recovered quantitatively. When the (-)O(2)CAr(Tol) carboxylate was replaced by the (-)O(2)CAr(Xyl) ligand in 5, different behavior was observed. The six-coordinate iron(III) complex with one bidentate and two monodentate carboxylate ligands, [Fe(O(2)CAr(Xyl))(3)(NH(2)(CH(2))(3)CCH)(2)] (6), was isolated from the reaction mixture following oxidation.  相似文献   

12.
A gene-shuffling technique was identified, optimized and used to generate diverse libraries of recombinant [FeFe]-hydrogenases. Six native [FeFe]-hydrogenase genes from species of Clostridia were first cloned and separately expressed in Escherichia coli concomitantly with the assembly proteins required for [FeFe]-hydrogenase maturation. All enzymes, with the exception of C. thermocellum HydA, exhibited significant activity when expressed. Single-stranded DNA fragments from genes encoding the two most active [FeFe]-hydrogenases were used to optimize a gene-shuffling protocol and generate recombinant enzyme libraries. Random sampling demonstrates that several shuffled products are active. This represents the first successful application of gene-shuffling using hydrogenases. Moreover, we demonstrate that a single set of [FeFe]-hydrogenase maturation proteins is sufficient for the heterologous assembly of the bioinorganic active site of several native and shuffled [FeFe]-hydrogenases.  相似文献   

13.
A series of new iron(III) and copper(II) complexes of bovine serum transferrin (BTf), with carbonate and/or oxalate as the synergistic anion, are presented. The complexes [Fe(2)(CO(3))(2)BTf], [Fe(2)(C(2)O(4))(2)BTf], [Cu(2)(CO(3))(2)BTf] and [Cu(C(2)O(4))BTf] were prepared by standard titrimetric techniques. The oxalate derivatives were also obtained from the corresponding carbonate complexes by anion-displacement. The site-preference of the transition metal-oxalate synergism has facilitated the preparation and isolation of the mononuclear complex [Cu(C(2)O(4))BTf], the mixed-anion complexes [Cu(2)(CO(3))(C(2)O(4))BTf] and [Fe(2)(CO(3))(C(2)O(4))BTf] and the mixed-metal complex [FeCu(C(2)O(4))(2)BTf]. The sensitivity of electron paramagnetic resonance (EPR) spectroscopy to the nature of the synergistic anions at the specific-binding sites of the transferrins has made this physical technique particularly indispensable to this study. None of the other members of the transferrin family of proteins has ever been demonstrated to bind the ferric and cupric ions one after the other, each occupying a separate specific-binding site of the same transferrin molecule, as a response to the coordination restrictions imposed by the oxalate ion. The bathochromic shift of the visible p(pi)-d(pi*) CT band for iron(III)-BTf and the hypsochromic shift of the p(pi)-d(sigma*) CT band for copper(II)-BTf, on replacing carbonate by oxalate as the associated anion, are consistent with the relative positions of these anionic ligands in the spectrochemical series and the nature of the d-type acceptor orbitals involved in the CT transitions. The binding and spectroscopic properties of bovine serum transferrin--a serum transferrin--very nearly mirror those of human serum transferrin, but differ significantly from those of human lactoferrin.  相似文献   

14.
根据活性中心金属原子的不同,氢酶主要分为镍铁、铁铁、铁氢酶三大类。铁氢酶是发现较晚、存在物种单一且结构较为特殊的一类氢酶。目前,铁氢酶仅发现于氢营养型产甲烷古菌中。该酶直接催化氢气异裂,还原产甲烷代谢途径中一碳载体四氢蝶呤的次甲基转化为亚甲基。与其他两类氢酶相比,铁氢酶不含传递电子的铁硫簇和双金属活性中心,在结构组成上有较大的差异。此外,铁氢酶活性中心的吡啶环被高度取代,活性中心铁原子直接与酰基碳成键,这些奇特的活性分子结构预示着氢酶全新的催化机制,以及古菌细胞在合成特殊结构大分子方面的特殊功能。本文总结了从1990年发现这类新型氢酶以来的相关研究,分别从氢酶的生理功能、结构特征、催化机制、成熟过程及应用研究等方面阐述铁氢酶的研究进展。  相似文献   

15.
The hydrogen-activating cluster (H cluster) in [FeFe]-hydrogenases consists of two moieties. The [2Fe]H subcluster is a (L)(CO)(CN)Fe(μ-RS2)(μ-CO)Fe(CysS)(CO)(CN) centre. The Cys-bound Fe is called Fe1, the other iron Fe2. The Cys-thiol forms a bridge to a [4Fe–4S] cluster, the [4Fe–4S]H subcluster. We report that electron paramagnetic resonance (EPR) spectra of the 57Fe-enriched enzyme from Desulfovibrio desulfuricans in the Hox–CO state are consistent with a magnetic hyperfine interaction of the unpaired spin with all six Fe atoms of the H cluster. In contrast to the inactive aerobic enzyme, the active enzyme is easily destroyed by light. The [2Fe]H subcluster in some enzyme molecules loses CO by photolysis, whereupon other molecules firmly bind the released CO to form the Hox–CO state giving rise to the so-called axial 2.06 EPR signal. Though not destroyed by light, the Hox–CO state is affected by it. As demonstrated in the accompanying paper [49] two of the intrinsic COs, both bound to Fe2, can be exchanged by extrinsic 13CO during illumination at 2 °C. We found that only one of the three 13COs, the one at the extrinsic position, gives an EPR-detectable isotropic superhyperfine interaction of 0.6 mT. At 30 K both the inhibiting extrinsic CO bound to Fe2 and one more CO can be photolysed. EPR spectra of the photolysed products are consistent with a 3d 7 system of Fe with the formal oxidation state +1. The damaged enzyme shows a light-sensitive g=5 signal which is ascribed to an S=3/2 form of the [2Fe]H subcluster. The light sensitivity of the enzyme explains the occurrence of the g=5 signal and the axial 2.06 signal in published EPR spectra of nearly all preparations studied thus far.  相似文献   

16.
Soluble NAD-reducing [NiFe]-hydrogenase (SH) from Ralstonia eutropha (formerly Alcaligenes eutrophus) has an infrared spectrum with one strong band at 1956 cm(-1) and four weak bands at 2098, 2088, 2081 and 2071 cm(-1) in the 2150-1850 cm(-1) spectral region. Other [NiFe]-hydrogenases only show one strong and two weak bands in this region, attributable to the NiFe(CN)2(CO) active site. The position of these three bands is highly sensitive to redox changes of the active site. In contrast, reduction of the SH resulted in a shift to lower frequencies of the 2098 cm(-1) band only. These and other properties prompted us to propose the presence of a Ni(CN)Fe(CN)3(CO) active site.  相似文献   

17.
Shima S  Ataka K 《FEBS letters》2011,(2):353-356
[Fe]-Hydrogenase catalyzes the reversible activation of H2. CO and CN inhibit this enzyme with low affinity (Ki ≅ 0.1 mM) by binding to the iron site of the bound iron-guanyrylpyridinol cofactor. We report here that isocyanides, which are formally isoelectronic with CO and CN, strongly inhibit [Fe]-hydrogenase (Ki as low as 1 nM). The [NiFe]- and [FeFe]-hydrogenases tested were not inhibited by isocyanides. UV–Vis and infrared spectra revealed that the isocyanides bind to the iron center of [Fe]-hydrogenase. The inhibition kinetics are in agreement with the proposed catalytic mechanism, including the open/closed conformational change of the enzyme.  相似文献   

18.
Forzi L  Hellwig P  Thauer RK  Sawers RG 《FEBS letters》2007,581(17):3317-3321
The Fe atom in the bimetallic active site of [NiFe]-hydrogenases has one CO and two cyanide ligands. To determine their metabolic origin, [NiFe]-hydrogenase-2 was isolated from Escherichia coli grown in the presence of L-[ureido-(13)C]citrulline, purified and analyzed by infrared spectroscopy. The spectra indicate incorporation of (13)C only into the cyanide ligands and not into the CO, showing that cyanide and CO have different metabolic origins. After growth of E. coli in the presence of (13)CO only the CO ligand was labelled with (13)C. Labelling did not result from an exchange of the intrinsic CO ligand with the exogenous CO.  相似文献   

19.
Radiolabeling of biologically active molecules with the [(99m)Tc(CO)(3)](+) unit has been of primary interest in recent years. With this in mind, we herein report symmetric (L(1)) and asymmetric (L(2)-L(5)) pyrazolyl-containing chelators that have been evaluated in radiochemical reactions with the synthon [(99m)Tc(H(2)O)(3)(CO)(3)](+) (1a). These reactions yielded the radioactive building blocks [(99m)Tc(CO)(3)(k(3)-L)](+) (L = L(1)-L(5), 2a-6a), which were identified by RP-HPLC. The corresponding Re surrogates (2-6) allowed for macroscopic identification of the radiochemical conjugates. Complexes 2a-6a, with log P(o/w) values ranging from -2.35 to 0.87, were obtained in yields of > or =90% using ligand concentrations in the 10(-5-)10(-4) M range. Challenge studies with cysteine and histidine revealed high stability for all of these radioactive complexes, and biodistribution studies in mice indicated a fast rate of blood clearance and high rate of total radioactivity excretion, occurring primarily through the renal-urinary pathway. Based on the framework of the asymmetric chelators, the novel bifunctional ligands 3,5-Me(2)-pz(CH(2))(2)N((CH(2))(3)COOH)(CH(2))(2)NH(2) (L(6)) and pz(CH(2))(2)N((CH(2))(3)COOH)(CH(2))(2)NH(2) (L(7)) have been synthesized and their coordination chemistry toward (NEt(4))(2)[ReBr(3)(CO)(3)] (1) has been explored. The resulting complexes, fac-[Re(CO)(3)(k(3)-L)]Br (L(6)(7), L(7)(8)), contain tridentate ancillary ligands that are coordinated to the metal center through the pyrazolyl and amine nitrogen atoms, as observed for the other related building blocks. L(6) and L(7) were coupled to a glycylglycine ethyl ester dipeptide, and the resulting functionalized ligands were used to prepare the model complexes fac-[Re(CO)(3)(kappa(3)-3,5-Me(2)-pz(CH(2))(2)N(glygly)(CH(2))(2)NH(2))](+) (9/9a) and fac-[Re(CO)(3)(kappa(3)-pz(CH(2))(2)N(CH(2))(3)(glygly)(CH(2))(2)NH(2))](+) (10/10a) (M = Re, (99m)Tc). These small conjugates have been fully characterized and are reported herein. On the basis of the in vitro/in vivo behavior of the model complexes (2a-6a, 9a, 10a), we chose to evaluate the in vitro/in vivo biological behavior of a new tumor-seeking Bombesin pyrazolyl conjugate, [(L(6))-G-G-G-Q-W-A-V-G-H-L-M-NH(2)], that has been labeled with the [(99m)Tc(CO)(3)](+) metal fragment. Stability, in vitro cell binding assays, and pharmacokinetics studies in normal mice are reported herein.  相似文献   

20.
Hydrogenase expression in Chlamydomonas reinhardtii can be artificially induced by anaerobic adaptation or is naturally established under sulphur deprivation. In comparison to anaerobic adaptation, sulphur-deprived algal cultures show considerably higher expression rates of the [FeFe]-hydrogenase (HydA1) and develop a 25-fold higher in vitro hydrogenase activity. Based on this efficient induction principle we have established a novel purification protocol for the isolation of HydA1 that can also be used for other green algae. From an eight liter C. reinhardtii culture 0.52 mg HydA1 with a specific activity of 741 μmol H2 min− 1 mg− 1 was isolated. Similar amounts were also purified from Chlorococcum submarinum and Chlamydomonas moewusii. The extraordinarily large yields of protein allowed a spectroscopic characterization of the active site of these smallest [FeFe]-hydrogenases for the first time. An initial analysis by EPR spectroscopy shows characteristic axial EPR signals of the CO inhibited forms that are typical for the Hox-CO state of the active site from [FeFe]-hydrogenases. However, deviations in the g-tensor components have been observed that indicate distinct differences in the electronic structure between the various hydrogenases. At cryogenic temperatures, light-induced changes in the EPR spectra were observed and are interpreted as a photodissociation of the inhibiting CO ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号