首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
We have proposed a novel assay for lipases and esterases activity determination based on potentiometry with ion-selective electrodes (ISEs). Enzyme preparations, obtained from the living cells, are complex mixtures of various proteins, short peptides, lipids, carbohydrates, and other compounds. The most commonly used quantitative methods in enzyme studies are based on spectrophotometric or spectroflourimetric protocols which has significant limitations. They are not valid for samples that are turbid or strongly colored. To overcome those drawbacks we have proposed an assay based on potentiometry with ISEs for lipases and esterases activity determination. This electrochemical methodology represents an attractive tool for enzyme analysis, because of its low detection limit, independence from sample volume and from sample turbidity. The usefulness of this assay has been proven by the determination of the activity of various raw enzymes “acetone powders” isolated from animal tissues. Moreover, activities of fractions obtained during purification of one of those raw biocatalysts were also determined that way. The reliability of determination enzyme activity with ISE assay was proven by comparison with a classical spectrophotometric method.  相似文献   

2.
Methods to increase enantioselectivity of lipases and esterases   总被引:1,自引:0,他引:1  
Lipases and esterases are frequently used in the synthesis of optically pure compounds; however, natural enzymes do not always show sufficiently high enantioselectivity. Variation of the structure of the substrates, modification of the reaction system or protein engineering (e.g. the expression of pure enzymes, rational design or directed evolution) are strategies that can be employed to improve the distinction between two enantiomers or enantiotopic groups.  相似文献   

3.
Abstract

The accurate estimation of kinetic parameters is of fundamental importance for biochemical studies for research and industry. In this paper, we demonstrate the application of a modular microfluidic system for execution of enzyme assays that allow determining the kinetic parameters of the enzymatic reactions such as Vmax – the maximum rate of reaction and KM – the Michaelis constant. For experiments, the fluorogenic carbonate as a probe for a rapid determination of the kinetic parameters of hydrolases, such as lipases and esterases, was used. The microfluidic system together with the method described yields the kinetic constants calculated from the concentration of enzymatic product changes via a Michaelis–Menten model using the Lambert function W(x). This modular microfluidic system was validated on three selected enzymes (hydrolases).  相似文献   

4.
Thirteen commercial lipases in hexane and seventeen bacterial cell suspensions in aqueous media were screened for the production of ethyl valerate and ethyl butyrate. The highest esterifying activity was obtained with commercial Pancrealipase (Biozymes Inc.) and Candida rugosa lipase (Amano Enzyme Ltd) and with bacterial cell suspension from Pseudomonas fragi CRDA 446. Commercial enzymes gave molar conversion yield of 68% over 24 h as compared to 17% with whole cells in aqueous medium. However, a comparison of both sources of biocatalyst i.e. whole microbial cells and commercial lipases, based on the amount of ester produced per g of protein for a complete reaction, indicated similar activities. © Rapid Science Ltd. 1998  相似文献   

5.
Esterases (EC 3.1.1.x) represent a diverse group of hydrolases catalyzing the cleavage and formation of ester bonds and are widely distributed in animals, plants and microorganisms. Beside lipases, a considerable number of microbial carboxyl esterases have also been discovered and overexpressed. This review summarizes their properties and classification. Special emphasis is given on their application in organic synthesis for the resolution of racemates and prostereogenic compounds. In addition, recent results for altering their properties by directed evolution are presented.  相似文献   

6.
微生物脂肪酶是一类广泛应用于诸多工业领域的生物催化剂。提高微生物脂肪酶的产量、活性和稳定性,增强产品的市场竞争力,一直是微生物脂肪酶研究的重点和热点。本文从产脂肪酶菌株的改造、脂肪酶基因的改良、脂肪酶发酵工程和脂肪酶后期处理等四个方面概述了提高微生物脂肪酶产量、活性和稳定性的方法,以期为微生物脂肪酶的规模化工业生产提供方法性指导。  相似文献   

7.
Cold active microbial lipases: some hot issues and recent developments   总被引:7,自引:1,他引:7  
Lipases are glycerol ester hydrolases that catalyze the hydrolysis of triglycerides to free fatty acids and glycerol. Lipases catalyze esterification, interesterification, acidolysis, alcoholysis and aminolysis in addition to the hydrolytic activity on triglycerides. The temperature stability of lipases has regarded as the most important characteristic for use in industry. Psychrophilic lipases have lately attracted attention because of their increasing use in the organic synthesis of chiral intermediates due to their low optimum temperature and high activity at very low temperatures, which are favorable properties for the production of relatively frail compounds. In addition, these enzymes have an advantage under low water conditions due to their inherent greater flexibility, wherein the activity of mesophilic and thermophilic enzymes are severely impaired by an excess of rigidity. Cold-adapted microorganisms are potential source of cold-active lipases and they have been isolated from cold regions and studied. Compared to other lipases, relatively smaller numbers of cold active bacterial lipases were well studied. Lipases isolated from different sources have a wide range of properties depending on their sources with respect to positional specificity, fatty acid specificity, thermostability, pH optimum, etc. Use of industrial enzymes allows the technologist to develop processes that closely approach the gentle, efficient processes in nature. Some of these processes using cold active lipase from C. antarctica have been patented by pharmaceutical, chemical and food industries. Cold active lipases cover a broad spectrum of biotechnological applications like additives in detergents, additives in food industries, environmental bioremediations, biotransformation, molecular biology applications and heterologous gene expression in psychrophilic hosts to prevent formation of inclusion bodies. Cold active enzymes from psychrotrophic microorganisms showing high catalytic activity at low temperatures can be highly expressed in such recombinant strains. Thus, cold active lipases are today the enzymes of choice for organic chemists, pharmacists, biophysicists, biochemical and process engineers, biotechnologists, microbiologists and biochemists.  相似文献   

8.
Acetyl xylan esterases (AcXEs), also termed xylan deacetylases, are broad specificity Carbohydrate-Active Enzymes (CAZymes) that hydrolyse ester bonds to liberate acetic acid from acetylated hemicellulose (typically polymeric xylan and xylooligosaccharides). They belong to eight families within the Carbohydrate Esterase (CE) class of the CAZy database. AcXE classification is largely based on sequence-dependent phylogenetic relationships, supported in some instances with substrate specificity data. However, some sequence-based predictions of AcXE-encoding gene identity have proved to be functionally incorrect. Such ambiguities can lead to mis-assignment of genes and enzymes during sequence data-mining, reinforcing the necessity for the experimental confirmation of the functional properties of putative AcXE-encoding gene products.Although one-third of all characterized CEs within CAZy families 1⿿7 and 16 are AcXEs, there is a need to expand the sequence database in order to strengthen the link between AcXE gene sequence and specificity. Currently, most AcXEs are derived from a limited range of (mostly microbial) sources and have been identified via culture-based bioprospecting methods, restricting current knowledge of AcXEs to data from relatively few microbial species. More recently, the successful identification of AcXEs via genome and metagenome mining has emphasised the huge potential of culture-independent bioprospecting strategies. We note, however, that the functional metagenomics approach is still hampered by screening bottlenecks.The most relevant recent reviews of AcXEs have focused primarily on the biochemical and functional properties of these enzymes. In this review, we focus on AcXE phylogeny, classification and the future of metagenomic bioprospecting for novel AcXEs.  相似文献   

9.
Sol-gel entrapment of microbial lipases from Candida cylindracea (Cc lipase),Pseudomonas fluorescens (Lipase AK), and Pseudomonas cepacia (Lipase PS), using as precursors tetraethoxysilane (TEOS) and silanes of type R-Si(OEt)3 with alkyl or aryl R groups, has been investigated. Three different methods using these precursors were tried exhibiting protein immobilization yields in the range of 20–50%. Hydrolysis of emulsified olive oil, esterification of lauric acid with 1-octanol and enantioselective acylation of 2-pentanol have been used as model reactions for testing the properties of the encapsulated lipases. The recovery yields of the enzyme activity in the esterification reaction were between 20–68%, the best performance being achieved with phenyltriethoxysilane and tetraethoxysilane precursors at 3:1 molar ratio. When testing the entrapped Lipase AK in the enantioselective acylation reaction of 2-pentanol, activity recovery yields up to 32% related to the free enzyme were obtained and the immobilization increased the enantioselectivity of the enzyme.  相似文献   

10.
Sol-gel entrapment of microbial lipases from Candida cylindracea (Cc lipase), Pseudomonas fluorescens (Lipase AK), and Pseudomonas cepacia (Lipase PS), using as precursors tetraethoxysilane (TEOS) and silanes of type R-Si(OEt)3 with alkyl or aryl R groups, has been investigated. Three different methods using these precursors were tried exhibiting protein immobilization yields in the range of 20-50%. Hydrolysis of emulsified olive oil, esterification of lauric acid with 1-octanol and enantioselective acylation of 2-pentanol have been used as model reactions for testing the properties of the encapsulated lipases. The recovery yields of the enzyme activity in the esterification reaction were between 20-68%, the best performance being achieved with phenyltriethoxysilane and tetraethoxysilane precursors at 3:1 molar ratio. When testing the entrapped Lipase AK in the enantioselective acylation reaction of 2-pentanol, activity recovery yields up to 32% related to the free enzyme were obtained and the immobilization increased the enantioselectivity of the enzyme.  相似文献   

11.
A simple activity staining protocol for rapid detection and differentiation of lipases and esterases was developed based on pH drop due to fatty acids released following lipolysis. Though the detection of lipolysis as a function of drop in pH is not new, the present method has been made more sensitive by the judicious selection of the initial pH of the chromogenic substrate, which has been set near the end point of the dye so that even a slight drop in pH results in immediate color change. In the present case, the dye phenol red was taken, which has the end point at pH 7.3–7.4 where the color is pink. A slight drop due to fatty acid release results in yellow coloration. The assay has high reproducibility and can detect as low as 0.5 p-NPP enzyme units within 15 min. In addition, this method can be used for various lipidic substrates such as oils and tributyrin, making it suitable for both lipases and esterases.  相似文献   

12.
Lipases play key roles in nearly all cells and organisms. Potent and selective inhibitors help to elucidate their physiological functions and associated metabolic pathways. Organophosphorus (OP) compounds are best known for their anticholinesterase properties but selectivity for lipases and other targets can also be achieved through structural optimization. This review considers several lipid systems in brain modulated by highly OP-sensitive lipases. Neuropathy target esterase (NTE) hydrolyzes lysophosphatidylcholine (lysoPC) as a preferred substrate. Gene deletion of NTE in mice is embryo lethal and the heterozygotes are hyperactive. NTE is very sensitive in vitro and in vivo to direct-acting OP delayed neurotoxicants and the related NTE-related esterase (NTE-R) is also inhibited in vivo. KIAA1363 hydrolyzes acetyl monoalkylglycerol ether (AcMAGE) of the platelet-activating factor (PAF) de novo biosynthetic pathway and is a marker of cancer cell invasiveness. It is also a detoxifying enzyme that hydrolyzes chlorpyrifos oxon (CPO) and some other potent insecticide metabolites. Monoacylglycerol lipase and fatty acid amide hydrolase regulate endocannabinoid levels with roles in motility, pain and memory. Inhibition of these enzymes in mice by OPs, such as isopropyl dodecylfluorophosphonate (IDFP), leads to dramatic elevation of brain endocannabinoids and distinct cannabinoid-dependent behavior. Hormone-sensitive lipase that hydrolyzes cholesteryl esters and diacylglycerols is a newly recognized in vivo CPO- and IDFP-target in brain. The OP chemotype can therefore be used in proteomic and metabolomic studies to further elucidate the biological function and toxicological significance of lipases in lipid metabolism. Only the first steps have been taken to achieve appropriate selective action for OP therapeutic agents.  相似文献   

13.
Serine esterases (SEs) are hydrolases that catalyze the conversion of carboxylic esters into acids and alcohols. Lipases and carboxylesterases constitute two major groups of SEs. Although over a hundred of insect genomes are known, systematic identification and classification of SEs are rarely performed, likely due to large size and complex composition of the gene family in each species. Considering their key roles in lipid metabolism and other physiological processes, we have categorized 144 M. sexta SEs and SE homologs (SEHs), 114 of which contain a motif of GXSXG. Multiple sequence alignment and phylogenetic tree analysis have revealed 39 neutral lipases (NLs), 3 neutral lipase homologs (NLHs), 11 acidic lipases (ALs), 3 acidic lipase homologs (ALHs), a lipase-3, a triglyceride lipase, a monoglyceride lipase, a hormone-sensitive lipase, and a GDSL lipase. Eighty-three carboxylesterase genes encode 29 α-esterases (AEs), 12 AEHs (e.g., SEH4-1–3), 20 feruloyl esterases (FEs), 2 FEHs, 2 β-esterases (BEs), 2 integument esterases (IEs), 1 IEH, 4 juvenile hormone esterases, 2 acetylcholinesterases, gliotactin, 6 neuroligins, neurotactin, and an uncharacteristic esterase homolog. In addition to these GXSXG proteins, we have identified 26 phospholipases and 13 thioesterases. Expression profiling of these genes in specific tissues and stages has provided insights into their functions including digestion, detoxification, hormone processing, neurotransmission, reproduction, and developmental regulation. In summary, we have established a framework of information on SEs and related proteins in M. sexta to stimulate their research in the model species and comparative investigations in agricultural pests or disease vectors.  相似文献   

14.
Microbial electrochemical systems (MESs) use microorganisms to covert the chemical energy stored in biodegradable materials to direct electric current and chemicals. Compared to traditional treatment-focused, energy-intensive environmental technologies, this emerging technology offers a new and transformative solution for integrated waste treatment and energy and resource recovery, because it offers a flexible platform for both oxidation and reduction reaction oriented processes. All MESs share one common principle in the anode chamber, in which biodegradable substrates, such as waste materials, are oxidized and generate electrical current. In contrast, a great variety of applications have been developed by utilizing this in situ current, such as direct power generation (microbial fuel cells, MFCs), chemical production (microbial electrolysis cells, MECs; microbial electrosynthesis, MES), or water desalination (microbial desalination cells, MDCs). Different from previous reviews that either focus on one function or a specific application aspect, this article provides a comprehensive and quantitative review of all the different functions or system constructions with different acronyms developed so far from the MES platform and summarizes nearly 50 corresponding systems to date. It also provides discussions on the future development of this promising yet early-stage technology.  相似文献   

15.
3-Acyloxyl-2-oxopropyl ethers of umbelliferone were investigated as new fluorogenic substrates for lipases and esterases. The aliphatic primary alcohol-leaving group released the fluorescent product umbelliferone by an enolization/beta-elimination reaction similar to the triose phosphate isomerase (TIM) reaction. A similarly designed phenylacetamide provided a fluorescent probe for penicillin G acylase, whereby the enolization/beta-elimination sequence from the intermediate aminoketone was very fast and spontaneous even under acidic conditions. The corresponding epoxyketone was not fluorogenic with epoxide hydrolases (EH). These substrates represent periodate-free Clips-otrade mark substrates.  相似文献   

16.
A detailed analysis of the highly refined (1.9 A resolution) molecular model of the fungal (Rhizomucor miehei) triglyceride lipase reveals a unique conformation of the oligopeptide containing the active serine (Ser 144) residue. It consists of a six-residue beta-strand (strand 4 of the central sheet), a four-residue turn of type II' with serine in the epsilon conformation, and a buried alpha-helix packed in a parallel way against strands 4 and 5 of the central beta-pleated sheet. It is shown that the invariant glycines in positions (1) and (5) of the so-called lipase consensus sequence (G-X-S-X-G) are in extended and helical conformations, respectively, and that they are conserved owing to the steric restrictions imposed on these residues by the packing stereochemistry of this beta-epsilon Ser-alpha motif, and not by secondary structure requirements, as is the case in serine proteinases. Sequence homologies indicate that this unique motif is likely to be found in serine esterases and other lipases, indicating a possible evolutionary link of these families of hydrolytic enzymes.  相似文献   

17.
The yeast Candida rugosa produces several closely related extracellular lipases that differ in their substrate specificity. Here, we report the crystal structure of the isoenzyme lipase 2 at 1.97A resolution in its closed conformation. Lipase 2 shows a 79.4% amino acid sequence identity with lipase 1 and 82.2% with lipase 3, which makes it relevant to compare these three isoenzymes. Despite this high level of sequence identity, structural comparisons reveal several amino acid changes affecting the flap (residue 69), the substrate-binding pocket (residues 127, 132 and 450) and the mouth of the hydrophobic tunnel (residues 296 and 344), which may be responsible for the different substrate specificity and catalytic properties of this group of enzymes. Also, these comparisons reveal two distinct regions in the hydrophobic tunnel: a phenylalanyl-rich region and an aliphatic-rich region. Whereas this last region is essentially identical in the three isoenzymes, the phenylalanyl content in the first one is specific for each lipase, resulting in a different environment of the catalytic triad residues, which probably tunes finely their lipase/esterase character. The greater structural similarity observed between the monomeric form of lipase 3 and lipase 2 concerning the above-mentioned key residues led us to propose a significant esterase activity for this last protein. This enzymatic activity has been confirmed with biochemical experiments using cholesteryl [1-14C]oleate as substrate. Surprisingly, lipase 2 is a more efficient esterase than lipase 3, showing a twofold specific activity against cholesteryl [1-14C]oleate in our experimental conditions. These results show that subtle amino acid changes within a highly conserved protein fold may produce protein variants endowed with new enzymatic properties.  相似文献   

18.
Feruloyl esterases represent a diverse group of hydrolases catalyzing the cleavage and formation of ester bonds between plant cell wall polysaccharide and phenolic acid. They are widely distributed in plants and microorganisms. Besides lipases, a considerable number of microbial feruloyl esterases have also been discovered and overexpressed. This review summarizes the latest research on their classification, production, and biophysicochemical properties. Special emphasis is given to the importance of that type of enzyme and their related phenolic ferulic acid compound in biotechnological processes, and industrial and medicinal applications.  相似文献   

19.
Glucuronoyl esterases (GEs) belonging to the carbohydrate esterase family 15 (CE15) are involved in microbial degradation of lignocellulosic plant materials. GEs are capable of degrading complex polymers of lignin and hemicellulose cleaving ester bonds between glucuronic acid residues in xylan and lignin alcohols. GEs promote separation of lignin, hemicellulose and cellulose which is crucial for efficient utilization of biomass as an energy source and feedstock for further processing into products or chemicals. Genes encoding GEs are found in both fungi and bacteria, but, so far, bacterial GEs are essentially unexplored, and despite being discovered >10?years ago, only a limited number of GEs have been characterized. The first laboratory scale example of improved xylose and glucuronic acid release by the synergistic action of GE with cellulolytic enzymes was only reported recently (improved C5 sugar and glucuronic acid yields) and, until now, not much is known about their biotechnology potential. In this review, we discuss the diversity, structure and properties of microbial GEs and consider the status of their action on natural substrates and in biological systems in relation to their future industrial use.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号