首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have studied the influence of a wide concentration range of islet amyloid polypeptide (IAPP) on both glucagon and insulin release stimulated by various types of secretagogues. In an islet incubation medium devoid of glucose, the rate of glucagon release being high, we observed a marked suppressive action by low concentrations of IAPP, 10(-10) and 10(-8) M, on glucagon release. Similarly, glucagon release stimulated by L-arginine, the cholinergic agonist carbachol, or the phosphodiesterase inhibitor isobutylmethyl xanthine (IBMX), an activator of the cyclic AMP system, was inhibited by IAPP in the 10(-10) and 10(-8) M concentration range. Moreover, basal glucagon release at 7 and 10 mM glucose was suppressed by IAPP. In contrast, IAPP exerted a dual action on insulin release. Hence, low concentrations of IAPP brought about a modest increase of basal insulin secretion at 7 mM glucose and also of insulin release stimulated by carbachol. High concentrations of IAPP, however, inhibited insulin release stimulated by glucose (10 and 16.7 mM), IBMX, carbachol and L-arginine. In conclusion, our data suggest that IAPP has complex effects on islet hormone secretion serving as an inhibitor of glucagon release and having a dual action on insulin secretion exerting mainly a negative feedback on stimulated and a positive feedback on basal insulin release.  相似文献   

2.
Porcine diazepam-binding inhibitor (pDBI) is a novel peptide that has been isolated from the small bowel of the pig, and that occurs also in the islet D-cells. We have studied its effects on hormone release in vitro from the endocrine pancreas of the rat. In isolated islets, pDBI (10(-9)-10(-6)M) did not affect basal insulin release at 3.3 mM glucose, whereas stimulated release at 8.3 mM glucose was dose-dependently suppressed by 32-69% (P less than 0.01). Furthermore, insulin secretion stimulated by either 16.7 mM glucose or 1 mM IBMX (3-isobutyl-1-methylxanthine) or 1 micrograms/ml glibenclamide was suppressed by pDBI at 10(-8) M (by 28-30%, P less than 0.05) and 10(-7) M (by 43-47%, P less than 0.01). In contrast, islet insulin secretion induced by 20 mM arginine was unaffected by these concentrations of pDBI. In the perfused rat pancreas, pDBI (10(-8) M) enhanced by 30% (P less than 0.05) the first phase (0-5 min) of arginine-stimulated insulin release, whereas the second phase (5-20 min) was unchanged. Moreover, pDBI suppressed by 28% (P less than 0.05) the second phase of arginine-induced glucagon release. Arginine-induced somatostatin release was not significantly affected by the peptide. Since pDBI immunoreactivity has been localized also to islet D-cells, the present results suggest that pDBI may act as a local modulator of islet hormone release.  相似文献   

3.
The effect of secretin on glucagon and insulin release and its interaction with glucose has been studied in cultured mouse pancreatic islets by column perifusion. Glucose alone showed the well-known stimulation of insulin release and inhibition of glucagon release. Addition of 10 mM secretin increased glucagon secretion at 3 mM D-glucose by 300% while no change in insulin release could be seen at this low glucose concentration. At maximal stimulation of insulin release by 20 mM D-glucose addition of 10 nM secretin increased insulin release by 30%. Despite this insulin concentration and the high glucose concentration an increase in glucagon secretion of 1800% was found. These effects of secretin were dose-dependent at 10 mM D-glucose with 1 nM secretin being the lowest effective dose.  相似文献   

4.
We have investigated the effects of Pro-Met-Asp-Phe-NH2 (PMAP) on insulin and glucagon release from human fetal pancreatic microfragments in vitro. Four batches of precultured microfragments were incubated for 24 hrs in medium containing 5.5 mM glucose, 17 mM glucose, 1 microM PMAP or 1 microM PMAP plus 17 mM glucose. PMAP significantly enhanced both basal and glucose-stimulated insulin release (2.2- and 4.1-fold, respectively). Glucagon secretion was markedly inhibited by glucose (17 mM). PMAP neither affected the basal glucagon release nor potentiated the inhibitory action of glucose on glucagon release. Hence, PMAR selectively regulates insulin production in human fetal islet tissue without affecting glucagon production. Our results suggest that the substances similar or related to PMAP may prove to be of clinical value in drug correction of diabetes mellitus.  相似文献   

5.
D G Patel 《Life sciences》1989,44(4):301-310
Effects of acute sodium salicylate infusion on glucagon and epinephrine responses to insulin hypoglycemia were studied in streptozotocin diabetic and age-matched control rats. Sodium salicylate (50 mg/kg/h) was infused intravenously alone for 90 minutes and then with insulin in short-term (10-15 days post-streptozotocin) and long-term (80-100 days post-streptozotocin) diabetic as well as age-matched control rats to produce hypoglycemia. Sodium salicylate decreased basal plasma glucose in control and diabetic rats but increased basal plasma glucagon levels only in control rats. The infusion of sodium salicylate during insulin-hypoglycemia in control and short-term diabetic rats caused a significant increase in glucagon secretion. Long-term diabetic rats have impaired glucagon and epinephrine secretory responses to insulin-hypoglycemia. This defect was normalized by acute sodium salicylate infusion during insulin-hypoglycemia. However, indomethacin (5 mg/kg i.p.; twice at 18 hr intervals) improved, but failed to completely normalize the abnormal glucagon and epinephrine secretory responses to insulin-hypoglycemia in long-term diabetic rats. These results suggest that endogenous prostaglandins may play a partial role in the impairment of glucagon and epinephrine secretion in response to insulin-hypoglycemia in long-term diabetic rats.  相似文献   

6.
The effect of tetracaine and lidocaine on insulin secretion and glucose oxidation by islets of ob/ob-mice was measured. Tetracaine, at a concentration of 1 microM to 0.1 mM, did not markedly influence the basal (3 mM glucose) insulin secretion, whereas 0.5-3.5 mM induced a marked increase. At 7 mM glucose, there was a dose-dependent increase with 0.1-2.5 mM tetracaine. Insulin release induced by 20 mM glucose was potentiated by 0.1 mM and 0.5 mM tetracaine, but this effect disappeared at 1 mM tetracaine. The stimulatory effect of 0.5-1 mM tetracaine on basal insulin release was blocked by the secretory inhibitors, adrenaline (1 microM), clonidine (1 microM) and by Ca2+-deficiency, but the stimulation by 3.5 mM tetracaine was not reduced by 1 microM clonidine or Ca2+ deficiency. Atropine (10 microM) did not affect the stimulation by 0.5 mM tetracaine at 3 mM glucose or by 0.25 mM tetracaine at 20 mM glucose. Tetracaine, at 0.1 mM, potentiated the secretory stimulation of 20 mM L-leucine, 20 mM D-mannose, or 1 microM glibenclamide. Mannoheptulose, 10 mM, abolished the combined effects of 0.1 mM tetracaine and 10 mM glucose. Lidocaine, 1-5 mM, stimulated basal insulin release, but 1 microM-1 mM of the drug did not affect glucose-induced (20 mM glucose) insulin release and 5 mM lidocaine inhibited glucose stimulation. The oxidation of 10 mM D-[U-14C]glucose was slightly enhanced by 0.1 and 1 mM tetracaine. The results indicate that tetracaine and lidocaine, at certain concentrations, can induce insulin release and that tetracaine potentiates secretion induced by other secretagogues. It is concluded that these effects may be associated with beta-cell functions related to the adrenergic receptors but probably not to cholinergic receptors.  相似文献   

7.
To elucidate the physiological significance of ketone bodies on insulin and glucagon secretion, the direct effects of beta-hydroxybutyrate (BOHB) and acetoacetate (AcAc) infusion on insulin and glucagon release from perfused rat pancreas were investigated. The BOHB or AcAc was administered at concentrations of 10, 1, or 0.1 mM for 30 min at 4.0 ml/min. High-concentration infusions of BOHB and AcAc (10 mM) produced significant increases in insulin release in the presence of 4.4 mM glucose, but low-concentration infusions of BOHB and AcAc (1 and 0.1 mM) caused no significant changes in insulin secretion from perfused rat pancreas. BOHB (10, 1, and 0.1 mM) and AcAc (10 and 1 mM) infusion significantly inhibited glucagon secretion from perfused rat pancreas. These results suggest that physiological concentrations of ketone bodies have no direct effect on insulin release but have a direct inhibitory effect on glucagon secretion from perfused rat pancreas.  相似文献   

8.
1. An insulin-producing cell line, RINm5F, derived from a rat insulinoma was studied. 2. The cellular content of immunoreactive insulin was 0.19 pg/cell, which represents approx. 1% of the insulin content of native rat beta-cells, whereas that of immunoreactive glucagon and somatostatin was five to six orders of magnitude less than that of native alpha- or delta-cells respectively. 3. RINm5F cells released 7-12% of their cellular immunoreactive-insulin content at 2.8 mM-glucose during 60 min in Krebs-Ringer bicarbonate buffer. 4. Glucose utilization was increased by raising glucose from 2.8 to 16.7 mM. There was, however, no stimulation of immunoreactive-insulin release even when glucose was increased from 2.8 to 33.4 mM. A small stimulation of release was, however, found when glucose was raised from 0 to 2.8 mM. 5. Glyceraldehyde stimulated the release of immunoreactive insulin in a dose-dependent manner. 6. At 20 mM, leucine or arginine stimulated release at 2.8 mM-glucose. 7. Raising intracellular cyclic AMP by glucagon or 3-isobutyl-1-methylxanthine stimulated release at 2.8 mM-glucose with no additional stimulation at 16.7 mM-glucose. 8. Stimulation of immunoreactive-insulin release by K+ was dose-related between 2 and 30 mM. Another depolarizing agent, ouabain, also stimulated release. 9. Adrenaline (epinephrine) inhibited both basal (2.8 mM-glucose) release and that stimulated by 30 mM-K+. 10. Raising Ca2+ from 1 to 3 mM stimulated immunoreactive-insulin release, whereas a decrease from 1 to 0.3 or to 0.1 mM-Ca2+ lowered the release. 11. These findings could reflect a relatively specific impairment in glucose handling by RINm5F cells, contrasting with the preserved response to other modulators of insulin release.  相似文献   

9.
The effects of glucose alone, combinations of glucose with arginine or tolbutamide and either arginine or tolbutamide alone, on somatostatin, insulin, and glucagon secretion were investigated using the isolated perfused rat pancreas. When glucose alone was raised in graded increments at 15-min intervals from an initial concentration of 0 mM to a maximum of 16.7 mM, somatostatin as well as insulin in the perfusate increased with the glucose, while glucagon decreased. The similarity of the glucose stimulated somatostatin and insulin release was especially evident when the perfusate glucose was increased from an initial dose of 4.4 mM rather than 0 mM to 8.8 mM or 16.7 mM. In addition, glucose at concentrations varying from 4.4 mM to 11 mM dose-dependently enhanced arginine-induced somatostatin and insulin release and suppressed glucagon release dose-dependently as before. Arginine in the absence of glucose was not capable of stimulating somatostatin secretion whereas tolbutamide, in contrast, was capable of stimulating somatostatin secretion even in the absence of glucose.  相似文献   

10.
The effects of 3-hydroxybutyrate (3-OHB) and hyperosmolarity on glucagon secretion were examined in the isolated perfused canine pancreas. When 3-OHB was infused for 15 min into the pancreas perfused with 2.8 mM glucose, 5 and 20 mM sodium 3-OHB inhibited it after a transient stimulation, whereas a similar transient stimulation was observed also by the infusion of 20 mM NaCl in a control experiment. The above inhibition was not observed under the perfusate condition of 5.5 mM glucose plus 10 mM arginine. When the isolated canine pancreas was perfused under the perfusate condition of acidosis (pH 7.1), ketoacidosis (pH 7.1 and 20 mM 3-OHB) or hyperosmolarity (+60 mOsm/kg with sucrose) throughout the experiment, the glucagon concentrations produced by 2.8 mM glucose under the ketoacidotic and hyperosmolar conditions, were less than half of those obtained under the standard condition. The insulin level was not influenced by the above perfusate conditions. These results suggest that 3-OHB inhibits glucagon secretion stimulated by glucopenia, but does not inhibit it stimulated by amino acids, and that hyperosmolarity inhibits glucagon secretion but does not inhibit insulin secretion. The pathophysiological significance of these results must be slight, considering the presence of hyperglucagonemia during prolonged starvation or diabetic ketoacidosis.  相似文献   

11.
The effect of synthetic somatostatin on insulin release was studied in vitro by using isolated islets of rats. Somatostatin, with concentrations from 10 ng/ml to 10μg/ml, inhibited insulin release induced by 16.7 mM glucose. Insulin release elicited by 10 μg/ml glucagon or 2 mM dibutyryl cyclic AMP was likewise inhibited by 100ng/ml somatostatin. By raising the calcium concentration of the incubation medium to 6 mM, glucose-induced insulin release was fully restored even in the presence of somatostatin.However, the same maneuver only partially counteracted the somatostatin inhibition of dibutyryl cyclic AMP-induced insulin release. These results suggest the involvement of calcium mobilization process in the inhibitory action of somatostatin.  相似文献   

12.
A newly isolated porcine intestinal polypeptide (PHI) at a concentration of 3 ng/ml induced insulin release from isolated perfused rat pancreas at basal (4.4 mmol/1) as well as at increased (16.7 mmol/1) glucose levels. Furthermore, the peptide enhanced arginine-stimulated glucagon secretion, but did not effect arginine-stimulated insulin release.  相似文献   

13.
In order to study the oeffect of somatostatin on the endocrine pancreas directly, islets isolated from rat pancreas by collagenase were incubated for 2 hrs 1) at 50 and 200 mg/100 ml glucose in the absence and presence of somatostatin (1, 10 and 100 mg/ml) and2) at 200 mg/100 ml glucose together with glucagon (5 mug/ml), with or without somatostatin (100 ng/ml). Immunologically measurable insulin was determined in the incubation media at 0, 1 and 2 hrs. Insulin release was not statistically affected by any concentration stomatostatin. On the other hand, somatostatin exerted a significant inhibitory action on glucagon-potentiated insulin secretion (mean +/- SEM, mu1/2 hrs/10 islets: glucose and glucagon: 1253 +/- 92; glucose, glucagon and somatostatin: 786 +/- 76). The insulin output in th epresence of glucose, glucagon and somatostatin was also significantly smaller than in thepresence of glucose alone (1104 +/- 126) or of glucose and somatostatin (1061 +/- 122). The failure of somatostatin to affect glucose-stimulated release of insulin from isolated islets contrasts its inhibitory action on insulin secretion as observed in the isolated perfused pancreas and in vivo. This discrepancy might be ascribed to the isolation procedure using collagenase. However, somatostatin inhibited glucagon-potentiated insulin secretion in isolated islets which resulted in even lower insulin levels than obtained in the parallel experiments without glucagon. It is concluded that the hormone of the alpha cells, or the cyclic AMP system, might play a part in the machanism of somatostatin-induced inhibition of insulin release from the beta-cell.  相似文献   

14.
FMRF-NH2-like immunoreactivity was localized in the pancreatic polypeptide containing cells of the rat islet. FMRF-NH2 was investigated with regard to its effect on insulin, somatostatin and glucagon secretion from the isolated perfused rat pancreas. FMRF-NH2 (1 microM) significantly inhibited glucose stimulated (300 mg/dl) insulin release (p less than 0.005) and somatostatin release (p less than 0.01) from the isolated perfused pancreas. FMRF-NH2 (1 and 10 microM) was without effect on glucagon secretion, either in low glucose (50 mg/dl), high glucose (300 mg/dl), or during arginine stimulation (5 mM). These findings indicate that these FMRF-NH2 antisera recognize a substance in the pancreatic polypeptide cells of the islet which may be capable of modulating islet beta and D cell activity.  相似文献   

15.
I C Green  M Tadayyon 《Life sciences》1988,42(21):2123-2130
The inadequate insulin secretory response to glucose stimulation in non-insulin dependent diabetes has been attributed to many factors including high PGE2 levels blunting the secretory response, and to the existence of inhibitory opiate activity in vivo. The purpose of the present work was to see if there was a connection between these two independent theories. Radioimmunoassayable PGE2 in islets of Langerhans was found to be proportional to islet number and protein content and was typically 4 to 5pg/micrograms islet protein. Indomethacin (2.8 X 10(-5) M), sodium salicylate (1.25 X 10(-3) M) and chlorpropamide (7.2 X 10(-5) M) all lowered islet PGE2 levels and stimulated insulin release in vitro. Dynorphin (1-13), stimulated insulin release at a concentration of 6 X 10(-9) M, while lowering islet PGE2. Conversely, at a higher concentration, (6 X 10(-7) M), dynorphin had no stimulatory effect on insulin secretion and did not lower PGE2 levels in islets or in the incubation media. The stimulatory effects of dynorphin and sodium salicylate on insulin secretion were blocked by exogenous PGE2 (10(-5) M). PGE2 at a lower concentration (10(-9) M) did not exert any inhibitory effect on dynorphin- or sodium salicylate-induced insulin release. This concentration of exogenous PGE2 stimulated insulin release in the presence of 6mM glucose. Results from these experiments suggest that since an opioid peptide can lower endogenous PGE2 production in islets and since the stimulatory effects of the opioid peptide are reversed by exogenous PGE2 there may be interactions between these two modulators of insulin secretion.  相似文献   

16.
T Otonkoski  M Knip  I Wong  O Simell 《Life sciences》1991,48(22):2157-2163
To investigate the long-term effects of glucose on the function of human fetal islets we cultured islet-like cell clusters (ICC) obtained from 12 human fetuses with a mean age of 16.1 weeks in media containing 2.8, 11.1 or 16.7 mM glucose. On the 8th day of culture, the ICC that had been maintained in 16.7 mM glucose contained 60% less insulin than the ICC cultured in 2.8 mM glucose. However, insulin release was similar in both groups, and was not affected by a 24-h incubation in high vs. low glucose. Also (pro) insulin biosynthesis was not significantly affected. During a 24-day culture period, the total release of insulin and glucagon was similar in all glucose concentrations. The ICC released about 75% of their insulin content but only 15% of their glucagon content during the last 48 h of the 24-day culture period, again regardless of glucose concentration in media. Insulin release was insensitive to acute glucose and leucine challenges in perifusion experiments after culture for 1, 5, 8 or 16 days in 11.1 mM glucose, whereas glucagon was always a potent stimulus. In conclusion, the function of cultured young human fetal islet cells is remarkably independent of glucose, even during prolonged exposure. Moreover, the primary role of glucagon in fetal life may be that of a paracrine stimulator of beta-cell function.  相似文献   

17.
The identification of pancreastatin in pancreatic extracts prompted the investigation of its effects on islet cell function. However, in most of the investigations to date, pig pancreastatin was tested in heterologous species. Since there is great interspecies variability in the amino acid sequence of pancreastatin, we have investigated the influence of rat pancreastatin on insulin, glucagon and somatostatin secretion in a homologous animal model, namely the perfused rat pancreas. During 5.5 mM glucose infusion, pancreastatin (40 nM) inhibited insulin secretion (ca. 40%, P less than 0.025) as well as the insulin responses to 10 mM arginine (ca. 50%, P less than 0.025) and to 1 nM vasoactive intestinal polypeptide (ca. 50%; P less than 0.05). Pancreastatin failed to significantly modify glucagon or somatostatin release under any of the above experimental conditions. In addition, a lower pancreastatin concentration (15.7 nM) markedly suppressed the insulin release evoked by 11 mM glucose (ca. 85%, P less than 0.05). Our present observations reinforce the concept that pancreastatin is an effective inhibitor of insulin secretion, influencing the B-cell function directly and not through an A-cell or D-cell paracrine effect.  相似文献   

18.
Parathormone (0.15 U/ml) failed to affect the rate of glucagon and insulin release by the perfused rat pancreas exposed to glucose in either low (3.3 mM) or high (8.3 mM) concentration. Parathormone also failed to interfere with the suppressive effect of glucose (16.6mM) upon glucagon release and its stimulatory action upon insulin secretion. Likewise, the biphasic release of both glucagon and insulin evoked by arginine (10.0 mM) in the presence of glucose (8.3 mM) was unaffected by parathormone. These findings suggest that the endocrine pancreas may not be a target organ for any direct and immediate action of parathormone.  相似文献   

19.
Direct effects of adrenomedullin on insulin secretion from pancreatic beta-cells were investigated using a differentiated insulin-secreting cell line INS-1. Adrenomedullin (1-100 pM) inhibited insulin secretion at both basal (3 mM) and high (15 mM) glucose concentrations, although this inhibitory effect was not observed at higher concentrations of adrenomedullin. The inhibition of glucose-induced insulin secretion by adrenomedullin was restored with 12-h pretreatment with 1 microg/ml pertussis toxin (PTX), suggesting that this effect could be mediated by PTX-sensitive G proteins. Cellular glucose metabolism evaluated by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide colorimetric assay was not affected by adrenomedullin at concentrations that inhibited insulin secretion. Moreover, electrophysiological studies revealed that 10 pM adrenomedullin had no effect on membrane potential, voltage-gated calcium currents, or cytosolic calcium concentration induced by 15 mM glucose. Finally, insulin release induced by cAMP-raising agents, such as forskolin plus 3-isobutyl-1-methylxanthine or the calcium ionophore ionomycin, was significantly inhibited by 10 and 100 pM adrenomedullin. In conclusion, adrenomedullin at picomolar concentrations directly inhibited insulin secretion from beta-cells. This effect is likely due to the inhibition of insulin exocytosis through the activation of PTX-sensitive G proteins.  相似文献   

20.
Isolated rat pancreatic islets were incubated at 3.3 (low) and 16.7 (high) mM glucose with different concentrations of the phosphotyrosine phosphatase (PTP) inhibitor, peroxovanadate (pV). At low glucose, pV stimulated insulin secretion 2- to 4-fold, but it inhibited insulin secretion at 16.7 mM. The latter effect was not due to an inhibition of glucose metabolism, nor was it inhibited by pertussis toxin pretreatment. In addition, pV stimulated insulin secretion approximately 3-fold in depolarized cells at both low and high glucose. pV markedly increased the tyrosine phosphorylation of several proteins, including IRS-1 and -2, and also increased the phosphorylation of the downstream kinases PKB/Akt and MAPK. PKB/Akt, but not MAPK, was also phosphorylated in the absence of pV. Intracellular pV-stimulated tyrosine phosphorylation, including that of IRS-2, was generally increased by high glucose suggesting a further inhibition of PTP and/or enhanced tyrosine kinase activity. Thus, these data suggest that intracellular tyrosine and serine (PKB/Akt) phosphorylation are related to insulin secretion but they do not support a unique and direct link between IRS-2 tyrosine phosphorylation and glucose-stimulated insulin secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号