首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sequence of the protease of human subgroup E adenovirus type 4   总被引:2,自引:0,他引:2  
A Houde  J M Weber 《Gene》1987,54(1):51-56
A fragment of DNA containing the protease gene and 3' and 5' flanking regions of human adenovirus type 4 (Ad4) has been cloned and sequenced. The gene is located between 59 and 62 map units and codes for a protein of 201 amino acids with a calculated Mr of 22,758. The Ad4 protease has a 72% amino acid homology with the Ad2 protease, the divergence being concentrated in the middle of the molecule. Comparison with other mammalian and bacterial proteases failed to reveal any significant homology and in particular a putative active site. The adenoviral proteases may therefore represent a novel class of enzymes.  相似文献   

2.
Expression of serine protease inhibitors (serpins) is one of the mechanisms used by tumour cells to escape immune surveillance. Previously, we have shown that expression of serpins SPI-6 and SPI-CI, respectively, renders tumour cells resistant to granzyme B (GrB)-mediated death and granzyme M (GrM)-mediated death. To obtain better insight into the interaction between serpins and their target proteases, we investigated the roles of protease inhibitor (PI)-9 and SPI-6 in the resistance to GrB-mediated and CD95-mediated death in further detail. Neither human PI-9 nor its murine orthologue SPI-6 was capable of preventing CD95-induced apoptosis in murine or human cells, indicating that these serpins do not inhibit the activation of apical caspases in this pathway. High expression of PI-9 or SPI-6 did prevent apoptosis induced by human GrB. Strikingly, only SPI-6, and not PI-9, was capable of inhibiting murine GrB, suggesting that a difference in enzymatic specificity exists between the mouse and the human granzymes. In agreement with this suggestion, murine GrB was clearly less effective in inducing apoptosis in human cells. Similar species specificity was also observed for SPI-CI and GrM when either their capacity to associate or the effectiveness of GrM-induced cytotoxicity was analysed. Our findings therefore indicate a species diversity that has a clear effect on mixed in vitro effector target settings.  相似文献   

3.
The protease from simian immunodeficiency virus (SIV) was chemically synthesized by automated solid-phase technology as an NH2-terminally extended derivative, capped with biotin. Biotin-linker-(SIV protease (1-99)): the linker segment, Gly-Gly-Asp-Arg-Gly-Phe-Ala-Ala, corresponds to the amino acid sequence preceding that of the protease in the SIV gag/pol precursor polyprotein. Accordingly, the Ala-Pro bond joining the octapeptide linker to the protease constitutes a site naturally cleaved by the protease during viral maturation. This strategy for synthesis was designed to facilitate purification of the biotinylated protein derivative from a complex mixture of reaction products by avidin/agarose-affinity chromatography and to provide the means for autocatalytic removal of the biotin-linker segment. As anticipated, folding of the full-length construct leads to activation of the enzyme and excision of the desired 99-residue SIV protease (overall yield, approximately). The specificity of the synthetic SIV protease toward a number of well characterized protein substrates was the same as observed for the nearly identical enzyme from human immunodeficiency virus type 2 (HIV-2 protease) and distinct from that of the more disparate HIV-1 protease. The same functional ordering with respect to the human retroviral proteases was reflected in Ki values observed with a number of protease inhibitors. Thus, the folded synthetic SIV protease shows patterns of specificity and susceptibility to inhibition that are in accord with what would be expected based upon its degree of structural similarity to proteases from HIV-1 and HIV-2.  相似文献   

4.
MNEI (monocyte/neutrophil elastase inhibitor) is a 42 kDa serpin superfamily protein characterized initially as a fast-acting inhibitor of neutrophil elastase. Here we show that MNEI has a broader specificity, efficiently inhibiting proteases with elastase- and chymotrypsin-like specificities. Reaction of MNEI with neutrophil proteinase-3, an elastase-like protease, and porcine pancreatic elastase demonstrated rapid inhibition rate constants >10(7) M(-1) s(-1), similar to that observed for neutrophil elastase. Reactions of MNEI with chymotrypsin-like proteases were also rapid: cathepsin G from neutrophils (>10(6) M(-1) s(-1)), mast cell chymase (>10(5) M(-1) s(-1)), chymotrypsin (>10(6) M(-1) s(-1)), and prostate-specific antigen (PSA), which had the slowest rate constant at approximately 10(4) M(-1) s(-1). Inhibition of trypsin-like (plasmin, granzyme A, and thrombin) and caspase-like (granzyme B) serine proteases was not observed or highly inefficient (trypsin), nor was inhibition of proteases from the cysteine (caspase-1 and caspase-3) and metalloprotease (macrophage elastase, MMP-12) families. The stoichiometry of inhibition for all inhibitory reactions was near 1, and inhibitory complexes were resistant to dissociation by SDS, further indicating the specificity of MNEI for elastase- and chymotrypsin-like proteases. Determination of the reactive site of MNEI by N-terminal sequencing and mass analysis of reaction products identified two reactive sites, each with a different specificity. Cys(344), which corresponds to Met(358), the P(1) site of alpha1-antitrypsin, was the inhibitory site for elastase-like proteases and PSA, while the preceding residue, Phe(343), was the inhibitory site for chymotrypsin-like proteases. This study demonstrates that MNEI has two functional reactive sites corresponding to the predicted P(1) and P(2) positions of the reactive center loop. The data suggest that MNEI plays a regulatory role at extravascular sites to limit inflammatory damage due to proteases of cellular origin.  相似文献   

5.
Cospin (PIC1) from Coprinopsis cinerea is a serine protease inhibitor with biochemical properties similar to those of the previously characterized fungal serine protease inhibitors, cnispin from Clitocybe nebularis and LeSPI from Lentinus edodes, classified in the family I66 of the MEROPS protease inhibitor classification. In particular, it exhibits a highly specific inhibitory profile as a very strong inhibitor of trypsin with K(i) in the picomolar range. Determination of the crystal structure revealed that the protein has a β-trefoil fold. Site-directed mutagenesis and mass spectrometry results have confirmed Arg-27 as the reactive binding site for trypsin inhibition. The loop containing Arg-27 is positioned between the β2 and β3 strands, distinguishing cospin from other β-trefoil-fold serine protease inhibitors in which β4-β5 or β5-β6 loops are involved in protease inhibition. Biotoxicity assays of cospin on various model organisms revealed a strong and specific entomotoxic activity against Drosophila melanogaster. The inhibitory inactive R27N mutant was not entomotoxic, associating toxicity with inhibitory activity. Along with the abundance of cospin in fruiting bodies of C. cinerea and the lack of trypsin-like proteases in the C. cinerea genome, these results suggest that cospin and its homologs are effectors of a fungal defense mechanism against fungivorous insects that function by specific inhibition of serine proteases in the insect gut.  相似文献   

6.
Recombinant hexons from subgroup C adenoviruses (Ad2 and Ad5) and from a member of subgroup B (Ad3) adenoviruses have been expressed in insect cells. When expressed alone, all three hexons were found to be insoluble and accumulated as inclusion bodies in the cytoplasm. However, co-expression of recombinant Ad2, Ad5 or Ad3 hexon with Ad2 L4-100K protein resulted in the formation of soluble trimeric hexons. EM analysis of hexons revealed that they were indistinguishable from native hexon capsomers isolated from Ad2-infected human cells, or released from partially disrupted adenovirions. This suggests that 100K acts as a chaperone for hexon folding and self-assembly into capsomer in insect cells. Since 100K protein assists in the trimerization of subgroup C hexon, and of subgroup B hexon protein, it implies that it functions in a manner that is both homo- and heterotypic. During the course of recombinant protein expression, the 100K protein was found in association with hexon monomers and trimers within the cytoplasm. In the nucleus, however, 100K was found in complexes with hexon trimers exclusively. EM observation of purified 100K protein samples showed a dumb-bell-shaped molecule compatible with a monomeric protein. EM analysis of hexon-100K protein complexes showed that interaction of hexon with the 100K protein occurred via one of the globular domains of the 100K protein molecule. Our data confirm the role of the 100K protein as a scaffold protein for hexon, and provide evidence suggesting its function in hexon nuclear import in insect cells.  相似文献   

7.
Although the alpha-chymases of primates and dogs are known as chymotrypsin-like proteases, the enzymatic properties of rodent alpha-chymases (rat mast cell protease 5/rMCP-5 and mouse mast cell protease 5/mMCP-5) have not been fully understood. We report that recombinant rMCP-5 and mMCP-5 are elastase-like proteases, not chymotrypsin-like proteases. An enzyme assay using chromogenic peptidyl substrates showed that mast cell protease-5s (MCP-5s) have a clear preference for small aliphatic amino acids (e.g. alanine, isoleucine, valine) in the P1 site of substrates. We used site-directed mutagenesis and computer modeling approaches to define the determinant residue for the substrate specificity of mMCP-5, and found that the mutant possessing a Gly substitution of the Val at position 216 (V216G) lost elastase-like activity but acquired chymase activity, suggesting that the Val216 dominantly restricts the substrate specificity of mMCP-5. Structural models of mMCP-5 and the V216G mutant based on the crystal structures of serine proteases (rMCP-2, human cathepsin G, and human chymase) revealed the active site differences that can account for the marked differences in substrate specificity of the two enzymes between elastase and chymase. These findings suggest that rodent alpha-chymases have unique biological activity different from the chymases of other species.  相似文献   

8.
A serpin homologue (Tk-serpin) from the hyperthermophilic archaeon Thermococcus kodakaraensis was overproduced in E. coli, purified, and characterized. Tk-serpin irreversibly inhibits Tk-subtilisin (TKS) from the same organism with the second-order association rate constants (k(ass)) of 5.2×103 M?1 s?1 at 40°C and 3.1×10? M?1 s?1 at 80°C, indicating that Tk-serpin inhibits TKS more strongly at 80°C than at 40°C. It also irreversibly inhibits chymotrypsin, subtilisin Carlsberg, and proteinase K at 40°C with the k(ass) values comparable to that for TKS at 80°C. Casein zymography showed that Tk-serpin inhibits these proteases by forming a SDS-resistant complex, which is typical to inhibitory serpins. The ratio of moles of Tk-serpin needed to inhibit 1 mol of protease (stoichiometry of inhibition, SI) varies from 40 to 80 at 20°C, but decreases to the minimum values of 3-7 as the temperature increases. The inhibitory activities of Tk-serpin for these proteases increase as the stabilities of these proteases decrease, suggesting that a flexibility of the active-site of protease is one of the determinants for susceptibility of protease to inhibition by Tk-serpin. This report showed for the first time that Tk-serpin inhibits both chymotrypsin- and subtilisin-like serine proteases and its inhibitory activity increases as the temperature increases up to 100°C.  相似文献   

9.
Ma HC  Hearing P 《Journal of virology》2011,85(15):7849-7855
The packaging of the adenovirus (Ad) genome into a capsid displays serotype specificity. This specificity has been attributed to viral packaging proteins, the IVa2 protein and the L1-52/55K protein. We previously found that the Ad17 L1-52/55K protein was not able to complement the growth of an Ad5 L1-52/55K mutant virus, whereas two other Ad17 packaging proteins, IVa2 and L4-22K, could complement the growth of Ad5 viruses with mutations in the respective genes. In this report, we investigated why the Ad17 L1-52/55K protein was not able to complement the Ad5 L1-52/55K mutant virus. We demonstrate that the Ad17 L1-52/55K protein binds to the Ad5 IVa2 protein in vitro and the Ad5 packaging domain in vivo, activities previously associated with packaging function. The Ad17 L1-52/55K protein also associates with empty Ad5 capsids. Interestingly, we find that the Ad17 L1-52/55K protein is able to complement the growth of an Ad5 L1-52/55K mutant virus in conjunction with the Ad17 structural protein IIIa. The same result was found with the L1-52/55K and IIIa proteins of several other Ad serotypes, including Ad3 and Ad4. The Ad17 IIIa protein associates with empty Ad5 capsids. Consistent with the complementation results, we find that the IIIa protein interacts with the L1-52/55K protein in vitro and associates with the viral packaging domain in vivo. These results underscore the complex nature of virus assembly and genome encapsidation and provide a new model for how the viral genome may tether to the empty capsid during the encapsidation process.  相似文献   

10.
The biological functions of human neutrophil protease 3 (Pr3) differ from those of neutrophil elastase despite their close structural and functional resemblance. Although both proteases are strongly cationic, their sequences differ mainly in the distribution of charged residues. We have used these differences in electrostatic surface potential in the vicinity of their active site to produce fluorescence resonance energy transfer (FRET) peptide substrates for investigating individual Pr3 subsites. The specificities of subsites S5 to S3' were investigated both kinetically and by molecular dynamic simulations. Subsites S2, S1', and S2' were the main definers of Pr3 specificity. Combinations of results for each subsite were used to deduce a consensus sequence that was complementary to the extended Pr3 active site and was not recognized by elastase. Similar sequences were identified in natural protein substrates such as NFkappaB and p21 that are specifically cleaved by Pr3. FRET peptides derived from these natural sequences were specifically hydrolyzed by Pr3 with specificity constants k(cat)/K(m) in the 10(6) m(-1) s(-1) range. The consensus Pr3 sequence may also be used to predict cleavage sites within putative protein targets like the proform of interleukin-18, or to develop specific Pr3 peptide-derived inhibitors, because none is available for further studies on the physiopathological function of this protease.  相似文献   

11.
Macrophages at an inflammatory site release massive amounts of proteolytic enzymes, including lysosomal cysteine proteases, which colocalize with their circulating, tight-binding inhibitors (cystatins, kininogens), so modifying the protease/antiprotease equilibrium in favor of enhanced proteolysis. We have explored the ability of human cathepsins B, K and L to participate in the production of kinins, using kininogens and synthetic peptides that mimic the insertion sites of bradykinin on human kininogens. Although both cathepsins processed high-molecular weight kininogen under stoichiometric conditions, only cathepsin L generated significant amounts of immunoreactive kinins. Cathepsin L exhibited higher specificity constants (kcat/Km) than tissue kallikrein (hK1), and similar Michaelis constants towards kininogen-derived synthetic substrates. A 20-mer peptide, whose sequence encompassed kininogen residues Ile376 to Ile393, released bradykinin (BK; 80%) and Lys-bradykinin (20%) when incubated with cathepsin L. By contrast, cathepsin K did not release any kinin, but a truncated kinin metabolite BK(5-9) [FSPFR(385-389)]. Accordingly cathepsin K rapidly produced BK(5-9) from bradykinin and Lys-bradykinin, and BK(5-8) from des-Arg9-bradykinin, by cleaving the Gly384-Phe385 bond. Data suggest that extracellular cysteine proteases may participate in the regulation of kinin levels at inflammatory sites, and clearly support that cathepsin K may act as a potent kininase.  相似文献   

12.
Staphostatins, a novel family of cysteine protease inhibitors with a unique mechanism of action and distinct protein fold has recently been discovered. In this report we describe the properties of Staphylococcus epidermidis staphostatin A (EcpB), a new member of the family. As for other staphostatins, the recombinant S. epidermidis staphostatin A exerted very narrow inhibitory specificity, limited to cysteine protease from the same species. The closely related proteases from S. aureus cleaved the inhibitor at the reactive site peptide bond and inactivated it. The EcpB homologue, S. aureus staphostatin A (ScpB), was also susceptible to proteolytic cleavage at the same site by non-target cysteine proteases. Conversely, S. aureus staphostatin B (SspC) was resistant to such proteolysis. The difference in the susceptibility of individual inhibitors to proteolytic cleavage at the reactive site suggests subtle variations in the mechanism of interaction with cysteine proteases.  相似文献   

13.
Wohl BP  Hearing P 《Journal of virology》2008,82(10):5089-5092
The packaging of adenovirus (Ad) DNA into virions is dependent upon cis-acting sequences and trans-acting proteins. We studied the involvement of Ad packaging proteins in the serotype specificity of packaging. Both Ad5 and Ad17 IVa2 and L4-22K proteins complemented the growth of Ad5 IVa2 and L4-22K mutant viruses, respectively. In contrast, the Ad5 L1-52/55K protein complemented an Ad5 L1-52/55K mutant virus, but the Ad17 L1-52/55K protein did not. The analysis of chimeric proteins demonstrated that the N-terminal half of the Ad5 L1-52/55K protein mediated this function. Finally, we demonstrate that the L4-33K and L4-22K proteins have distinct functions during infection.  相似文献   

14.
15.
Activation of primary human T cells by anti-CD3 and interleukin-2 resulted in partial processing of procaspase-3 in activated nonapoptotic (Delta Psi(m)high) CD8(+) T cells but not in CD4(+) T cells. Apical caspases-8 and -9 were not activated, and Bid was not processed to truncated Bid. Boc-D.fmk, a broad spectrum caspase inhibitor, did not prevent this process, whereas GF.dmk, a selective inhibitor of dipeptidyl peptidase I, was effective. Dipeptidyl peptidase I is required for the activation of granule-associated serine proteases. It is enriched in the cytolytic granules of cytotoxic lymphocytes, where it promotes the proteolytic activation of progranzymes A and B. Inhibition of granzyme B (GrB)-like serine proteases by Z-AAD.cmk prevented partial processing of procapase-3, whereas inhibition of GrA activity by D-FPR.cmk had no effect. Specific inhibitors of other lysosomal proteases such as cathepsins B, L, and D did not interfere in this event. Patients with Chediak-Higashi syndrome or with perforin deficiency also displayed partial processing of procaspase-3, excluding the involvement of granule exocytosis for the delivery of the serine protease in cause. The p20/p12 processing pattern of procaspase-3 in our model points to GrB, the sole serine protease with caspase activity. Small amounts of GrB were indeed exported from cytolytic granules to the cytosol of a significant fraction of GrB-positive cells.  相似文献   

16.
The roles of serine proteases involved in the digestion mechanism of the cutworm Spodoptera litura (Lepidoptera: Noctuidae) were examined (in vitro and in vivo) following feeding of plant protease inhibitors. A trypsin inhibitor from Archidendron ellipticum (AeTI) was purified by ammonium sulfate fractionation, ion-exchange chromatography and size-exclusion chromatography (HPLC) and its bioinsecticidal properties against S. litura were compared with Soybean Kunitz trypsin inhibitor (SBTI). AeTI inhibited the trypsin-like activities of the midgut proteases of fifth instar larvae of S. litura by over 70%. Dixon plot analysis revealed competitive inhibition of larval midgut trypsin and chymotrypsin by AeTI, with an inhibition constant (K(i)) of 3.5x10(-9) M and 1.5x10(-9) M, respectively. However, inhibitor kinetics using double reciprocal plots for both trypsin and chymotrypsin inhibitions demonstrated a mixed inhibition pattern. Feeding experiments conducted on different (neonate to ultimate) instars suggested a dose-dependent decrease for both the larval body weight as well as % survival of larva fed on diet containing 50, 100 and 150 microM AeTI. Influence of AeTI on the larval gut physiology indicated a 7-fold decrease of trypsin-like protease activity and a 5-fold increase of chymotrypsin-like protease activity, after being fed with a diet supplemented with 150 microM AeTI. This study suggests that although the early (1st to 3rd) larval instars of S. litura are susceptible to the trypsin inhibitory action of AeTI, the later instars may facilitate the development of new serine proteases, insensitive to the inhibitor.  相似文献   

17.
Highly purified, recombinant preparations of the virally encoded proteases from human immunodeficiency viruses (HIV) 1 and 2 have been compared relative to 1) their specificities toward non-viral protein and synthetic peptide substrates, and 2) their inhibition by several P1-P1' pseudodipeptidyl-modified substrate analogs. Hydrolysis of the Leu-Leu and Leu-Ala bonds in the Pseudomonas exotoxin derivative, Lys-PE40, is qualitatively the same for HIV-2 protease as published earlier for the HIV-1 enzyme (Tomasselli, A. G., Hui, J. O., Sawyer, T. K., Staples, D. J., FitzGerald, D. J., Chaudhary, V. K., Pastan, I., and Heinrikson, R. L. (1990) J. Biol. Chem. 265, 408-413). However, the rates of cleavage at these two sites are reversed for the HIV-2 protease which prefers the Leu-Ala bond. The kinetics of hydrolysis of this protein substrate by both enzymes are mirrored by those obtained from cleavage of model peptides. Hydrolysis by the two proteases of other synthetic peptides modeled after processing sites in HIV-1 and HIV-2 gag polyproteins and selected analogs thereof demonstrated differences, as well as similarities, in selectivity. For example, while the two proteases were nearly identical in their rates of cleavage of the Tyr-Pro bond in the HIV-1 gag fragment, Val-Ser-Gln-Asn-Tyr-Pro-Ile-Val, the HIV-1 protease showed a 64-fold enhancement over the HIV-2 enzyme in hydrolysis of a Tyr-Val bond in the same template. Accordingly, the HIV-2 protease appears to have a different specificity than the HIV-1 enzyme; it is better able to hydrolyze substrates with small amino acids in P1 and P1', but is variable in its rate of hydrolysis of peptides with bulky substituents in these positions. In addition to these comparisons of the two proteases with respect to substrate specificity, we present inhibitor structure-activity data for the HIV-2 protease. Relative to P1-P1' statine or Phe psi [CH2N]Pro-modified pseudopeptidyl inhibitors, compounds having Xaa psi[CH(OH)CH2]Yaa inserts were found to show significantly higher affinities to both enzymes, generally binding from 10 to 100 times stronger to HIV-1 protease than to the HIV-2 enzyme. Molecular modeling comparisons based upon the sequence homology of the two enzymes and x-ray crystal structures of HIV-1 protease suggest that most of the nonconservative amino acid replacements occur in regions well outside the catalytic cleft, while only subtle structural differences exist within the active site.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Cancer invasion and metastasis is a process requiring a coordinated series of (anti-)adhesive, migratory, and pericellular proteolytic events involving various proteases such as urokinase-type plasminogen activator (uPA)/plasmin, cathepsins B and L, and matrix metalloproteases. Novel types of double-headed inhibitors directed to different tumor-associated proteolytic systems were generated by substitution of a loop in chicken cystatin, which is nonessential for cysteine protease inhibition, with uPA-derived peptides covering the human uPA receptor binding sequence uPA-(19-31). The inhibition constants of these hybrids toward cysteine proteases are similar to those of wild-type cystatin (K(i), papain (pm), 1.9-2.4; K(i), cathepsin B (nm), 1.0-1.7; K(i), cathepsin L (pm), 0.12-0.61). FACS analyses revealed that the hybrids compete for binding of uPA to the cell surface-associated uPA receptor (uPAR) expressed on human U937 cells. The simultaneous interaction of the hybrid molecules with papain and uPAR was analyzed by surface plasmon resonance. The measured K(D) value of a papain-bound cystatin variant harboring the uPAR binding sequence of uPA (chCys-uPA-(19-31)) and soluble uPAR was 17 nm (K(D) value for uPA/uPAR interaction, 5 nm). These results indicate that cystatins with a uPAR binding site are efficient inhibitors of cysteine proteases and uPA/uPAR interaction at the same time. Therefore, these compact and small bifunctional inhibitors may represent promising agents for the therapy of solid tumors.  相似文献   

19.
The serine protease granzyme B (GrB) plays an important role in the immune defense mediated by cytotoxic lymphocytes. Recombinant derivatives of this pro-apoptotic protein fused to tumor-targeting ligands hold promise for cancer therapy, but their applicability may be limited by promiscuous binding to nontarget tissues via electrostatic interactions. Here, we investigated cell binding and specific cytotoxicity of chimeric molecules consisting of wild-type or surface-charge-modified human GrB and the natural EGFR ligand TGFα for tumor targeting. We mutated two cationic heparin-binding motifs responsible for electrostatic interactions of GrB with cell surface structures, and genetically fused the resulting GrBcs derivative to TGFα for expression in the yeast Pichia pastoris . Purified GrBcs-TGFα (GrBcs-T) and a corresponding fusion protein employing wild-type GrB (GrB-T) displayed similar enzymatic activity and targeted cytotoxicity against EGFR-overexpressing breast carcinoma cells in the presence of an endosomolytic reagent. However, unspecific binding of the modified GrBcs-T variant to EGFR-negative cells was dramatically reduced, preventing the sequestration by nontarget cells in mixed cell cultures and increasing tumor-cell specificity. Likewise, modification of the GrB domain alleviated unspecific extracellular effects such as cell detachment indicative of extracellular matrix degradation. Our data demonstrate improved selectivity and functionality of surface-charge-modified GrBcs, suggesting this strategy as a general approach for the development of optimized GrB fusion proteins for therapeutic applications.  相似文献   

20.
Blood coagulation factor Xa (FXa) and Thrombin are well-known serine proteases often used for processing of recombinant fusion proteins, but because they are purified from bovine blood or other animal sources, there is a risk of pathogenic contaminants in the preparation of the proteases. We report here the characterization of a recombinant serine protease produced in Escherichia coli, which can be used as a specific and efficient alternative to FXa and Thrombin as processing protease. This recombinant protease is derived from human granzyme B (GrB). The protease is found to be very stable in general, and it performs very well in the cleavage of several different fusion proteins tested and was even found superior to processing by FXa in two cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号