首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A spectrum of eight pharmacologically important secondary compounds, all putatively belonging to the polyketide pathway (hypericin, pseudohypericin, emodin, hyperforin, hyperoside, rutin, quercetin, and quercitrin) were analyzed in several hypericin-producing species of Hypericum by LC–MS/MS. Different organs such as leaves, stems and roots of wild-grown plants of Hypericum hirsutum L., Hypericum maculatum Crantz s. l., Hypericum montanum L., Hypericum tetrapterum Fr. collected in Slovakia and of Hypericum perforatum L. collected in India were examined individually. Highest contents of hypericin, pseudohypericin, and emodin were found in H. montanum, suggesting that there are alternative species to H. perforatum with high pharmaceutical value. Amounts of hyperforin and quercetin were highest in H. perforatum, whereas highest contents of hyperoside and quercitrin were found in H. maculatum. A significant positive correlation between hypericin and pseudohypericin as well as between hypericin and emodin was observed by Kruskal’s multidimensional scaling (MDS), indicating a parallel enhancement of emodin as a common precursor in the biosynthetic pathways of hypericin and pseudohypericin. Furthermore, MDS combined with principal component analysis (PCA) revealed strong correlations in the occurrence of pseudohypericin and emodin, pseudohypericin and quercitrin, hypericin and quercitrin, emodin and quercitrin, hyperoside and quercitrin, rutin and quercetin, and, hyperforin and quercetin. On the other hand, rutin showed a negative correlation with emodin as well as with quercitrin. Furthermore, hierarchical agglomerative cluster analysis (HACA) clustered hypericin and pseudohypericin, grouping emodin at equal distance from both. Considerable infraspecific variability in secondary compound spectrum and load of different populations of H. maculatum from Slovakia underscores the need for detailed studies of genotypic variation and environmental factors in relation to polyketide biosynthesis and accumulation.  相似文献   

3.
The genus Hypericum has received considerable interest from scientists, as it is a source of a variety of biologically active compounds including the hypericins. The present study was conducted to determine ontogenetic, morphogenetic and diurnal variation of the total hypericins content in some species of Hypericum growing in Turkey namely, Hypericum aviculariifolium subsp. depilatum var. depilatum (endemic), Hypericum perforatum and Hypericum pruinatum. The Hypericum plants were harvested from wild populations at vegetative, floral budding, full flowering, fresh fruiting and mature fruiting stages four times a day. Plants were dissected into stem, leaf and reproductive tissues, which were dried separately, and subsequently assayed for total hypericin content. The density of dark glands on leaves at full flowering plants was determined for each species. Floral parts had the highest hypericin content in all species tested. But diurnal fluctuation in the hypericin content of whole plant during the course of ontogenesis varied among the species. It reached the highest level at floral budding and tended to increase at night in H. aviculariifolium subsp. depilatum var. depilatum and H. pruinatum, whereas in H. perforatum hypericin content was the highest at full flowering and no diurnal fluctuation was observed. In general, hypericin content of leaves and whole plant was higher in H. aviculariifolium subsp. depilatum var. depilatum whose leaves had more numerous dark glands than those of the two other species.  相似文献   

4.
Several species ofHypericum are used in traditional Turkish folk medicine. Their most medicinally important secondary metabolites are the hypericins, hyperforins, and phenolics. Here, we determined the ontogenetic, morphogenetic, and diurnal variations in total phenolics contents fromH. aviculariifolium subsp.depilatum var.depilatum (endemic),H. perforation, andH. pruinatum. Plants of wild-growingH. aviculariifolium subsp.depilatum var.depilatum andH. perforatum, and greenhouse-grownH. pruinatum were harvested four times per day during their vegetative, floral-budding, full-flowering, fresh-fruiting, and mature-fruiting stages. They were then dissected into stem, leaf, and reproductive tissues to be dried separately and assayed. The highest level of phenolics inH. aviculariifolium subsp.depilatum var.depilatum andH. pruinatum was found in the leaves, whereas the floral buds produced the greatest amount inH. perforatum. Variations in contents from whole plants fluctuated diurnally, differing among species over the course of ontogenesis, reaching the highest level at floral-budding and tending to increase at mid-day inH. aviculariifolium subsp.depilatum var.depilatum. ForH. perforatum andH. pruinatum, contents also were the highest during floral development, although no diurnal fluctuations were observed in those species.  相似文献   

5.
Of numerous species belonging to the medicinally important genus Hypericum, only H. perforatum L. and H. maculatum Crantz grow widely in Estonia. A comparative biochemical systematics study of hypericins, hyperforins and other phenolics within Hypericum spp. growing in Estonia was performed. For comprehensive metabolomic investigation, 42 samples of H. perforatum and 16 samples of aerial parts of H. maculatum were collected in two consecutive years from various locations; methanolic extracts were prepared from airdried leaves and flowers. The concentrations of a quinic acid derivative, caffeic acid glucoside, vanillic acid glucoside, neochlorogenic acid, chlorogenic acid, catechin, epicatechin, myricetin glucoside, hyperoside, isoquercitrin, rutin, quercetin pentoside, quercitrin, kaempferol glucoside, kaempferol rutinoside, quercetin, hyperforin, adhyperforin, protopseudohypericin, pseudohypericin, and hypericin were determined by LC-DAD-MS/MS. All the aforementioned compounds were detected in both species, although some at very different levels – H. maculatum contained rutin and hyperforins only in trace amounts and overall tended to contain more phenolic compounds. The level of total hypericins was the same for both species. These results constitute a further contribution to the systematic knowledge about the Hypericum spp. Results of principal component analysis (PCA) demonstrated distinct between-years and between-species diversity in the chemical composition of the plants studied. Between-years diversity in Hypericum spp. has not been addressed before.  相似文献   

6.
The genus Hypericum has received considerable interest from scientists, as it contains the variety of structurally diverse natural products which possess a wide array of biological properties. The present study was conducted to determine ontogenetic and morphogenetic variation of hypericin, chlorogenic acid and flavonoids, as rutin, hyperoside, apigenin-7-O-glucoside, quercitrin and quercetin content in Hypericum origanifolium growing in Turkey. Wild growing plants were harvested at vegetative, floral budding, full flowering, fresh fruiting and mature fruiting stages and dissected into stem, leaf and reproductive tissues and assayed for bioactive compounds by HPLC method. Hypericin, quercetin and quercitrin content in whole plant increased during course of ontogenesis and the highest level was reached in blooming stage. On the contrary, hyperoside content of whole plant decreased linearly with advancing of development stages and the highest level was observed at vegetative stage. Plants produced similar amount of chlorogenic acid at all stages of plant phenology except for mature fruiting at which the amount of this compound was decreased sharply. Among different tissues, reproductive parts accumulated the highest level of hypericin, quercetin and quercitrin, however, leaves produced substantially higher amount of chlorogenic acid and hyperoside. Rutin and apigenin-7-O-glucoside were detectable in all tissues only during fruit maturation. The presence and variation of these bioactive substances in H. origanifolium were reported for the first time.  相似文献   

7.
The presence of several phytochemicals, namely naphthodianthrones hypericin and pseudohypericin, phloroglucinol derivatives hyperforin and adhyperforin, the phenolic acids as chlorogenic acid, neochlorogenic acid, caffeic acid and 2,4-dihydroxybenzoic acid, the flavonols, hyperoside, isoquercitrin, quercitrin, quercetin, avicularin, rutin, and flavanols (+)-catechin and (?)-epicatechin, as well as biflavonoid amentoflavone was investigated in seven Turkish species of Hypericum from Taeniocarpium and Drosanthe sections. Plants were harvested at flowering, dried at room temperature, dissected into different tissues and assayed for chemical contents by HPLC. All chemicals were detected at various levels depending on species and plant parts. Despite the observed quantitative variation in the chemical content of plant material, it was found that phytochemical profiles of the species from the same section were very similar. The present data could be helpful in selecting the future targets for phytochemical and biological studies as well as enriching our current chemical knowledge about Hypericum species. Such kind of data could also be useful for elucidation of the chemotaxonomical relationships among the sections of Hypericum genus.  相似文献   

8.
Altitudinal changes in the content of hypericin, pseudohypericin, hyperforin, adhyperforin, chlorogenic acid, neochlorogenic acid, caffeic acid, 2,4-Dihydroxybenzoic acid, amentoflavone, hyperoside, isoquercitrin, quercitrin, quercetin, avicularin, rutin, (+)-catechin and (?)-epicatechin among Hypericum orientale L. and Hypericum pallens Banks and Sol. populations from Northern Turkey were investigated for the first time. Thirty flowering individuals were collected from five different altitudes (400, 950, 1,150, 1,620 and 2,150 m) for H. pallens and six different altitudes (500, 1,150, 1,650, 2,100, 2,720 and 3,250 m) for H. orientale. The plant materials were dried at room temperature and subsequently assayed for chemical contents by HPLC. All chemicals were detected in both species at various levels depending on altitude of growing sites except for caffeic acid which was absent in H. pallens. It was found that plants from higher altitudes produced significantly higher amount of the bioactive compounds tested. The results were discussed as a possible protective response of plants to the different abiotic stress factors as high ultraviolet (UV)-B radiation and low temperature which were prevalent in higher altitudes.  相似文献   

9.
The genus Hypericum (Hypericaceae) has attracted scientific interest as its members have yielded many bioactive compounds. In the present study we investigated the content of hypericin, pseudohypericin, hyperforin, adhyperforin, chlorogenic acid, neochlorogenic acid, caffeic acid, 2,4-dihydroxybenzoic acid, 13,II8-biapigenin, hyperoside, isoquercitrin, quercitrin, quercetin, avicularin, rutin, (+)-catechin and (−)-epicatechin in aerial parts of plants from populations of H. androsaemum L. and H. polyphyllum Boiss. & Bal. from Turkey growing at different altitudes. The plant materials were dried and subsequently assayed for chemical content by HPLC. All the tested compounds were detected in both species at varying levels depending upon the altitude the plants were growing, except for hypercins and rutin which did not accumulate in H. androsaemum. It was observed that overall the compounds were more abundant in plants from higher altitudes. The differences in the levels of the compounds could contribute to the ability of the plants to deal with the abiotic stress of lower temperature and higher ultraviolet (UV)-B radiation which would be greater at higher altitudes compared to lower altitudes.  相似文献   

10.
This study examined the detailed pollen morphological structures of sixteen Hypericum taxa (four endemic, twelve non endemic) including eight sections showing the natural distribution in Turkey: H. sect. Ascyreia (H. calycinum L.), H. sect. Heterophyllum (H. heterophyllum Vent.), H. Sect. Taeniocarpium (Hypericum confertum Choisy subsp. confertum, H. venustum Fenzl, H. linaroides Bosse), H. sect. Drosocarpium (H. montbretii Spach, H. bithynicum Boiss.), H. sect. Crossophyllum (H. adenotrichum Spach, H. orientale L.), H. sect. Olympia (H. olympicum L. subsp. olympicum), H. sect. Origanifolia (H. origanifolium Willd., H. avicularifolium Jaub and Spach subsp. depilatum (Freyn and Bornm.) Robson var. depilatum, H. avicularifolium Jaub. and Spach subsp. byzantinum) and H. sect. Hypericum (H. tetrapterum Fries, H. perforatum L., H. triquetrifolium Tura). These taxa were studied under light microscope and scanning electron microscope for the first time. Of the taxa studied, H. tetrapterum has the smallest pollen grains (on average 15.85–17.20 × 15.45–16.05 μm); and H. olympicum subsp. olympicum the largest grains (on average 22.90–23.10 × 21.40–22.10 μm). The pollen grains of 15 taxa are subprolate and one taxon is prolate-spheroidal. The regular pollen grains of all 16 taxa are 3-zonocolporate. Ornamentation is microreticulate; lumina regularly spaced in eight taxa, tectum perforatum; tectal perforations regularly spaced in seven taxa and tectum perforatum; and tectal perforations grouped together in one taxon. Endoaperture is cruciform porus, with short lateral and meridional extensions in ten taxa, cruciform porus, transversally elongated, with very small lateral extensions in one taxon and lalongate colpus in five taxa. Basic pollen types are ten taxa in type X, five taxa in type IV and one taxon in type II.  相似文献   

11.
Within Sicilian flora, the genus Hypericum (Guttiferae) includes 10 native species, the most popular of which is H. perforatum. Hypericum’s most investigated active compounds belong to naphtodianthrones (hypericin, pseudohypericin) and phloroglucinols (hyperforin, adhyperforin), and the commercial value of the drug is graded according to its total hypericin content. Ethnobotanical sources attribute the therapeutic properties recognized for H. perforatum, also to other Hypericum species. However, their smaller distribution inside the territory suggests that an industrial use of such species, when collected from the wild, would result in an unacceptable depletion of their natural stands. This study investigated about the potential pharmacological properties of 48 accessions from six native species of Hypericum, including H. perforatum and five ‘minor’ species, also comparing, when possible, wild and cultivated sources. The variability in the content of active metabolites was remarkably high, and the differences within the species were often comparable to the differences among species. No difference was enlightened between wild and cultivated plants. A carefully planned cultivation of Hypericum seems the best option to achieve high and steady biomass yields, but there is a need for phytochemical studies, aimed to identify for multiplication the genotypes with the highest content of the active metabolites.  相似文献   

12.
We examined the importance of the constitutive terpenoids of five species of Hypericum native to the Greek mainland, Crete Island and the west Aegean. The species studied are Hypericum empetrifolium Willd. (sect. Coridium Spach), Hypericum rumeliacum Boiss. subsp. apollinis Robson & Strid, Hypericum perfoliatum L. (sect. Drosocarpium Spach), Hypericum triquetrifolium Turra and Hypericum perforatum L. (sect. Hypericum, subsect. Hypericum [Robson, N.K.B., 2001. Studies in the genus Hypericum L. (Guttiferae). 4 (1). Sections 7. Roscyna to 9. Hypericum sensu lato (part 1). Bull. Brit. Mus. (Nat. Hist.) Bot. 31, 37–88]). Canonical discriminant analysis (CDA) on 98 of the most abundant terpenoids was found to achieve a separation of species. The performed phylogenetic reconstruction supports the existing divisions of Hypericum in taxonomic sections. Other multivariate techniques were also investigated such as principal coordinate analysis and principal component analysis, but these were found inferior to CDA. These analyses transformed the data in such a way that they did not sufficiently account for the entire terpenoid variation, nor did they delineate species in accepted taxonomic sections.  相似文献   

13.
The secondary metabolite contents and genetic profiles of six Hypericum species (H. barbatum Jacq., H. hirsutum L., H. linarioides Bosse, H. maculatum Crantz, H. rumeliacum Boiss. and H. tetrapterum Fries), collected from different locations in Serbia, have been analyzed. Methanol extracts of the aerial parts of the plants were obtained by accelerated solvent extraction (ASE) at 40 degrees C and 100 bar, and analyzed for five pharmacologically important standard constituents (hyperoside, quercitrin, pseudohypericin, hyperforin and hypericin) by LC-MS/MS. The highest content of hypericin and pseudohypericin was observed in the H. barbatum extract, while the highest content of hyperforin and quercitrin was found in the H. tetrapterum extract and the highest content of hyperoside in the H. maculatum extract. A literature survey shows that the above six Hypericum species, with the exception of H. maculatum, have not been previously genetically profiled. In order to correlate the chemical constituents of the species under investigation with their genetic factors, genetic profiling of these species was undertaken using the random amplification of polymorphic DNA (RAPD) and single sequence repeat (SSR) profiles of the above selected plants. Among the 52 random primers used for the initial screening, only 10 yielded polymorphic RAPD profiles. A total of 111 polymorphic markers were generated using these primers. The SSR analysis shows that 8 out of the 10 primers used were polymorphic. The correlation among the species under investigation using the two genetic markers was performed using Jaccuard's coefficients of similarity and a high correlation (r=0.99) was obtained. The main conclusion from the above data is that there exists a stronger correlation for secondary metabolite contents with RAPD data than with SSR data among the six Hypericum species from Serbia.  相似文献   

14.
Plants of the genus Hypericum are widely known for their therapeutic properties. The most biologically active compounds of this genus are naphtodianthrones and phloroglucinols. Indirect desorption electrospray ionization mass spectrometry (DESI‐MS) imaging allows visualization and localization of secondary metabolites in different plant tissues. This study is focused on localization of major secondary compounds in the leaves of 17 different in vitro cultured Hypericum species classified in 11 sections. Generally, all identified naphtodianthrones, protohypericin, hypericin, protopseudohypericin and pseudohypericin were co‐localized in the dark glands of eight hypericin producing species at the site of their accumulation. The known phloroglucinols, hyperforin, adhyperforin, hyperfirin and some new phloroglucinols with m/z [M ? H]? 495 and 569 were localized in the translucent and pale cavities within the leaf in the majority of studied species. The comparison of different Hypericum species revealed an interspecific variation in the distribution of the dark and translucent glands corresponding with the localization of hypericins and phloroglucinols. Moreover, similarities in the localization and composition of the phloroglucinols were observed in the species belonging to the same section. Adding to various quantitative studies focused on the detection of secondary metabolites, this work using indirect DESI‐MSI offers additional valuable information about localization of the above‐mentioned compounds.  相似文献   

15.
The main biologically active constituents of Hypericum species are flavonoids (quercetin, isoquercitrin, hyperoside, rutin), biflavonoids and naphthodianthrones (hypericin, pseudohypericin). Lipoxygenase is the key enzyme in the biosynthesis of leukotriens, which have been postulated to play an important role in the pathophysiology of several inflammatory and allergic diseases. This work deals with the investigation of potential antilipoxygenase activity of different compounds and extracts isolated from Hypericum perforatum L. The highest inhibitory effect was exhibited by flavonoid derivative hyperoside (IC50 5.768 × 10−6 M). Acetone and ethanolic extracts caused also an inhibition of lipoxygenase. On the basis of inhibitory effect of compounds tested we assume that the most of them may be involved in the antiinflammatory principles of Hypericum perforatum L.  相似文献   

16.
The present study shows for the first time the phenolic composition and the in vitro properties (antioxidant and inhibition of nitric oxide production) of Hypericum calabricum Sprengel collected in Italy. The content of hypericins (hypericin and pseudohypericin), hyperforin, flavonoids (rutin, hyperoside, isoquercetrin, quercitrin, quercetin and biapigenin) and chlorogenic acid of H. calabricum, have been determined. The ethyl acetate fraction from the aerial parts of H. calabricum exhibited activity against the radical 1,1-diphenyl-2-picrylhydrazyl (DPPH) with IC50 value of 1.6 jig/ml. The test for inhibition of nitric oxide (NO) production was performed using the murine monocytic macrophage cell line RAW 264.7. The ethyl acetate fraction had significant activity with an IC50 value of 102 jig/ml and this might indicate that it would have an anti-inflammatory effect in vivo.  相似文献   

17.
Hypericum perforatum L. has become one of the leading plant-based dietary supplements worldwide and its biological activities have been mainly attributed to hypericin and phenolic contents. The present study was conducted to determine chemical and morphological variability of H. perforatum sampled from different locations of Northern Turkey. The populations were investigated according to the hypericin, chlorogenic acid and the flavonoids, namely rutin, hyperoside, apigenin-7-O-glucoside, quercitrin and quercetin contents and morphological characters including leaf dark gland density, leaf area, leaf length/width ratio and plant height. Significant chemical and morphological variations were detected among the populations. Hypericin content among populations ranged between 0.44 and 2.82 mg/g dry weight, chlorogenic acid between 0.0 and 1.86 mg/g dry weight, rutin between 0.0 and 8.77 mg/g dry weight, hyperoside between 5.41 and 22.28 mg/g dry weight, quercitrin between 1.64 and 3.98 mg/g dry weight and quercetin between 1.01 and 1.76 mg/g dry weight. Hypericin content was found to be correlated positively with leaf dark gland density, however, negatively with leaf area and no correlation was detected between the other morphological traits and bioactive substances examined.  相似文献   

18.
The present study was conducted to determine the variation in the content of several plant chemicals, namely hyperforin, hypericin, pseudohypericin, chlorogenic acid, rutin, hyperoside, isoquercetine, kaempferol, quercitrine and quercetine among ten Hypericum orientale L. populations from Northern Turkey. The aerial parts representing a total of 30 individuals were collected at full flowering and dissected into floral, leaf and stem tissues. After dried at room temperature, the plant materials were assayed for chemical contents by HPLC. The populations varied significantly in chemical contents. Among different plant parts, the flowers were found to be the principle organ for hyperforin, hypericin, pseudohypericin and rutin accumulations while the rest of the chemicals were accumulated mainly in leaves in all growing localities. The chemical variation among the populations and plant parts is discussed as being possibly the result of different genetic, environmental and morphological factors.  相似文献   

19.
As part of our ongoing phylogenetic study of genusHypericum, nuclear ribosomal DNA internal transcribed spacer sequences were analyzed for 36 species ofHypericum as ingroup and two species ofThornea as outgroup. This sampling included most of the previously described species from both Korea and Japan. The ITS phylogeny suggested that the surveyedHypericum species belong to a monophyletic section,Trigynobrathys, and a polyphyletic section,Hypericum. In addition, two monotypic sections,Sampsonia andRoscyna, were identified. Members of sectionHypericum occur in four different lineages worldwide, which imply at least four independent origins. The Korean and Japanese species of sectionHypericum form a monophyletic group, except forH. vulcanicum. Instead, that particular species belongs to a distinct monophyletic group withH. scoreri andH. formosa from other geographic areas, and is a sister to sectionTrigynobrathys. The Korean and Japanese species of sectionTrigynobrathys show a monophyletic origin.H. sampsonii is now recognized as a distinct section rather than being a member of sectionsHypericum orDrosocarpium, as had been indicated previously. Our results differ somewhat from those of recent morphological and cytological studies. The phylogenetic relationships among Korean and Japanese species have now been mostly resolved via ITS phylogeny.  相似文献   

20.
The present study was conducted to determine phenologic and morphogeneUc variation of hyperlcln, chlorogenlc acid and flavonoids, as rutin, hyperoside, apigenin-7-O-glucoside, quercitrin, quercetin content of Hypericum perforatum L. growing in Turkey. Wild growing plants were harvested at vegetative, floral budding, full flowering, fresh frulUng and mature fruiting stages and dissected into stem, leaf and reproductive tissues and assayed for bioacUve compounds by the High performance liquid chromatography (HPLC) method. Hypericin concentration ranged between 0 and 2.73 mg/g DW, chlorogenic acid 0.00-3.64 mg/g DW, rutin 0.00-3.36 mg/g DW, hyperoside 0.04- 22.42 mg/g DW, quercitrin 0.03-3.46 mg/g DW and quercetin 0.04-1.02 mg/g DW depending on ontogenetic and morphogenetic sampling. Leaves were found to be superior to stems and reproductive parts with regard to phenolic accumulation for all compounds tested while flowers accumulated the highest levels of hypericln. Quercltrln, quercetln and hypericin content in all tissues increased with advancing of developmental stages and reached their highest level during flower ontogenesis. Similarly, chlorogenic acid, hyperoside and apigenin-7-O-glucoside content in different plant parts increased during plant development, however, the highest level was observed at different stages of plant phenology for each tissue. Chlorogenic acid was not detected in stems, leaves and reproductive parts in several stages of plant phenology and its variation during plant growth showed inconsistent manner. In contrast to the other compounds examined, rutin content of stems and leaves decreased with advanc- ing of plant development and the highest level for both tissues was observed at the vegetative stage. However, content of the same compound in reproductive parts was the highest at mature fruiting. The present findings might be useful to obtain increased concentration of these natural compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号