首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ernst Haeckel, who first introduced the term ‘monophyly’ into the biological literature, has in the past been appealed to in adjudication of the modern use of that concept. A contextual analysis of his writings reveals an inconsistent use of the term ‘monophyly’ by Haeckel. Morphological phylogeny was decoupled in Haeckel’s thinking from the evolutionary history of taxa. Monophyly could mean the derivation of one taxon from another, ancestral one, where these taxa could be species or of supraspecific rank. Monophyly could also mean the phylogenetic differentiation of a diversity of organismal ‘forms’ (morphologies) from a common primitive ‘form’ (morphological stage). And finally, monophyly, as also polyphyly, could apply to the origin of specific anatomical structures, in which case the monophyly/polyphyly of anatomical structures needed not to correlate with the monophyly/polyphyly of the taxon characterized by these structures. With respect to the issue of the unity and reality of monophyletic taxa, Haeckel’s writings again are indeterminate as is his stance on the monophyletic origin of life.  相似文献   

2.
3.
Chick embryos are good models for vertebrate development. The principles that underlie chick wing development have been discovered and there is increasing knowledge about the molecules involved. The importance of identifying molecules is that this provides a direct link to understanding the genetic basis of diversity in form. Chick wing development will be compared with limb development in other vertebrates. Possible mechanisms that could lead to variations in form, including limb reductions and limblessness, differences between fore- and hindlimbs, limb proportions, and interdigital webbing can be suggested.  相似文献   

4.
5.
The genus Pinguicula (Lentibulariaceae) is unusual within the dicot order Lamiales because of the occurrence of both embryos with two cotyledons and those with just one cotyledon. In order to elucidate the infrageneric relationships and the evolutionary history of the embryo, we analysed (1) the internal transcribed spacers ITS1 and ITS2 of the nuclear ribosomal DNA (nrITS) of 29 Old and New World taxa of Pinguicula, and (2) the morphological and anatomical characters of the seeds. We suggest that the cotyledon number and spermoderm structure were quite unstable in the evolution of Pinguicula. Although basal nodes of the nrITS tree are sensitive to taxon sampling, all tree topologies found in this study imply homoplasy in the cotyledon number.  相似文献   

6.
We investigated muscle development in two chiton species, Mopalia muscosa and Chiton olivaceus, from embryo hatching until 10 days after metamorphosis. The anlagen of the dorsal longitudinal rectus muscle and a larval prototroch muscle ring are the first detectable muscle structures in the early trochophore-like larva. Slightly later, a ventrolaterally situated pair of longitudinal muscles appears, which persists through metamorphosis. In addition, the anlagen of the putative dorsoventral shell musculature and the first fibers of a muscular grid, which is restricted to the pretrochal region and consists of outer ring and inner diagonal muscle fibers, are generated. Subsequently, transversal muscle fibers form underneath each future shell plate and the ventrolateral enrolling muscle is established. At metamorphic competence, the dorsoventral shell musculature consists of numerous serially repeated, intercrossing muscle fibers. Their concentration into seven (and later eight) functional shell plate muscle bundles starts after the completion of metamorphosis. The larval prototroch ring and the pretrochal muscle grid are lost at metamorphosis. The structure of the apical grid and its atrophy during metamorphosis suggests ontogenetic repetition of (parts of) the original body-wall musculature of a proposed worm-shaped molluscan ancestor. Moreover, our data show that the "segmented" character of the polyplacophoran shell musculature is a secondary condition, thus contradicting earlier theories that regarded the Polyplacophora (and thus the entire phylum Mollusca) as primarily eumetameric (annelid-like). Instead, we propose an unsegmented trochozoan ancestor at the base of molluscan evolution.  相似文献   

7.
A single-celled fertilized egg develops into a complex, multicellular animal through a series of selection processes of developmental pathways. During these processes, regulatory genes exhibit spatiotemporally restricted expression under the control of the species-specific genetic program, and dictate developmental processes from germ layer formation to cellular differentiation. Elucidation of molecular mechanisms underlying developmental processes and also of mechanistic bases for morphological diversification during evolution is one of the central issues in contemporary developmental biology. Progress has been made due to recent technological innovations, such as high-throughput nucleotide sequencing, live-cell imaging, efficient genetic manipulation, and establishment of the organoid system, opening new avenues to the above issues.  相似文献   

8.
文昌鱼—研究脊柱动物起源和进化的模式动物   总被引:21,自引:0,他引:21  
长久以来,文昌鱼一直被认为和生活在约5亿年前的脊椎动物的直接祖先相似。由于文昌鱼在进化上的重要性,它在动物学研究史上发挥着关键作用,近100多年来,文昌鱼作为研究对象曾数次受到动物学界青睐或冷落,大约10年前,随着分子生物学技术应用于文昌鱼研究,又激发了动物学家对文昌鱼的研究兴趣,又一次出现在文昌鱼研究的高潮,并且一直持续至今,分子生物学研究结果表明,文昌鱼样生物可能是环节动物样动物和最早的脊椎动物之间的进化中间体,因此,文昌鱼在动物学研究史上好像绕了个大圈又回到了原处,在被忽视一段时间之后,又重新占据脊椎动物起源和进化研究中心舞台的位置,成为研究脊椎动物起源和进化的模式动物。  相似文献   

9.
Abstract. Recent molecular data suggest that the Porifera is paraphyletic (Calcarea+Silicea) and that the Calcarea is more closely related to the Metazoa than to other sponge groups, thereby implying that a sponge‐like animal gave rise to other metazoans. One ramification of these data is that calcareous sponges could provide clues as to what features are shared among this ancestral metazoan and higher animals. Recent studies describing detailed morphology in the Calcarea are lacking. We have used a combination of microscopy techniques to study the fine structure of Syconcoactum Urban 1905, a cosmopolitan calcareous sponge. The sponge has a distinct polarity, consisting of a single tube with an apically opening osculum. Finger‐like chambers, several hundred micrometers in length, form the sides of the tube. The inner and outer layers of the chamber wall are formed by epithelia characterized by apical–basal polarity and occluding junctions between cells. The outer layer—the pinacoderm—and atrial cavity are lined by plate‐like cells (pinacocytes), and the inner choanoderm is lined by a continuous sheet of choanocytes. Incurrent openings of the sponge are formed by porocytes, tubular cells that join the pinacoderm to the choanoderm. Between these two layers lies a collagenous mesohyl that houses sclerocytes, spicules, amoeboid cells, and a progression of embryonic stages. The morphology of choanocytes and porocytes is plastic. Ostia were closed in sponges that were vigorously shaken and in sponges left in still water for over 30 min. Choanocytes, and in particular collar microvilli, varied in size and shape, depending on their location in the choanocyte chamber. Although some of the odd shapes of choanocytes and their collars can be explained by the development of large embryos first beneath and later on top of the choanocytes, the presence of many fused collar microvilli on choanocytes may reflect peculiarities of the hydrodynamics in large syconoid choanocyte chambers. The unusual formation of a hollow blastula larva and its inversion through the choanocyte epithelium are suggestive of epithelial rather than mesenchymal cell movements. These details illustrate that calcareous sponges have characteristics that allow comparison with other metazoans—one of the reasons they have long been the focus of studies of evolution and development.  相似文献   

10.
进化发育生物学--发育、进化和遗传的再联合   总被引:3,自引:0,他引:3  
张士璀 《生命科学》2000,12(4):145-147
发育生物学和进化生物学,以及遗传学历史上曾一度是彼此不分的统一体,后来由于各自研究重点的不同和相应研究手段的独立发展彼此分道扬镳了。如今,由于分子遗传学研究手段的革新使得基因序列测定成为分析发育机理、区分物种和评估种间亲缘关系的常规手段,三者又在基因水平上再度统一起来了,并形成一门被称为进化发育生物学(evolutionary developmental biology)的新学科。  相似文献   

11.
12.
Lamprey development is of interest to evolutionary biologists because it can inform our understanding of primitive vertebrate developmental patterns. In this study, we describe and illustrate some of the principle landmarks of organogenesis in the embryonic sea lamprey Petromyzon marinus L. at different chronological ages. We examined 63 fixed embryos spanning Piavis developmental stages 11-18+ (5-70 days postfertilization) by gross observation and histology. This period begins at late neurulation stages and ends with the formation of the larva (ammocoete). A significant difference with some previous accounts is that the anus develops not from a persistent blastopore, but by secondary canalization and proctodeum formation at the former site of the blastopore. Further, we show that the ciliated bands of the pharyngeal roof originate in the esophagus, distinguishing it from the intestine. We clarify the epithelialization of the gut, showing that the secondary gut cavity is progressively epithelialized from each end. We identify possible germ cells in the coelomic and cloacal walls. Balfour's "subnotochordal rod" is lacking in our specimens; we suggest that he may have misinterpreted the corpus adiposum. Our study is of potential value to the growing number of biologists interested in lamprey development and provides a character set that will be used : 1) in a phylogenetic study of vertebrate development, and 2) to prepare a staging series for the lamprey based on parsimony analysis.  相似文献   

13.
14.
Cartwright  Paulyn 《Hydrobiologia》2004,530(1-3):309-317
Hydrozoans represent an extremely diverse group of mostly colonial forms. Despite this tremendous diversity, many of the morphological differences between hydrozoan species can be attributed to simple changes in the relative position of regions/structures along the axes of the polyp and the stolon or hydrocaulus from which polyps bud. Many genes have been implicated in the specification of positional information along the axis of the polyp. Knowledge from these studies in Hydra, and from comparative studies in Hydractinia polyp polymorphs, suggests that evolutionary changes in the regulation of axial patterning genes may be a prominent mechanism underlying hydrozoan evolution. Despite the paucity of interspecies comparative expression information, hypotheses can be formulated about the role of developmental regulatory genes in hydrozoan evolution from information available from Hydra.  相似文献   

15.
The heart is one of the vital organs and is functionalized for blood circulation from its early development. Some vertebrates have altered their living environment from aquatic to terrestrial life over the course of evolution and obtained circulatory systems well adapted to their lifestyles. The morphology of the heart has been changed together with the acquisition of a sophisticated respiratory organ, the lung. Adaptation to a terrestrial environment requires the coordination of heart and lung development due to the intake of oxygen from the air and the production of the large amount of energy needed for terrestrial life. Therefore, vertebrates developed pulmonary circulation and a septated heart (four-chambered heart) with venous and arterial blood completely separated. In this review, we summarize how vertebrates change the structures and functions of their circulatory systems according to environmental changes.  相似文献   

16.
蜱类的起源和演化早期主要是通过以形态学和表型特征为依据构建的系统发生树进行推测。到20世纪90年代,通过形态学和分子生物学数据结合在一起的全证据方法进行系统发生分析,并结合生态学、比较寄生虫学、动物地理学、古生物学等方面的资料,对蜱类的起源和演化进行研究。文章综述有关蜱类起源和演化的3个代表性假说,并从蜱类起源和演化的时间、地点、原始宿主、华彩、生活史、寄生状态及蜱类区系演化等方面进行介绍。  相似文献   

17.
Phenotypic traits are products of two processes: evolution and development. But how do these processes combine to produce integrated phenotypes? Comparative studies identify consistent patterns of covariation, or allometries, between brain and body size, and between brain components, indicating the presence of significant constraints limiting independent evolution of separate parts. These constraints are poorly understood, but in principle could be either developmental or functional. The developmental constraints hypothesis suggests that individual components (brain and body size, or individual brain components) tend to evolve together because natural selection operates on relatively simple developmental mechanisms that affect the growth of all parts in a concerted manner. The functional constraints hypothesis suggests that correlated change reflects the action of selection on distributed functional systems connecting the different sub-components, predicting more complex patterns of mosaic change at the level of the functional systems and more complex genetic and developmental mechanisms. These hypotheses are not mutually exclusive but make different predictions. We review recent genetic and neurodevelopmental evidence, concluding that functional rather than developmental constraints are the main cause of the observed patterns.  相似文献   

18.
A hypothesis is presented which may explain within a single framework both the large behavioural differences and the large differences in head morphology between the great apes and humans. All these differences can be parsimoniously explained by a shift of few regulatory genes controlling the onset of the division of late migrating neurons in the human cortex. This simple shift resulted in the following effects: 1) the neurocranium responded to brain enlargement by increasing mineral deposition on its external surface, increasing its overall size and mass. 2) This increase in the braincase was largely achieved by developmental reabsoption of the face bones. 3) The relative shift in growth between these two skull components also induced a rearrangement at the basicranium level. This brought about the facial orthognatism of modernHomo and, as a mechanical by-product, the descent of the larynx into the throat. Brain enlargement led to a large increase in cognitive capacity, and as a developmental byproduct, produced a mechanical organ preadapted for speech, as well as bringing about the reduction of canines and the origin of the chin. In this study, the phylogenetic basis, the selective pressures, and the behavioural consequences of this process during hominization are examined. Cognitiveversus communicative aspects of human language are distinguished and discussed. Cognitive capacities were the first to be selected due to the survival advantage of mapping huge territories during the expansion of the Plio-Pleistocene savanna ecotone. The present hypothesis is then compared with current theories leading to the conclusion that it is a more parsimonious explanation. It integrates data from a wide array of fields of human biology, pathology and clinical medicine, all assessed from evolutionary and ecological perspectives.  相似文献   

19.
Apomicts that produce unreduced parthenogenetic eggs are generally polyploid and occur in at least 33 of 460 families of angiosperms. Embryo sacs of these apomicts form precociously from ameiotic megaspore mother cells (diplospory) or adjacent somatic cells (apospory). Polysporic species (bisporic and tetrasporic) are sexual and occur in at least 88 families. Their embryo sacs also form precociously, but only non-critical portions of meiosis are affected. It is hypothesized that (i) the partial to complete replacement of meiosis by embryo sac formation in apomictic and polysporic species results from asynchronously-expressed duplicate genes that control female development, (ii) duplicate genes result from polyploidy or paleopolyploidy (diploidized polyploidy with chromatin from multiple genomes), (iii) apomixis results from competition between nearly complete sets of asynchronously-expressed duplicate genes, and (iv) polyspory and polyembryony result from competition between incomplete sets of asynchronously-expressed duplicate genes. Phylogenetic and genomic studies were conducted to evaluate this hypothesis. Apomictic, polysporic, and polyembryonic species tended to occur together in cosmopolitan families in which temporal variation in female development is expected, apomicts were generally polyploid with few chromosomes per genome (X = 9.6pL0.4 SE), and polysporic and polyembryonic species were paleopolyploid with many chromosomes per genome (x= 15.7pL0.6 and 13.2pL0.4, respectively). These findings support the proposed duplicate-gene asynchrony hypothesis and further suggest asexual reproduction in apomicts preserves primary genomes, sexual reproduction in polysporic and polyembryonic polyploids accelerates paleopolyploidization, and pa-leopolyploidization may sometimes eliminate gene duplications required for apomixis while retaining duplications required for polyspory or polyembryony. Hence, apomixis, with its long-term reproductive stability, may occasionally serve as an evolutionary springboard in the evolution of normal and developmentally-novel paleopolyploid sexual species and genera.  相似文献   

20.
Evolutionary innovations are central to debates about biological uniformitarianism because their very novelty implies a distinct evolutionary dynamic. Traditional scenarios for innovations in the development of avian powered flight exemplify the kinds of distinctions considered to occur at different times during the history of innovations. Thus, the progressive change of the wing stroke mechanism early in its evolution is considered to have imposed strong functional and historical constraints on tail shape diversity, whereas attainment of the modern flight stroke mechanism is considered to have liberated the tail to radiate into a wide variety of other functions and forms. Detailed analyses of living hummingbirds revealed that these highly aerial birds actually expressed many parallel functional constraints and historically progressive patterns observed earlier in avian history: (1) more basal lineages had relatively weak wing muscles (patagial muscles and tendons, TPB), convex to square tails, and more linear flight employed in nonterritorial foraging; (2) more derived lineages had a stronger TPB, forked tails, accentuated growth of tail fork, and more manoeuvrable and agile flight employed in territorial foraging; and (3) the most derived lineage had the strongest TPB, greatly reduced tails, and mainly bee-like flight. These associations make functional sense because convex tails increase stability and efficiency in linear flight, concave tails augment lift for turning flight in territorial defence, and tails become aerodynamically disadvantageous if the wings provide sufficient lift. Derived hummingbird lineages also demonstrated the same expansion of tail shape and taxonomic diversity associated with perfection of the modern wing stroke mechanism earlier in avian history. Thus, living hummingbirds are a microcosm of overall avian flight evolution. Other living avian (‘aerial courser') and extinct reptilian (Pterosaur) clades with extraordinary flight abilities provide evidence for similar patterns, suggesting a broadly defined uniformitarianism (early constraint followed by later radiation) at the limits of the flight performance envelope throughout vertebrate history. Correlated evolution of TPB and tail form suggests that natural selection on an integrated flight system was the principal mechanism fostering the avian patterns, although strengthening of wing muscles in derived lineages may have facilitated expansion of caudal morphological diversity through a balance between natural and sexual selection on males. These findings suggest that wing muscles, locomotor integration, and phylogenetic patterns are essential for understanding function and adaptation of tails in living as well as ancient birds. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 97 , 467–493.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号