首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
M Caffrey  J Hogan  A S Rudolph 《Biochemistry》1991,30(8):2134-2146
Thermotropic and lyotropic mesomorphism in the polymerizable lecithin 1,2-ditricosa-10,12-diynoyl-sn-glycero-3-phosphocholine and its saturated analogue, 1,2-ditricosanoyl-sn-glycero-3-phosphocholine, has been investigated by wide- and low-angle X-ray diffraction of both powder and oriented samples and by differential scanning calorimetry. Previous studies have shown that the hydrated diacetylenic lipid forms novel microstructures (tubules and stacked bilayer sheets) in its low-temperature phase. The diffraction results indicate that at low temperatures fully hydrated tubules and sheets have an identical lamellar repeat size (d001 = 66.4 A) and crystalline-like packing of the acyl chains. Chain packing in the lamellar crystalline phase is hydration independent. A model for the polymerizable lecithin with (1) fully extended all-trans methylene segments, (2) a long-axis tilt of 32 degrees, and (3) minimal chain interdigitation seems most reasonable on energetic grounds, is consistent with the diffraction data (to 3.93-A resolution), and is likely to support facile polymerization. Above the chain "melting" transition the lamellar repeat of the polymerizable lipid increases to 74 A. The conformational similarity between tubules, sheets, and the dry powder is corroborated by calorimetry, which reveals a cooling exotherm at the same temperature where tubules form upon cooling hydrated sheets. The data suggest that although a high degree of conformational order is a pertinent feature of tubules, this character alone is not sufficient to account for tubule formation. The conformation of the corresponding saturated phosphatidylcholine appears to be similar to that of other saturated phosphatidylcholines in the lamellar gel phase. Furthermore, above the main transition temperature, the dry, saturated lipid shows evidence of a P delta phase (112 degrees C), whereas the diacetylenic lipid appears to exhibit a centered rectangular phase, R alpha (55 degrees C).  相似文献   

2.
The structural polymorphism of deep rough mutant lipopolysaccharide--in many biological systems the most active endotoxin--from Salmonella minnesota strain R595 was investigated as function of temperature, water content, and Mg2+ concentration. Differential scanning calorimetry was used to determine the amount of bound water and the enthalpy change at the beta<==>alpha gel to liquid crystalline acyl chain melting. The onset, midtemperature Tc, and completion of the beta<==>alpha phase transition were studied with Fourier-transform infrared spectroscopy. Synchrotron radiation X-ray diffraction was used to characterize the supramolecular three-dimensional structures in each phase state. The results indicate an extremely complex dependence of the structural behavior of LPS on ambient conditions. The beta<==>alpha acyl chain melting temperature Tc lying at 30 degrees C at high water content (95%) increases with decreasing water content reaching a value of 50 degrees C at 30% water content. Concomitantly, a broadening of the transition range takes place. At still lower water content, no distinct phase transition can be observed. This behavior is even more clearly expressed in the presence of Mg2+. In the lower water concentration range (< 50%) at temperatures below 70 degrees C, only lamellar structures can be observed independent of the Mg2+ concentration. This correlates with the absence of free water. Above 50% water concentration, the supramolecular structure below 70 degrees C strongly depends on the [LPS]:[Mg2+] ratio. For large [LPS]:[Mg2+] ratios, the predominant structure is nonlamellar, for smaller [LPS]:[Mg2+] ratios there is a superposition of lamellar and nonlamellar structures. At an equimolar ratio of LPS and Mg2+ a multibilayered organization is observed. The nonlamellar structures can be assigned in various cases to structures with cubic symmetry with periodicities between 12 and 16 nm. Under all investigated conditions, a transition into the hexagonal II structure takes place between 70 and 80 degrees C. These observations are discussed in relation to the biological importance of LPS as constituent of the outer membrane of gram-negative bacteria and as potent inducer of biological effects in mammals.  相似文献   

3.
R P Rand  D Chapman    K Larsson 《Biophysical journal》1975,15(11):1117-1124
Differential scanning calorimetry studies of dipalmitoyl lecithin show two reversible transitions as the temperature is changed between 20 and 50 degrees C. A pretransition endotherm occurs at 35 degrees C prior to the main chain melting endotherm which occurs at 42 degrees C. X-ray diffraction studies show that below 33 degrees C the chains of the lecithin are fully extended, packed in a hexagonal crystalline lattice but tilted with respect to the plane of the bilayer. Between 35 and 42 degrees C the chains are similarly packed but oriented perpendicular to the bilayer plane. Above 44 degrees C the chains are "melted" or disordered. Monolayer studies of dipalmitoyl lecithin using continuous recording of pressure with molecular area reveal the existence of two solid condensed phases corresponding to these tilted and verticle chain structures. The tilted to perpendicular transition would account for the pretransition endotherm of the lipid; the crystalline to melted change corresponds to the larger transition observed at 42 degrees C.  相似文献   

4.
Oriented dipalmitoyllecithin-cholesterol multibilayers with 11% water have been studied with the cholestane spin label. From the ESR spectra the order parameters and the mobility of the spin label about its long axis have been calculated. The results on pure lecithin multibilayers indicate a transition from gel to liquid crystalline phase at 52 plus or minus 2 degrees C. In the gel phase the lecithin alkyl chains are highly ordered, but tilted with respect to the normal to the bilayers by about 25 degrees. Above 52 degrees C the tilt disappears and the mobility of the cholestane spin label increases, indicating an increase of mobility of the lecithin alkyl chains. When cholesterol is added, below about 52 degrees C a decrease of order is found. Furthermore, already small cholesterol contents (smaller than or equal to 10 mole %) remove the tilt. Above about 52 degrees C cholesterol improves the order by decreasing the amplitude of the librational motions. Cholesterol lowers the transition temperature of the system and reduces the mobility of the lecithin alkyl chains in the liquid crystalline phase. However an increase in mobility is found at cholesterol contents up to 10 mole %. A very broad phase transition is observed at 50 mole % cholesterol. In all systems an increase in temperature results in a reduction of order through an increase of the amplitude of the librational motions of the molecules. The librational motions are to some extent cooperative. The asymmetry of the order matrix is found to be a measure for the lateral ordering. Cholesterol increases the lateral ordering, indicating that the flat cholesterol molecules orient parallel to each other.  相似文献   

5.
Phase behavior and structure of aqueous dispersions of sphingomyelin   总被引:6,自引:0,他引:6  
The phase behavior of bovine brain sphingomyelin in water has been determined by polarizing light microscopy, differential scanning calorimetry, and X-ray diffraction. Lamellar phases, in which water is intercalated between sheets of lipid molecules arranged in the classical bilayer fashion, are present over much of the phase diagram. An order-disorder transition separates the high temperature, liquid crystalline, lamellar phase from a more ordered lamellar phase at low temperatures. The hydration characteristics of sphingomyelin are similar to the structurally related lecithin in that only limited amounts of water are incorporated above and below the transition. Above the transition at 47 degrees C, a maximum of 35% by weight of water can be incorporated between the lipid bilayers, the total thickness at maximum hydration being 60.2 A, the lipid thickness 38 A, and the surface area per lipid molecule at the interface 60 A(2). Water in excess of 35% by weight is present as a separate phase. Below the phase transition, at 25 degrees C a maximum of 42% by weight of water may be incorporated between the lipid bilayers. On increasing the hydration, the lamellar repeat distance increases from 63.5 A to a limiting value of 76 A. Within this hydration range the calculated lipid thickness decreases from 63.5 to 42.5 A, and the surface area per lipid molecule increases from 36.1 to 53.6 A(2). Although these changes may be accounted for by a structure in which the hexagonally packed ordered hydrocarbon chains tilt progressively with respect to the normal to the bilayer plane on increasing hydration, it is possible that changes in other more complex lamellar structures may be responsible for these variations in lipid thickness and surface area.  相似文献   

6.
The thermotropic properties of N-(alpha-hydroxyacyl)-sphingosine (CER[AS]) in dry and hydrated state were studied by means of X-ray powder diffraction and FT-Raman spectroscopy. The polymorphic states of the CER[AS]/water mixture (lamellar crystalline, lamellar hexagonal gel, liquid crystalline) depend on the thermal pre-treatment of the sample. Only by heating the CER[AS]/water mixture above the melting chain transition can the system be hydrated. At room temperature, both dry and hydrated states form lamellar structures, which differ in their repeat distance and packing of hydrocarbon chains. Above the melting chain transition, hydrated CER[AS] forms a liquid crystalline hexagonal phase, whereas anhydrous CER[AS] forms an isotropic liquid phase. The various phases of hydrated CER[AS] are distinguished on the basis of the corresponding Raman spectra.  相似文献   

7.
The binary phase diagram of lecithin and cholesteryl linolenate   总被引:1,自引:0,他引:1  
The condensed binary phase diagram of cholesteryl linolenate-egg yolk lecithin has been determined by polarizing light microscopy, differential scanning calorimetry and X-ray diffraction. On increasing the temperature lecithin forms rectangular, cubic and hexagonal liquid-crystalline structures into which varying amounts of cholesteryl linolenate are incorporated. As more cholesteryl linolenate is incorporated, the transition temperatures between different phases are lowered. The rectangular and cubic structures incorporate only small amounts of cholesteryl linolenate; the molar ratios, lecithin to cholesteryl linolenate, being 11:1 and 16:1, respectively. However, the hexagonal phase, in which the phosphorylcholine groups of the lecithin molecules form the core of the rod-like assembly of molecules, incorporates up to approximately 25% cholesteryl linolenate by weight, corresponding to a molar ratio 3:1. At higher concentrations, cholesteryl linolenate forms an excess phase and may be present as crystals, smectic or cholesteric liquid crystals, or as liquid oil, depending on the temperature. At higher temperatures, a large zone of a single isotropic liquid phase exists in which large amounts of lecithin are solubilized by the cholesterol ester. Up to 40% cholesteryl linolenate by weight, the transition temperatures between different phases are influenced by approximately 1% water (by weight) associated with egg lecithin.It is probable that the incorporated apolar cholesterol ester molecules are associated primarily with the apolar hydrocarbon chain region of the different lecithin structures. The resultant decrease in the observed transition temperatures would suggest an overall chain-disordering role for the incorporated cholesteryl linolenate molecules. The influence of cholesteryl linolenate on the thermodynamic stability of the different lecithin structures, together with the models suggested for the molecular orientations of cholesterol esters in the different liquid crystalline structures, may be relevant to the role of these lipids in more complex biological systems, particularly serum lipoproteins.  相似文献   

8.
Proton NMR spectra for gel and liquid crystalline samples, composed of dimyristoyl and/or dipalmitoyl lecithin, cholesterol and water, can be consistently interpreted in terms of mesophase symmetry and molecular diffusion according to a model proposed by Wennerstrom (Wennerstrom, H. (1973) Chem. Phys. Lett. 18, 41-44). It is shown by computer simulation that the characteristic "super-lorentzian" bandshape of the lamellar mesophase can be described by the superposition of three gaussian curves. The NMR signal of the gel phase can be simulated by the superposition of two gaussian curves with widths at half height of 2.5 kHz and 19 kHz. An upper limit of the lateral diffusion coefficient of the lecithin molecules in the gel phase is calculated to be about 5-10(-15) m-2/s. It is therefore concluded that the static intermolecular dipolar couplings average to zero in the lamellar mesophase. An estimation of the order parameter of the liquid crystalline phase is made from experimental data and a calculated "rigid lattice" linewidth. A two phase system is shown to exist in the temperature range 28-34 degrees C for a mesophase of a mixture of dimyristoyl and dipalmitoyl lecithin. The presence of cholesterol results in enhanced lateral diffusion of the lecithin molecules at temperatures below the Chapman transition point.  相似文献   

9.
J Shah  R I Duclos  Jr    G G Shipley 《Biophysical journal》1994,66(5):1469-1478
The structural and thermotropic properties of 1-stearoyl-2-acetyl-phosphatidylcholine (C(18):C(2)-PC) were studied as a function of hydration. A combination of differential scanning calorimetry and x-ray diffraction techniques have been used to investigate the phase behavior of C(18):C(2)-PC. At low hydration (e.g., 20% H2O), the differential scanning calorimetry heating curve shows a single reversible endothermic transition at 44.6 degrees C with transition enthalpy delta H = 6.4 kcal/mol. The x-ray diffraction pattern at -8 degrees C shows a lamellar structure with a small bilayer periodicity d = 46.3 A and two wide angle reflections at 4.3 and 3.95 A, characteristic of a tilted chain, L beta' bilayer gel structure. Above the main transition temperature, a liquid crystalline L alpha phase is observed with d = 53.3 A. Electron density profiles at 20% hydration suggest that C(18):C(2)-PC forms a fully interdigitated bilayer at -8 degrees C and a noninterdigitated, liquid crystalline phase above its transition temperature (T > Tm). Between 30 and 50% hydration, on heating C(18):C(2)-PC converts from a highly ordered, fully interdigitated gel phase (L beta') to a less ordered, interdigitated gel phase (L beta), which on further heating converts to a noninterdigitated liquid crystalline L alpha phase. However, the fully hydrated (> 60% H2O) C(18):C(2)-PC, after incubation at 0 degrees C, displays three endothermic transitions at 8.9 degrees C (transition I, delta H = 1.6 kcal/mol), 18.0 degrees C (transition II), and 20.1 degrees C (transition III, delta HII+III = 4.8 kcal/mol). X-ray diffraction at -8 degrees C again showed a lamellar gel phase (L beta') with a small periodicity d = 52.3 A. At 14 degrees C a less ordered, lamellar gel phase (L beta) is observed with d = 60.5 A. However, above the transition III, a broad, diffuse reflection is observed at approximately 39 A, consistent with the presence of a micellar phase. The following scheme is proposed for structural changes of fully hydrated C(18):C(2)-PC, occurring with temperature: L beta' (interdigitated)-->L beta (interdigitated)-->L alpha(noninterdigitated)-->Micelles. Thus, at low temperature C(18):C(2)-PC forms a bilayer gel phase (L beta') at all hydrations, whereas above the main transition temperature it forms a bilayer liquid crystalline phase L alpha at low hydrations and a micellar phase at high hydrations (> 60 wt% water).  相似文献   

10.
Differential scanning calorimetry and x-ray diffraction techniques have been used to investigate the structure and phase behavior of hydrated dimyristoyl lecithin (DML) in the hydration range 7.5 to 60 weight % water and the temperature range -10 to +60 degrees C. Four different calorimetric transitions have been observed: T1, a low enthalpy transition (deltaH approximately equal to 1 kcal/mol of DML) at 0 degrees C between lamellar phases (L leads to Lbeta); T2, the low enthalpy "pretransition" at water contents greater than 20 weight % corresponding to the transition Lbeta leads to Pbeta; T3, the hydrocarbon chain order-disorder transition (deltaH = 6 to 7 kcal/mol of DML) representing the transition of the more ordered low temperature phases (Lbeta, Pbeta, or crystal C, depending on the water content) to the lamellar Lalpha phase; T4, a transition occurring at 25--27 degrees C at low water contents representing the transition from the lamellar Lbeta phase to a hydrated crystalline phase C. The structures of the Lbeta, Pbeta, C, and Lalpha phases have been examined as a function of temperature and water content. The Lbeta structure has a lamellar bilayer organization with the hydrocarbon chains fully extended and tilted with respect to the normal to the bilayer plane, but packed in a distorted quasihexagonal lattice. The Pbeta structure consists of lipid bilayer lamellae distorted by a periodic "ripple" in the plane of the lamellae; the hydrocarbon chains are tilted but appear to be packed in a regular hexagonal lattice. The diffraction pattern from the crystalline phase C indexes according to an orthorhombic cell with a = 53.8 A, b = 9.33 A, c = 8.82 A. In the lamellae bilayer Lalpha strucure, the hydrocarbon chains adopt a liquid-like conformation. Analysis of the hydration characteristics and bilayer parameters (lipid thickness, surface area/molecule) of synthetic lecithins permits an evaluation of the generalized hydration and structural behavior of this class of lipids.  相似文献   

11.
The polymorphic and metastable phase behavior of monoelaidin dry and in excess water was studied by using high-sensitivity differential scanning calorimetry and time-resolved x-ray diffraction in the temperature range of 4 degrees C to 60 degrees C. To overcome problems associated with a pronounced thermal history-dependent phase behavior, simultaneous calorimetry and time-resolved x-ray diffraction measurements were performed on individual samples. Monoelaidin/water samples were prepared at room temperature and stored at 4 degrees C for up to 1 week before measurement. The initial heating scan from 4 degrees C to 60 degrees C showed complex phase behavior with the sample in the lamellar crystalline (Lc0) and cubic (Im3m, Q229) phases at low and high temperatures, respectively. The Lc0 phase transforms to the lamellar liquid crystalline (L alpha) phase at 38 degrees C. At 45 degrees C, multiple unresolved lines appeared that coexisted with those from the L alpha phase in the low-angle region of the diffraction pattern that have been assigned previously to the so-called X phase (Caffrey, 1987, 1989). With further heating the X phase converts to the Im3m cubic phase. Regardless of previous thermal history, cooling calorimetric scans revealed a single exotherm at 22 degrees C, which was assigned to an L alpha+cubic (Im3m, Q229)-to-lamellar gel (L beta) phase transition. The response of the sample to a cooling followed by a reheating or isothermal protocol depended on the length of time the sample was incubated at 4 degrees C. A model is proposed that reconciles the complex polymorphic, mesomorphic, and metastability interrelationships observed with this lipid/water system. Dry monoelaidin exists in the lamellar crystalline (beta) phase in the 4 degrees C to 45 degrees C range. The beta phase transforms to a second lamellar crystalline polymorph identified as beta* at 45 degrees C that subsequently melts at 57 degrees C. The beta phase observed with dry monoelaidin is identical to the LcO phase formed by monoelaidin that was dispersed in excess water and that had not been previously heated.  相似文献   

12.
The structural interaction of egg lysolecithin, derived from egg lecithin, and cholesterol in aqueous solution has been investigated using X-ray diffraction. When mixed in any proportions, either suspended in excess buffer or up to 85% lipid by dry weight, a separate lamellar phase containing equimolar proportions of lysolecithin and cholesterol forms, separate from excess water, or lysolecithin or cholesterol. The cholesterol disorders the crystalline chains of the lysolecithin. The equimolar phase is stable up to 50 degrees C unlike lysolecithin alone, which forms micelles, Thes results show that lysolecithin and cholesterol combine stoichiometrically in a stable complex. We propose as a structural model, that cholesterol fills the space of the missing fatty acyl chain making the lysolecithin more cylindrical rather than wedge shaped. This interaction could reduce both the lytic action of lysolecithin on membranes and its induction of cell fusion. It suggest another role of cholesterol in cell membranes: namely, to act as a stabilizer of bilayer structure by being a mobile component that can fill free volume in the hydrocarbon interior. Lysolecithin-cholesterol interaction may also be important in the early events of atherosclerosis where lysolecithin levels in vessel walls increase fivefold.  相似文献   

13.
The effect of alpha-tocopherol on the thermotropic phase behaviour and structure of aqueous dispersions of 1,2-di-lauryl-sn-glycero-3-phosphoethanolamine was examined by synchrotron X-ray diffraction. The pure phospholipid exhibited a lamellar gel to liquid-crystal phase transition at 30 degrees C on heating at 3 degrees C min(-1) between 10 degrees C and 90 degrees C. The transition was reversible with a temperature hysteresis of 0.3 degrees C on cooling. At temperatures less than 10 degrees C only lamellar gel phase of the pure phospholipid was seen in co-dispersions of up to 20 mol % alpha-tocopherol. The presence of 2.5 mol % alpha-tocopherol caused the appearance of inverted hexagonal phase at temperatures just below the main phase transition temperature that co-existed with the lamellar gel phase. The intensity of scattering from the hexagonal-II phase increased with increasing proportion of alpha-tocopherol in the mixture and in proportions greater than 10 mol % it persisted at temperatures above the main transition and co-existed with the lamellar liquid-crystal phase of the pure phospholipid. At higher temperatures all co-dispersions containing up to 15 mol % alpha-tocopherol showed the presence of cubic phases. These phases indexed a Pn3m or Pn3 space grouping. When the proportion of alpha-tocopherol was increased to 20 mol % the only non-lamellar phase observed was inverted hexagonal phase. This phase co-existed with lamellar gel and liquid-crystal phases of the pure phospholipid, but was the only phase present at temperatures >60 degrees C. The X-ray diffraction data were used to construct a partial phase diagram of the lipid mixture in excess water between 10 degrees and 90 degrees C and up to 20 mol % alpha-tocopherol in phospholipid.  相似文献   

14.
SAXS/WAXS studies were performed in combination with freeze fracture electron microscopy using mixtures of a new Gemini catanionic surfactant (Gem16-12, formed by two sugar groups bound by a hydrocarbon spacer with 12 carbons and two 16-carbon chains) and the zwitterionic phospholipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) to establish the phase diagram. Gem16-12 in water forms bilayers with the same amount of hydration water as DPPC. A frozen interdigitated phase with a low hydration number is observed below room temperature. The kinetics of the formation of this crystalline phase is very slow. Above the chain melting temperature, multilayered vesicles are formed. Mixing with DPPC produces mixed bilayers above the corresponding chain melting temperature. At room temperature, partially lamellar aggregates with local nematic order are observed. Splitting of infinite lamellae into discs is linked to immiscibility in frozen state. The ordering process is always accompanied by dehydration of the system. As a consequence, an unusual order-disorder phase transition upon cooling is observed.  相似文献   

15.
The ternary phase diagram of cholesteryl linolenate-egg lecithin-water has been determined by polarizing light microscopy, calorimetry and X-ray diffraction at 23 °C. Hydrated lecithin forms a lamellar liquid-crystalline structure into which small amounts of cholesteryl linolenate are incorporated. The maximum incorporation of cholesterol ester into this lamellar structure varies with the degree of hydration. Increasing the water concentration from 10 to 15% (w/w) increased the limiting molar ratio of cholesteryl linolenate to lecithin in the lamellar phase from 1:50 to 1:22. At intermediate concentrations (15 to 30% water) the cholesteryl linolenate:lecithin ratio remains constant at 1:22. When water is increased to 42.5%, the maximum water content in the lamellar phase, the molar ratio decreased to 1:32. At low water concentrations the cholesterol ester appears to be entirely in the apolar region of the lecithin bilayer, while at higher water concentrations the ester groups of cholesteryl linolenate may be located at the lipid-water interface. At high water concentrations the ester appears to disorder the alkyl chains of the lecithin, giving rise to a thinner lipid layer and an increased surface area per lipid molecule when compared to the lecithin-water system in the absence of cholesteryl linolenate.The lamellar phase is the only phase (except at water concentrations less than 5%) in which all three components mutually interact. All mixtures of the three components having compositions outside the one-phase (lamellar) zone produce additional phases of cholesteryl linolenate or water, or both. Between 23 °C and 60 °C only minor changes in the phase diagram are observed.  相似文献   

16.
Freezing and melting water in lamellar structures.   总被引:1,自引:0,他引:1  
The manner in which ice forms in lamellar suspensions of dielaidoylphosphatidylethanolamine, dielaidoylphosphatidylcholine, and dioleoylphosphatidylcholine in water depends strongly on the water fraction. For weight fractions between 15 and 9%, the freezing and melting temperatures are significantly depressed below 0 degree C. The ice exhibits a continuous melting transition spanning as much as 20 degrees C. When the water weight fraction is below 9%, ice never forms at temperatures as low as -40 degrees C. We show that when water contained in a lamellar lipid suspension freezes, the ice is not found between the bilayers; it exists as pools of crystalline ice in equilibrium with the bound water associated with the polar lipid headgroups. We have used this effect, together with the known chemical potential of ice, to measure hydration forces between lipid bilayers. We find exponentially decaying hydration repulsion when the bilayers are less than about 7 A apart. For larger separations, we find significant deviations from single exponential decay.  相似文献   

17.
This paper describes the morphological characterization, by freeze-fracture electron microscopy, and the thermotropic phase behavior, by differential scanning calorimetry and/or X-ray scattering, of aqueous dispersions of various hydroxylated and galactosylated double-chain amphiphiles and bolaamphiphiles, several of them containing one or two hydrophobic fluorocarbon chains. Colloidal systems are observed in water with the hydroxylated hydrocarbon or fluorocarbon bolaamphiphiles only when they are dispersed with a co-amphiphile such as rac-1,2-dimyristoylphosphatidylcholine (DMPC) or rac-1,2-distearoylphosphatidylcholine (DSPC). Liposomes are formed providing the relative content of bolaamphiphiles does not exceed 20% mol. Most of these liposomes can be thermally sterilized and stored at room temperature for several months without any significant modification of their size and size distribution. The hydrocarbon galactosylated bolaamphiphile HO[C24][C12]Gal forms in water a lamellar phase (the gel to liquid-crystal phase transition is complete at 45 degrees C) and a Im3m cubic phase above 47 degrees C. The fluorocarbon HO[C24][F6C5]Gal analog displays a more complex and metastable phase behavior. The fluorinated non-bolaform galactosylated [F8C7][C16]AEGal and SerGal amphiphiles form lamellar phases in water. Low amounts (10% molar ratio) of the HO[C24][F6C5]Gal or HO[C24][C12]Gal bolaamphiphiles or of the single-headed [F8C7][C16]AEGal improve substantially the shelf-stability of reference phospholipon/cholesterol 2/1 liposomes. These liposomes when co-formulated with a single-headed amphiphile from the SerGal series are by far less stable.  相似文献   

18.
Heating and cooling thermograms of unsaturated MGDG samples isolated from the leaves of Vicia faba are surprisingly featureless. This reflects the low enthalpies associated with phase transitions in highly unsaturated lipids and the fact that these transitions, in the case of MGDG, are to a large extent masked by those associated with the freezing and melting of ice. Careful choice of thermal heating/cooling regimes, combined with the use of real-time X-ray diffraction and freeze-fracture measurements, permits a detailed analysis of the phase behaviour of the system. The phase behaviour of unsaturated MGDG samples is shown to be basically similar to that seen in saturated MGDG samples. The lipid which exists in the inverted hexagonal (HexII) liquid crystal phase at room temperature forms a highly disordered lamellar gel (L beta) phase on cooling to temperatures below about -15 degrees C. On reheating, this first reorganizes at a temperature of about -10 degrees C to form a well-defined Lc1 phase. Above about -2 degrees C, this melts to re-form the HexII phase. Samples re-cooled from temperatures between -2 degrees C and 14 degrees C revert directly to the Lc1 phase while samples cooled from higher temperatures form the L beta phase. This reflects the fact that the former samples contain small amounts of unmelted Lc1 phase lipid. The implications of these observations are discussed in terms of the general problems associated with the measurement of low-temperature phase behaviour of membrane lipids.  相似文献   

19.
C Czeslik  R Winter  G Rapp    K Bartels 《Biophysical journal》1995,68(4):1423-1429
We used x-ray and neutron diffraction to study the temperature- and pressure-dependent structure and phase behavior of the monoacylglycerides 1-monoelaidin (ME) and 1-monoolein (MO) in excess water. The monoacylglycerides were chosen for investigation of their phase behavior because they exhibit mesomorphic phases with one-, two-, and three-dimensional periodicity, such as lamellar, an inverted hexagonal and bicontinuous cubic phases, in a rather easily accessible temperature and pressure range. We studied the structure, stability, and transformations of the different phases over a wide temperature and pressure range, explored the epitaxial relations that exist between different phases, and established a relationship between the chemical structure of the lipid molecules and their phase behavior. For both systems, a temperature-pressure phase diagram has been determined in the temperature range from 0 to 100 degrees C at pressures from ambient up to 1400 bar, and drastic differences in phase behavior are found for the two systems. In MO-water dispersions, the cubic phase Pn3m extends over a large phase field in the T,p-plane. At temperatures above 95 degrees C, the inverted hexagonal phase is found. In the lower temperature region, a crystalline lamellar phase is induced at higher pressures. The phases found in ME-water include the lamellar crystalline Lc phase, the L beta gel phase, the L alpha liquid-crystalline phase, and two cubic phases belonging to the crystallographic space groups Im3m and Pn3m. In addition, the existence of metastable phases has been exploited. Between coexisting metastable cubic structures, a metric relationship has been found that is predicted theoretically on the basis of the curvature elastic energy approximation only.  相似文献   

20.
1-Behenyl-2-lauryl-sn-glycero-3-phosphocholine (22/12 PC) belongs to a unique group of phospholipids in which the molecule has one acyl chain almost twice as long as the other. The temperature-composition phase diagram for this lipid in the range of 25-65 degrees C, and 0 to 84.3% (w/w) water has been constructed by using the isoplethal method in the heating direction and x-ray diffraction for phase identification and structure characterization. At water contents between 10.3 and 34% (w/w) and at temperatures below 43 degrees C, a single mixed interdigitated lamellar gel phase (Lm beta, [symbol: see text]) of the type described by Hui et al. (1984. Biochemistry. 23:5570-5577) and McIntosh et al. (1984. Biochemistry. 23:4038-4044) was found. A second phase consisting of bulk aqueous solution coexists with the Lm beta phase at hydration levels above 34% (w/w) water in the temperature range between 25 and 43 degrees C. Above 43 degrees C, a partially interdigitated lamellar liquid crystalline (Lp alpha) phase ([symbol: see text]) is seen in the water concentration range extending from 0 to 84.3% (w/w). The pure Lp alpha phase is found below 43% (w/w) water, while coexistence of the Lp alpha phase and the bulk aqueous solution is observed above this water concentration which marks the hydration boundary. Interestingly, the latter boundary for both Lm beta and Lp alpha phases is nearly vertical in the temperature range studied. Furthermore, the lamellar chain-melting transition temperature appears to be relatively insensitive to hydration in the range 0-85% (w/w) water. We have confirmed the identify of the Lm beta phase by constructing a 5.7-A resolution electron density profile on oriented samples by the swelling method. Temperature-induced chain melting effects an increase in lipid bilayer thickness suggesting that the Lp alpha phase has chains packed in the partially as opposed to the mixed interdigitated configuration. Unlike the symmetric phosphatidylcholines a ripple (P beta') phase was not found as an intermediate between the low and high temperature lamellar phases of 22/12 PC. The specific volume of 22/12 PC is 940 (+/- 1) microliter/g and 946 (+/- 1) microliter/g in the hydrated lamellar gel state at 28 (+/- 2) and 40 (+/- 2) degrees C, respectively, from neutral buoyancy experiments. Based on measurements of the temperature dependence of the various lattice parameters of the different phases encountered in this study the corresponding lattice thermal expansion coefficients have been measured. These are discussed and their dependence on lipid hydration is reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号