首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to identify in human cells common targets of histone H3 lysine 9 (H3-Lys9) methylation, a modification that is generally associated with gene silencing. After chromatin immunoprecipitation using an H3-Lys9 methylated antibody, we cloned the recovered DNA and sequenced 47 independent clones. Of these, 38 clones (81%) contained repetitive elements, either short interspersed transposable element (SINE or Alu elements), long terminal repeat (LTR), long interspersed transposable element (LINE), or satellite region (ALR/Alpha) DNA, and three additional clones were near Alu elements. Further characterization of these repetitive elements revealed that 32 clones (68%) were Alu repeats, corresponding to both old Alu (23 clones) and young Alu (9 clones) subfamilies. Association of H3-Lys9 methylation was confirmed by chromatin immunoprecipitation-PCR using conserved Alu primers. In addition, we randomly selected 5 Alu repeats from the recovered clones and confirmed association with H3-Lys9 by PCR using primer sets flanking the Alu elements. Treatment with the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine rapidly decreased the level of H3-Lys9 methylation in the Alu elements, suggesting that H3-Lys9 methylation may be related to the suppression of Alu elements through DNA methylation. Thus H3-Lys9 methylation is enriched at human repetitive elements, particularly Alu elements, and may play a role in the suppression of recombination by these elements.  相似文献   

2.
Kass DH  Knight A  Deininger PL 《Genetica》2004,121(2):187-193
Alu repeats in primates have been shown to evolve at a neutral mutation rate, as anticipated for non-coding autosomal loci. However, we have identified Alu elements within the 3' untranslated region (UTR) of the low density lipoprotein receptor (LDLR) gene that exhibited highly accelerated rates of evolution. In humans, a 100- and 25-fold increase in average divergence, for an upstream Alu (Alu U) and a downstream Alu (Alu D) respectively, was estimated based on sequence analysis among eight individuals of diverse ethnic backgrounds. None of these individuals demonstrated identical sequences within a 950 base region consisting of these two Alu elements. The hypervariability of this genetic region in the nuclear genome yields a potentially powerful tool for human population studies, forensics and paternity. Additionally, the mutation rate of Alu U among non-human hominoids was also accelerated, although to a lesser extent of roughly 3-fold that of other Alu elements. Sequence analysis of various Hominoidea species demonstrated its utility as a phylogenetic tool. The mechanism for the hypervariability in mutation rates is unclear, but may be accelerated as a result of Alu-mediated gene conversion in the human lineage.  相似文献   

3.
To investigate the molecular phylogeny and evolution of the family Canidae, nucleotide sequences of the zinc-finger-protein gene on the Y chromosome (ZFY, 924-1146 bp) and its homologous gene on the X chromosome (ZFX, 834-839 bp) for twelve canid species were determined. The phylogenetic relationships among species reconstructed by the paternal ZFY sequences closely agreed with those by mtDNA and autosomal DNA trees in previous reports, and strongly supported the phylogenetic affinity between the wolf-like canids clade and the South American canids clade. However, the branching order of some species differed between phylogenies of ZFY and ZFX genes: Cuon alpinus and Canis mesomelas were included in the wolf-like canid clades in the ZFY tree, whereas both species were clustered in a group of Chrysocyon brachyurus and Speothos venaticus in the ZFX tree. The topology difference between ZFY and ZFX trees may have resulted from the two-times higher substitution rate of the former than the latter, which was clarified in the present study. In addition, two types of transposable element sequence (SINE-I and SINE-II) were found to occur in the ZFY final intron of the twelve canid species examined. Because the SINE-I sequences were shared by all the species, they may have been inserted into the ZFY of the common ancestor before species radiation in Canidae. By contract, SINE-II found in only Canis aureus could have been inserted into ZFY independently after the speciation. The molecular diversity of SINE sequences of Canidae reflects evolutionary history of the species radiation.  相似文献   

4.
Transposable elements of about 300 bp, termed "short interspersed nucleotide elements or SINEs are common in eukaryotes. However, Alu elements, SINEs containing restriction sites for the AluI enzyme, have been known only from primates. Here I report the first SINE found in the genome of the cephalochordate, amphioxus. It is an Alu element of 375 bp that does not share substantial identity with any genomic sequences in vertebrates. It was identified because it was located in the FoxD regulatory region in a cosmid derived from one individual, but absent from the two FoxD alleles of BACs from a second individual. However, searches of sequences of BACs and genomic traces from this second individual gave an estimate of 50-100 copies in the amphioxus genome. The finding of an Alu element in amphioxus raises the question of whether Alu elements in amphioxus and primates arose by convergent evolution or by inheritance from a common ancestor. Genome-wide analyses of transposable elements in amphioxus and other chordates such as tunicates, agnathans and cartilaginous fishes could well provide the answer.  相似文献   

5.
Recently, we reported that four microRNAs show perfect complementarity with MIR/LINE-2 elements within human mRNAs. This finding raises the question of whether microRNAs might also target other genomic repeats and transposable elements. Here, we demonstrate that almost 30 human microRNAs exhibit typical short-seed complementarity with a specific site within Alu elements that is highly conserved within 3' untranslated regions of human mRNAs. The results suggest that at least some Alu elements within human mRNAs serve as microRNA targets.  相似文献   

6.
Alu elements are transposable elements that have reached over one million copies in the human genome. Some Alu elements inserted in the genome so recently that they are still polymorphic for insertion presence or absence in human populations. Recently, there has been an increasing interest in using Alu variation for studies of human population genetic structure and inference of individual geographic origin. Currently, this requires a high number of Alu loci. Here, we used a linker-mediated polymerase chain reaction method to preferentially identify low-frequency Alu elements in various human DNA samples with different geographic origins. The candidate Alu loci were subsequently genotyped in 18 worldwide human populations (approximately 370 individuals), resulting in the identification of two new Alu insertions restricted to populations of African ancestry. Our results suggest that it may ultimately become possible to correctly infer the geographic affiliation of unknown samples with high levels of confidence without having to genotype as many as 100 Alu loci. This is desirable if Alu insertion polymorphisms are to be used for human evolution studies or forensic applications.  相似文献   

7.
Hereditary non-polyposis colorectal cancer (HNPCC) syndrome is an autosomal, dominantly inherited disease accounting for about 1%–5% of all colorectal cancer cases. HNPCC predisposition is caused by germline mutations in at least five genes coding for DNA mismatch repair (MMR) proteins. More than 400 MMR gene mutations have been identified in HNPCC patients. About 90% of mutations affect the MLH1 and MSH2 genes. The mutational spectrum mainly includes point mutations and small deletions or insertions. Here, we report a large 184 base-pair Alu insertion mutation in exon 6 of the MSH2 gene in a German HNPCC family. The inserted sequence contains repetitive Alu sequence elements that present the highest homology with the old Alu J subfamily. The Alu J insertion was most likely derived from Alu-mediated recombination, since Alu J elements have been found close to the insertion site in adjacent introns, and since elements pivotal for Alu retrotransposition are missing. Our results suggest that the recombination event occurred at least one generation ago. This is the first report of an Alu insertion in the coding sequence of a MMR gene as the cause of HNPCC. Our data thus further extend the spectrum of MMR gene mutations causative for HNPCC.M. Kloor and C. Sutter contributed equally to this work  相似文献   

8.
It has been hypothesised that the massive accumulation of L1 transposable elements on the X chromosome is due to their function in X inactivation, and that the accumulation of Alu elements near genes is adaptive. We tested the possible selective advantage of these two transposable element (TE) families with a novel method, interruption analysis. In mammalian genomes, a large number of TEs interrupt other TEs due to the high overall abundance and age of repeats, and these interruptions can be used to test whether TEs are selectively neutral. Interruptions of TEs, which are beneficial for the host, are expected to be deleterious and underrepresented compared with neutral ones. We found that L1 elements in the regions of the X chromosome that contain the majority of the inactivated genes are significantly less frequently interrupted than on the autosomes, while L1s near genes that escape inactivation are interrupted with higher frequency, supporting the hypothesis that L1s on the X chromosome play a role in its inactivation. In addition, we show that TEs are less frequently interrupted in introns than in intergenic regions, probably due to selection against the expansion of introns, but the insertion pattern of Alus is comparable to other repeats.  相似文献   

9.
Through the sequence analysis of 27 imprinted human genes and a set of 100 control genes we have developed a novel approach for identifying candidate imprinted genes based on the differences in sequence composition observed. The imprinted genes were found to be associated with significantly reduced numbers of short interspersed transposable element (SINE) Alus and mammalian-wide interspersed repeat (MIR) repeat elements, as previously reported. In addition, a significant association between imprinted genes and increased numbers of low-complexity repeats was also evident. Numbers of the Alu classes AluJ and AluS were found to be significantly depleted in some parts of the flanking regions of imprinted genes. A recent study has proposed that there is active selection against SINE elements in imprinted regions. Alternatively, there may be differences in the rates of insertion of Alu elements. Our study indicates that this difference extends both upstream and downstream of the coding region. This and other consistent differences between the sequence characteristics of imprinted and control genes has enabled us to develop discriminant analysis, which can be used to screen the genome for candidate imprinted genes. We have applied this function to a number of genes whose imprinting status is disputed or uncertain.  相似文献   

10.
The Alu Ya-lineage is a group of related, short interspersed elements (SINEs) found in primates. This lineage includes subfamilies Ya1-Ya5, Ya5a2 and others. Some of these subfamilies are still actively mobilizing in the human genome. We have analyzed 2482 elements that reside in the human genome draft sequence and focused our analyses on the 2318 human autosomal Ya Alu elements. A total of 1470 autosomal loci were subjected to polymerase chain reaction (PCR)-based assays that allow analysis of individual Ya-lineage Alu elements. About 22% (313/1452) of the Ya-lineage Alu elements were polymorphic for the insertion presence on human autosomes. Less than 0.01% (5/1452) of the Ya-lineage loci analyzed displayed insertions in orthologous loci in non-human primate genomes. DNA sequence analysis of the orthologous inserts showed that the orthologous loci contained older pre-existing Y, Sc or Sq Alu subfamily elements that were the result of parallel forward insertions or involved in gene conversion events in the human lineage. This study is the largest analysis of a group of "young", evolutionarily related human subfamilies. The size, evolutionary age and variable allele insertion frequencies of several of these subfamilies makes members of the Ya-lineage useful tools for human population studies and primate phylogenetics.  相似文献   

11.

Background  

The p53 tumor suppressor protein is involved in a complicated regulatory network, mediating expression of ~1000 human genes. Recent studies have shown that many p53 in vivo binding sites (BSs) reside in transposable repeats. The relationship between these BSs and functional p53 response elements (REs) remains unknown, however. We sought to understand whether the p53 REs also reside in transposable elements and particularly in the most-abundant Alu repeats.  相似文献   

12.
DNA variability was investigated in the last intron of the Y-chromosome-specific zinc finger gene, ZFY, and its X homolog on Xp21.3, ZFX. No polymorphisms were found in the 676-bp ZFY segment in a sample of 205 world-wide-distributed Y chromosomes, other than a solitary nucleotide variant in one individual (nucleotide diversity pi = 0.0014%). In contrast, 10 segregating sites (pi = 0.082%) were identified within 1,089 bp of the ZFX sequence in a sample of 336 X chromosomes. Four of these polymorphisms, which contributed most of the diversity, were located within an Alu insert disrupting the ZFY-ZFX homology (pi Alu = 0.24%). The diversity in the homologous portion of the ZFX intron, although higher than that in ZFY, was lower than that found in genomic segments believed to evolve neutrally; interspecies divergence in both segments was also reduced. Although this suggests that the evolution of both ZFY and ZFX homologs may not be entirely neutral, both Tajima and HKA tests did not reject neutrality. The lack of statistical significance may be attributed to a lack of power in these tests (the low divergence and variability values reduce the power of the HKA and Tajima tests, respectively); furthermore, Homo sapiens has recently undergone a rapid population growth, and selection is more difficult to detect in an expanding population. Therefore, the failure to reject neutrality does not necessarily indicate the absence of selection. In this context, the phylogenetic argument was given more weight in out interpretations. The high level of sequence identity in ZFY and ZFX segments, in spite of their separation 80-130 MYA, reflects a lower mutation rate as compared with other segments believed to undergo unconstrained evolution. Thus, the possibility of weak selection contributing to the low level of nucleotide diversity in the last ZFY intron cannot be excluded and should be kept in mind in the population genetics studies based on Y chromosome variability.  相似文献   

13.
Mammalian transposable elements have intrinsic regulatory elements that can activate neighboring genes, and it is speculated that they can also carry extrinsic transactivating DNA sequences to new genomic locations. We have identified a polymorphic segment of the human interferon-gamma promoter region where two adjacent binding sites for NF-kappaB and NFAT originated from the insertion of an Alu element approximately 22-34 MYA. Both binding sites lie outside the Alu consensus sequence but within the boundaries of the insertion, suggesting that this segment of DNA was comobilized when the Alu element moved from another part of the genome. Sequence comparisons and examination of DNA-protein interactions across nine different primate species indicate that the inserted sequence contained the intact NFAT binding site, whereas the ability to bind NF-kappaB evolved through a series of mutations after the insertion. These observations are consistent with the notion that retropseudogenes can comobilize intact regulatory sequences to new locations and thereby influence the evolution of gene regulatory networks; however, the extent to which such events have shaped the evolution of gene regulation remains unknown.  相似文献   

14.
L M Erickson  H S Kim  N Maeda 《Genomics》1992,14(4):948-958
To investigate the nature of the recombination that generated the haptoglobin three-gene cluster in Old World primates, we sequenced the region between the second gene (HPR) and the third gene (HPP) in chimpanzees (15 kb), as well as the region 3' to the cluster in humans (14 kb). Comparison to the previously sequenced human haptoglobin (HP) and HPR genes showed that the junction point between HP and HPR in humans (junction 1) was not identical to the junction point between the HPR and HPP genes of the chimpanzee (junction 2). An Alu sequence was found at each junction, but both Alu sequences lacked short direct repeats of the flanking genomic DNA. The lack of direct repeats implies that both junction Alu sequences are the products of recombination between different Alu elements. In addition, other insertion and deletion events are clustered in the regions near the junction Alu sequences. The observation that Alu sequences define the junctions between genes in the haptoglobin gene cluster emphasizes the importance of Alu sequences in the evolution of multigene families.  相似文献   

15.
16.
Nearly 1 million Alu elements in human DNA were inserted by an RNA-mediated retroposition-amplification process that clearly decelerated about 30 million years ago. Since then, Alu sequences have proliferated at a lower rate, including within the human genome, in which Alu mobility continues to generate genetic variability. Initially derived from 7SL RNA of the signal recognition particle (SRP), Alu became a dominant retroposon while retaining secondary structures found in 7SL RNA. We previously identified a human Alu RNA-binding protein as a homolog of the 14-kDa Alu-specific protein of SRP and have shown that its expression is associated with accumulation of 3'-processed Alu RNA. Here, we show that in early anthropoids, the gene encoding SRP14 Alu RNA-binding protein was duplicated and that SRP14-homologous sequences currently reside on different human chromosomes. In anthropoids, the active SRP14 gene acquired a GCA trinucleotide repeat in its 3'-coding region that produces SRP14 polypeptides with extended C-terminal tails. A C-->G substitution in this region converted the mouse sequence CCA GCA to GCA GCA in prosimians, which presumably predisposed this locus to GCA expansion in anthropoids and provides a model for other triplet expansions. Moreover, the presence of the trinucleotide repeat in SRP14 DNA and the corresponding C-terminal tail in SRP14 are associated with a significant increase in SRP14 polypeptide and Alu RNA-binding activity. These genetic events occurred during the period in which an acceleration in Alu retroposition was followed by a sharp deceleration, suggesting that Alu repeats coevolved with C-terminal variants of SRP14 in higher primates.  相似文献   

17.
Recently integrated Alu elements and human genomic diversity   总被引:8,自引:0,他引:8  
A comprehensive analysis of two Alu Y lineage subfamilies was undertaken to assess Alu-associated genomic diversity and identify new Alu insertion polymorphisms for the study of human population genetics. Recently integrated Alu elements (283) from the Yg6 and Yi6 subfamilies were analyzed by polymerase chain reaction (PCR), and 25 of the loci analyzed were polymorphic for insertion presence/absence within the genomes of a diverse array of human populations. These newly identified Alu insertion polymorphisms will be useful tools for the study of human genomic diversity. Our screening of the Alu insertion loci also resulted in the recovery of several "young" Alu elements that resided at orthologous positions in nonhuman primate genomes. Sequence analysis demonstrated these "young" Alu insertions were the products of gene conversion events of older, preexisting Alu elements or independent parallel forward insertions of older Alu elements in the same short genomic region. The level of gene conversion between Alu elements suggests that it may have an influence on the single nucleotide polymorphism within Alu elements in the genome. We have also identified two genomic deletions associated with the retroposition and insertion of Alu Y lineage elements into the human genome. This type of Alu retroposition-mediated genomic deletion is a novel source of lineage-specific evolution within primate genomes.  相似文献   

18.
The enlargement of the genome size and the decrease in genome compactness with increase in the number and size of introns is a general pattern during the evolution of eukaryotes. Among the possible mechanisms for modifying intron size, it has been suggested that the insertion of transposable elements might have an important role in driving intron evolution. The analysis of large portions of the human genome demonstrated that a relatively recent (50 to 100 MYA) accumulation of transposable elements appears to be biased, favoring a preferential insertion of LINE1 transposons into sex chromosomes rather than into autosomes. In the present work, the effect of chromosomal location on the increase in size of introns was evaluated with a comparative analysis performed on pairs of human paralogous genes, one located on the X chromosome and the second on an autosome. A phylogenetic analysis was also performed on the X-encoded proteins and their paralogs to confirm orthology-paralogy and to approximately estimate the time of gene duplication. Statistical analysis of total intron length for each pair of paralogous genes provided no evidence for a larger size of introns in the gene copies located on the X chromosome. On the opposite, introns of autosomal genes were found to be significantly longer than introns of their X-linked paralogs. Likewise, LINE1 elements were not significantly more frequent in X-chromosome introns, whereas the frequency of SINE elements showed a marginally significant bias toward autosomal introns.  相似文献   

19.
20.
Alu elements belonging to the previously identified "young" subfamilies are thought to have inserted in the human genome after the divergence of humans from non-human primates and therefore should not be present in non-human primate genomes. Polymerase chain reaction (PCR) based screening of over 500 Alu insertion loci resulted in the recovery of a few "young" Alu elements that also resided at orthologous positions in non-human primate genomes. Sequence analysis demonstrated these "young" Alu insertions represented gene conversion events of pre-existing ancient Alu elements or independent parallel insertions of older Alu elements in the same genomic region. The level of gene conversion between Alu elements suggests that it may have a significant influence on the single nucleotide diversity within the genome. All the instances of multiple independent Alu insertions within the same small genomic regions were recovered from the owl monkey genome, indicating a higher Alu amplification rate in owl monkeys relative to many other primates. This study suggests that the majority of Alu insertions in primate genomes are the products of unique evolutionary events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号