首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
2.
3.
4.
5.
6.
Purification and characterization of the T4 bacteriophage uvsX protein   总被引:21,自引:0,他引:21  
Gene uvsX of bacteriophage T4 encodes a 40,000-dalton protein that plays a key role in the major pathway for genetic recombination in T4-infected cells. Mutations at the uvsX locus lead to increased sensitivity to various DNA-damaging agents, reduced phage bursts, decreased genetic recombination, and early arrest of DNA synthesis. Like the Escherichia coli recA protein, the purified uvsX protein is a DNA-dependent ATPase that catalyzes pairing between homologous single- and double-stranded DNA molecules in vitro (Yonesaki, T., Ryo, Y., Minagawa, T., and Takahashi, H., (1985) Eur. J. Biochem. 148, 127-134). At physiological salt concentrations, the uvsX protein binds tightly and cooperatively to single-stranded DNA, covering about five nucleotides per protein monomer; at lower salt concentrations, a similar type of binding to double-stranded DNA is detected (Griffith, J., and Formosa, T., (1985) J. Biol. Chem. 260, 4484-4491). We show here that the ATPase activity of this protein is unusual in producing both ADP plus Pi and AMP plus PPi as products. Generating the fully active form of the ATPase is a cooperative process, apparently requiring that a protein monomer be bound to single-stranded DNA while surrounded by other ATP-bound monomers. The catalysis of homologous pairing by the uvsX protein is shown to be greatly stimulated by the presence of the T4 gene 32 protein, a helix-destablizing protein previously studied in this laboratory, and it requires continued ATP hydrolysis. We present a method that allows the purification of the uvsX protein to essential homogeneity. We also describe the complete purification of two proteins that bind to the uvsX protein: the T4 uvsY protein (16,000 daltons) and an E. coli host protein of 32,000 daltons whose gene is unknown. The host protein is likely to play a role in DNA metabolism, because it also binds to the T4 gene 32 protein and to DNA; the sequence of its amino-terminal 29 amino acids has been determined.  相似文献   

7.
Tertiary initiation of bacteriophage T4 DNA replication is resistant to the RNA polymerase inhibitor rifampicin and apparently involved in the activity of recombination hot spots in the T4 genome (Kreuzer, K. N., and Alberts, B. M. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 3345-3349). One of the origins that function by the tertiary mechanism maps at the promoter for gene uvs Y. A deletion and a linker-insertion mutation in the uvsY promoter/origin region were generated by in vitro manipulations and then placed into the T4 genome using the insertion/substitution system (Selick, H. E., Kreuzer, K. N., and Alberts, B. M. (1988) J. Biol. Chem. 263, 11336-11347). Both resulting phage strains are uvsY- mutants, but they differ in that one has a deletion of the minimal tertiary origin and the other does not. The effects of the uvsY mutations on tertiary origin activity were assayed by infecting tertiary origin plasmid-bearing Escherichia coli with the two phage mutants. The tertiary origin plasmids replicated extensively after infection by either uvsY- phage mutant, demonstrating that the uvsY protein is not required for tertiary initiation. The extent of plasmid replication was increased dramatically as a result of either mutation, indicating that the uvsY protein plays some negative role in either the initiation or subsequent processing of plasmid replicative intermediates. The phage strain with an origin deletion induced the replication of a tertiary origin plasmid with which it shared no homology. Therefore, plasmid-phage recombination is not required for the replication of tertiary origin plasmids. The replication of a tertiary origin plasmid is also shown to be independent of the phage genes uvsX, 59, and 46, but markedly reduced by mutations in the T4-induced topoisomerase.  相似文献   

8.
9.
Integration of Plasmids into the Bacteriophage T4 Genome   总被引:2,自引:0,他引:2       下载免费PDF全文
HWE. Kreuzer  K. N. Kreuzer 《Genetics》1994,138(4):983-992
We have analyzed the integration of plasmids into the bacteriophage T4 genome via homologous recombination. As judged by genetic selection for a plasmid-borne marker, a mutation in phage gene uvsX or uvsY essentially blocked the integration of a plasmid with homology to the T4 genome but no phage replication origin (non-origin plasmid). The strict requirement for these two proteins suggests that plasmid integration can proceed via a strand-invasion reaction similar to that catalyzed in vitro by the T4-encoded strand-exchange protein (UvsX) in concert with UvsY and gp32. In contrast to the results with the non-origin plasmid, a mutation in uvsX or uvsY reduced the integration of a T4 replication origin-containing plasmid by only 3-10-fold. These results suggest that the origin-containing plasmid integrates by both the UvsXY-dependent pathway used by the non-origin plasmid and by a UvsXY-independent pathway. The origin-containing plasmid integrated into the phage genome during a uvsX-or uvsY-mutant infection of a recA-mutant host, and therefore origin-dependent integration can occur in the absence of both phage- and host-encoded strand-exchange proteins (UvsX and RecA, respectively).  相似文献   

10.
11.
12.
13.
14.
Inhibition of protein-mediated homologous pairing by a DNA helicase.   总被引:6,自引:0,他引:6  
Protein-mediated exchange of homologous DNA strands is a central reaction in general genetic recombination and the mechanism by which proteins mediate this process in vivo is a topic of keen interest. The dda protein of the bacteriophage T4 is a DNA helicase that has been shown to accelerate branch migration catalyzed by the phage uvsX and gene 32 proteins in vitro (Kodadek, T., and Alberts, B.M. (1987) Nature 326, 312-314). This study did not address the potential role of the helicase in protein-mediated homologous pairing, the first phase of the overall strand-exchange reaction. It is shown here that the dda protein inhibits uvsX protein-mediated pairing between homologous single and double-stranded DNAs. Experiments using deproteinized heteroduplex joints demonstrate that the dda helicase is capable of unwinding these structures to some extent and suggests that this activity may be responsible for the observed inhibition of pairing. It is found that the helicase also reduces the level of uvsX protein-mediated, single-stranded DNA-dependent ATP hydrolysis in the strand-exchange reactions, suggesting that the helicase may also act to destabilize the uvsX protein-DNA filaments that are important intermediates in the pairing reaction. Three other helicases are found to have no effect on the uvsX protein-mediated pairing reaction. A model rationalizing the ability of the dda protein to both inhibit homologous pairing and stimulate branch migration is presented and possible in vivo roles for this interesting activity are discussed.  相似文献   

15.
Summary Recombination of T4 phage is not controlled by the host recA gene but by an analogous phage gene, uvsX. We have tested the hypothesis that recA protein is inactive in T4-infected cells because it is unable to catalyze reactions involving single stranded DNA containing glucosyl-hydroxylmethyl-deoxycytidine. We found, however, that with modified and unmodified deoxycytidine containing DNAs, uvsX protein and recA protein catalyze in vitro reactions related to DNA recombination, but in T4-infected cells recA protein fails to promote strand transfer of DNA which contains unmodified deoxycytidine.Abbreviations dC-DNA deoxycytidine containing DNA - dC-T4 T4 phage containing dC-DNA - dHMC-DNA glucosyl-hydroxymethyl-deoxycytidine containing DNA - dsDNA double stranded DNA - gp gene product - ssDNA single stranded DNA  相似文献   

16.
17.
18.
The bacteriophage T4 uvsX gene codes for a DNA-binding protein that is important for genetic recombination in T4-infected cells. This protein is a DNA-dependent ATPase that resembles the Escherichia coli recA protein in many of its properties. We have examined the binding of purified uvsX protein to single-stranded DNA (ssDNA) and to double-stranded DNA (dsDNA) using electron microscopy to visualize the complexes that are formed and double label analysis to measure their protein content. We find that the uvsX protein binds cooperatively to dsDNA, forming filaments 14 nm in diameter with an apparently helical axial repeat of 12 nm. Each repeat contains about 42 base pairs and 9-12 uvsX protein monomers. In solutions containing Mg2+, the uvsX protein also binds cooperatively to ssDNA. The filaments that result are 14 nm in diameter, show a 12-nm axial repeat, and they are nearly identical in appearance to the filaments that contain dsDNA. In the filaments formed along ssDNA, each axial repeat contains about 49 DNA bases and 9-12 uvsX monomers. Both the filaments formed on the ssDNA and dsDNA show a strong tendency to align side-by-side. T4 gene 32 protein also binds cooperatively to ssDNA and interacts both physically and functionally with uvsX protein. However, when gene 32 and uvsX proteins were added to ssDNA together, no interaction between the two proteins was detected.  相似文献   

19.
Role for 10Sa RNA in the growth of lambda-P22 hybrid phage.   总被引:8,自引:4,他引:4       下载免费PDF全文
Certain lambda-P22 hybrids, providing that they express the P22 C1 protein, fail to grow in Escherichia coli with the sipB391 mutation. We show that sipB391, previously located to the 57-min region of the E. coli chromosome, is a large deletion that extends into the 3' end of ssrA, a gene encoding the small stable 10Sa RNA. This deletion, apparently created by the excision of a cryptic prophage, CP4-57 (identified by Kirby et al. [J. E. Kirby, J. E. Trempy, and S. Gottesman, J. Bacteriol. 176:2068-2081]), leaves most of ssrA intact but removes the sequence encoding the 3' end of the precursor form of 10Sa RNA. The lack of functional 10Sa RNA, resulting from either the excision of CP4-57 or insertional inactivation of ssrA, appears to be responsible for the inhibition of lambda-P22 growth in E. coli with the sipB391 mutation. We propose that 10Sa RNA acts either directly or indirectly to facilitate removal of C1 protein from its DNA target site.  相似文献   

20.
The phage T4 uvs Y recombination protein stabilizes presynaptic filaments   总被引:3,自引:0,他引:3  
The bacteriophage T4 uvsY protein is required for efficient recombination in T4-infected Escherichia coli cells. Previous in vitro work has shown that the purified uvsY protein is an accessory protein; it stimulates homologous pairing catalyzed by the phage uvsX protein (a RecA-like recombinase) under certain conditions. We show here that this effect can be traced, at least in part, to a UvsY-dependent stabilization of uvsX protein-single-stranded DNA complexes. These presynaptic filaments are one of the early obligatory intermediates in the strand exchange reaction between homologous single- and double-stranded DNAs. The mechanism of filament stabilization seems to involve a slower loss of UvsX subunits. A model that accounts for the data is presented in which both recombination proteins are incorporated into the presynaptic filament.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号