首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tapetum lucidum in the eye of the big-eye Priacanthus arenatus Cuvier   总被引:1,自引:0,他引:1  
The big-eye Priacanthus arenatus Cuvier contains a tapetum lucidum or reflector which lies in the inner region of the choroid. It extends over the entire surface of the fundus, and it consists of several layers of reflecting cells. The cells contain many layers of thin guanine crystals, and there is about 0.5 mg of guanine in a square cm of tapetum. The retina is duplex, and rods are small and very numerous. The tapetum of the big-eye is compared with those of selachians and sturgeons, which it much resembles.  相似文献   

2.
The morphology of the tapetum lucidum of the grey seal (Halichoerus grypus) has been studied by light and electron microscopy. The reflective layer in this species is a tapetum cellulosum situated in the choroid and covering the entire effective fundus. Posteriorly the tapetum is composed of 30-35 layers of flattened polygonal cells. This number gradually declines to 15-20 layers in the extreme periphery. Near the retinal epithelial layer the tapetal cells are larger and more regular (brick-like) in arrangement whereas further from the retina the tapetal cells become more irregular in outline and more widely separated by collagen fibrils and connective tissue cells. In this outer region the tapetal cells are gradually replaced by melanocytes of the choroid. Within the tapetal cells a few mitochondria and profiles of smooth endoplasmic reticulum are scattered peripherally while the majority of the cell organelles are clustered near the centrally located vesicular nucleus. The dominant feature of the tapetal cells is, however, an accumulation of numerous electron-dense rodlets of presumed zinc cysteine. These rodlets are the reflective material of the tapetum and are arranged with their long axes perpendicular to the incoming light. The orientation of these rodlets is usually uniform within each tapetal cell but varies between adjacent cells. The diameter (0.10 micron) and spacing (0.15 micron) of these rodlets is consistent with the principles of constructive interference. Blood vessels penetrate the tapetum at right angles to supply the choriocapillaris which is indented into the amelanotic retinal epithelium to give a flat reflective surface to the tapetum.  相似文献   

3.
A guanine-type retinal tapetum was recorded in the eyes of a carangid fish Kaiwarinus equula (= Carangoides equula), spectrophotometric evidence of such being presented. The total amount of guanine in one eye was about 6.5 mg, the guanine density being ca. 1.3 mg cm(-2) over the retinal surface area. To examine the guanine distribution within the retina, the latter was divided into 21 regions. An area of high guanine density (more than 2.0 mg cm(-2)) was observed in the dorsal fundus of the retina, suggesting that the most sensitive vision was checked downward. Using whole-mount retinal preparations, the distribution of Nissl-stained cells within the retinal ganglion cell layer was examined. The greatest cell density area (area centralis) was observed only in the temporal retina. The visual acuity of the area centralis was 4.3 cycles deg(-1), suggesting that high resolution and binocular vision were directed frontally in this species. The eyes of a related carangid (Pseudocaranx dentex), lacking a tapetum, were also examined for comparison. The possible ecological advantage resulting from the tapetum is discussed in terms of visual threshold.  相似文献   

4.
The microscopic anatomy of the eye of the Weddell seal was studied with various light and electron microscopic methods with a view to correlating morphological findings with the biology of this seal which is adapted to the extremes of the Antarctic environment and to extreme diving excursions into the lightless depths of the sea. In the retina an area centralis was found but no fovea centralis. The densely packed photoreceptors consist exclusively of highly differentiated rods, which in primates detect light at low intensity but have rather poor image discrimination. The ganglion cells are relatively scarce, suggesting a high degree of convergence of the light-sensitive cells on the ganglion cells. The pigment epithelium is almost devoid of pigment granules. The extensive tapetum lucidum is about 400-500 microm thick and is composed of about 30 layers of specialized cells. The cornea is 650 (center) to 800-900 (periphery) microm thick. Its structure and glycosaminoglycan histochemistry correspond to that of other mammals. The iridocorneal angle is unusually deep and pervaded by an elaborate trabecular meshwork, which together with a complex canal of Schlemm can be correlated with the ability to absorb large amounts of fluid. The ciliary muscle and its antagonist, the membrane of Bruch, are poorly developed, suggesting relatively poor abilities of accommodation. The combination of a well-developed tapetum lucidum, an unpigmented pigment epithelium, well-developed rods, and a high number of rods converging on only few ganglion cells is obviously an adaptation to an extreme light sensitivity, enabling the animals to make use of the little light available in the deep sea.  相似文献   

5.
The morphological and functional density of the retinal ganglion cells of the Baikal Lake endemic seal Pusa sibirica was studied using cresyl-violet-stained whole-mounts. An area of the highest concentration of ganglion cells has been identified by drawing up a density map. This was an ellipsoid spot in the upper temporal part of the retina 6–7 mm from the visual nerve output. The maximum cell density in this area was 3800 cells/mm2. The retinal resolution estimated from the maximum density of ganglion cells and the posterior nodal distance (24 mm) was 2.4′ in the water and 3′ in the air, and this can be used as an estimation of the retina resolving power.  相似文献   

6.
江豚和白暨豚视网膜神经节细胞根据其形态结构可分为1、2两型。其密度分布在大多数江豚和1头白(既鱼)豚呈两个高密度区。第一高密度区位于视网膜鼻侧偏腹方,第二高密度区位于颞侧偏背方。第一和第二高密度区的细胞的最高密度在江豚大多数分别为每平方毫米250和210左右,在一例白暨豚约180和140以上。其组成、密度分布及细胞总数在采自长江和黄海沿岸的江豚之间差异不显著。在白(既鱼)豚由于大神经节细胞相对增多,细胞平均直径比江豚的大;细胞数在40微米左右处形成特有的第二个峰;2型的细胞极少,且没有发现典型的星形神经节细胞。 几种豚类的视网膜神经节细胞的比较表明,在适应弱光环境的过程中,视网膜神经节细胞的组成发生了一些改变:2型的神经节细胞逐渐减少甚至消失;大神经节细胞相对增多;神经节细胞密度减小。视觉敏度提高,锐度下降。  相似文献   

7.
The morphology of the retinal pigment epithelium (RPE), Bruch's membrane (complexus basalis), choriocapillaris and tapetum lucidum has been studied in the eye of the ranch mink (Mustela vison) by light and electron microscopy. The RPE is composed of a single layer of cells joined laterally by apically located junctional complexes. Basally (sclerally) these cells display numerous infoldings whereas apically (vitreally) two types of processes are associated with rod and cone outer segments. Smooth endoplasmic reticulum and mitochondria are abundant in these cells whereas rough endoplasmic reticulum and polysomes, although present, are not plentiful. An occasional wandering phagocyte is noted at the RPE-photoreceptor interface. In the posterosuperior part of the fundus, a degenerative tapetum lucidum is present. The presence of only a few layers of tapetal cells containing but little reflective material and the haphazard arrangement of this material makes it very unlikely that this area functions as an effective tapetum lucidum. The RPE over the aberrant tapetum, however, shows the morphology that is seen when a functioning tapetum cellulosum is present, namely the absence of melanosomes and an indented choriocapillaris. Bruch's membrane in non-tapetal areas is pentalaminate but, over the tapetum and where it is associated with capillary profiles, it is reduced to a single, thickened basal lamina. The choriocapillary endothelium is highly fenestrated and in nontapetal areas these capillaries are not indented into the epithelial layer.  相似文献   

8.
The spatial distribution of retinal ganglion cells provides valuable insight into the importance species place on observing objects in specific regions of their visual field with higher spatial resolving power. We estimate the total number, distribution and peak density of ganglion cells in retinal wholemounts of the sleepy lizard, Tiliqua rugosa, a scincid lizard endemic to southern Australia. Ganglion cells were readily discernable from amacrine cells by their size and shape, prominent nuclei and the accumulation of Nissl-positive substances in their cytoplasm. A total of 1,654,200 (±59,400) presumed ganglion cells were estimated throughout the retina, distributed irregularly and forming a loose horizontal streak of high cell density peaking at 15,500 cells per mm2. With a post nodal distance of 6.25 mm, we calculate an upper limit of visual acuity of 6.8 c/deg.  相似文献   

9.
This study examines the morphology of sporadic congenital microphthalmia in 1-day-old chicks, with particular emphasis on the neural retina. On the basis of the size of the eyeball it is possible to classify microphthalmia into two groups, severe and mild. In severe microphthalmia (less than 5 mm in equatorial diameter), the eyeball is severely malformed, but in most cases it shows evidence of an organized neural retina. Although ganglion cells and an optic nerve head are present in a small proportion of these retinae, we could not trace an optic nerve projection to the brain. These results indicate that some ganglion cells are able to be sustained after the period of naturally occurring cell death, suggesting either that those ganglion cells have established some contact with the central nervous system or that the presence of their axons in a rudimentary optic nerve is adequate for survival. In mild microphthalmia (greater than 5 mm in equatorial diameter), the most consistent abnormality is a defect in the pecten, which together with other abnormalities such as orbital cysts and colobomas indicates that the major abnormality occurs in the region of the choroid fissure. Associated with these defects are abnormalities within the ganglion cell layer. In some cases the number of ganglion cells was reduced, and in others the numbers of both ganglion and displaced amacrine cells were reduced. Unexpectedly, there were localized regions completely devoid of cells in the ganglion cell layer. The timing of the congenital defect may provide some clue as to the presence of a critical period in which displaced amacrine cells are formed or are sensitive to events related to ganglion cell loss.  相似文献   

10.
The fine structure of the retinal epithelium has been studied by electron microscopy in the opossum (Didelphis virginiana). The retinal epithelium, over most of the retina, is typical of that in other vertebrates and consists of a single layer of heavily pigmented, cuboidal cells. These cells display extensive basal (scleral) infoldings and numerous apical (vitreal) processes which enclose photoreceptor outer segments. A semicircular area of the retinal epithelium in the superior fundus is further specialized as a tapetum lucidum. The reflecting material consists of a large quantity of lipoidal spheres scattered throughout the epithelial cells. Centrally in the tapetal area very few or no melanosomes are found, indicating a non-occlusible tapetum. Peripherally in the tapetum, the epithelial cells contain both reflecting material and melanosomes. As in the non-tapetal area, the epithelial cells of the tapetum display large amounts of smooth endoplasmic reticulum and numerous mitochondria. Bruch's membrane everywhere displays the usual pentalaminate structure described for most vertebrates. The choriocapillaris is also typical, in that numerous fenestrations are present in the endothelium bordering Bruch's membrane.  相似文献   

11.
Application of several silver impregnation methods on whole mounts of the bovine retina selectively elicits the giant ganglion cells of the peripheral retina. As determined by the branching pattern of their dendrites they coudl be classified in three types: 1. predominant branching in one directions; 2. branching in two opposite direction; 2. branching in two opposite directions; 3. branches radiate in all directions. Cells of the first type were mainly found in the temporal and dorsal (superior) segment; those of the second type in the nasal part; those of the third type were present in the ventral (inferior) part of the peripheral retina. The sizes of their dendritic fields differ. Another ganglion cell with a large perikaryon was found infrequently in each retina; its dendrites are located in the inner plexiform layer, ending with occasionally large knob- or clubshaped tips. An axon was never found. Evidently, they show a special topographical relationship to the blood vessels. Their function is as yet unknown.  相似文献   

12.
Results of this investigation indicate that the ferret (Mustela putorius) closely resembles the dog (Canis familiaris) and should be a useful research animal alternative. The tapetum lucidum is a common structure present in the eyes of dogs, cats (Felis catus) and other nocturnal animals. Our study showed that this structure was present in ferret eyes. The color or reflection of the ferret and dog tapetum was remarkably reduced by the general fixation with glutaraldehyde. However, this color fading phenomenon was not observed in the cat tapetum. These observations led to this comparative study on several morphological, histochemical and biochemical parameters on mature ferrets, dogs and cats including: (1) the number of center tapetum cell layers, (2) thickness of center tapetum, (3) presence of a microtubule-like structure in each tapetal rod, (4) presence of electron-dense cores in tapetal rods after prolonged fixation in glutaraldehyde, (5) retention of reflection or color of tapetum after prolonged glutaraldehyde fixation, (6) zygomatic bones of eye orbits, (7) zinc content in tapetum, (8) cysteine in the tapetum, (9) cysteine sulfinic acid decarboxylase in liver, (10) thickness of retina from center tapetum, (11) anterior view of skull configuration, and (12) lateral view of skull configuration (jaw and teeth). Among these 12 parameters, ferret and dog were similar in the first nine points; ferret and cat were similar to each other only in the last two points. There was no difference in retinal thickness among these three animals.  相似文献   

13.
Summary Gross examination showed a weaker reflection (less shining) of the tapetum lucidum of the Siamese cats compared with common cats. Toluidine blue sections revealed that many tapetal cells were weakly stained and giving vacuolated appearance under high magnification. Further examination with electron microscope showed that those weakly stained cells were filled with disrupted tapetal rods. In these affected cells, the arrangement of the tapetal rods was no longer regular. The membranes of the tapetal rods were either enlarged or disrupted. Some of them appeared to be myelin-like structures. The cores of the tapetal rods were either empty or filled with electron-dense materials which may be the remnant of the original cores. The severity of this type of abnormality or degeneration in the tapetum varied from lavers to layers. Those layers closer to the retina showed a greater number of cells with degeneration. Quantitative analysis of histochemical detection of zinc showed a significantly smaller amount of zinc in tapetal rods of the Siamese cats as compared with common cats. Less zinc and disruption of the regular arrangement of the tapetal rods may result in weaker reflection of light by Siamese cat tapetum. In four of the nine Siamese cats studied, this type of abnormality was observed. It suggests that it is a hereditary disorder of relatively high frequency.  相似文献   

14.
Very recently, the authors found levels of neurokinin (NK) A-like immunoreactivities in the human retina which were more than five times higher than those of substance P (SP). The present study aimed to find out how many of these immunoreactivities can be attributed to NKA and NKB and then the exact distribution pattern of both NKA and NKB was evaluated in the human retina and compared with that of SP. For this purpose, NKA-like immunoreactivities were characterized in the human retina by reversed phase HPLC followed by radioimmunoassay using the K12 antibody which recognizes both NKA and NKB. Furthermore, the retinae from both a 22- and 70-year-old donor were processed for double-immunofluorescence NKA/SP and NKB/SP. The results showed that NKA contributes to approximately two thirds and NKB to approximately one third of the immunoreactivities measured with the K12 antibody. NKA was found to be localized in sparse amacrine cells in the proximal inner nuclear layer, in displaced amacrine cells in the ganglion cell layer with processes ramifying in stratum 3 of the inner plexiform layer and also in sparse ganglion cells. By contrast, staining for NKB was only observed in ganglion cells and in the nerve fiber layer. Double-immunofluorescence revealed cellular colocalization of NKA with SP and also of NKB with SP. Thus, the levels of NKA and NKB are more than three and two times higher than those of SP, respectively. Whereas the distribution pattern of NKA is typical for neuropeptides, the localization of NKB exclusively in ganglion cells is atypical and unique.  相似文献   

15.
Summary Zinc cysteinate is shown histochemically and cytochemically in the tapetum lucidum of the cat. Heavy metal is demonstrated in the paraplasmic rods of the tapetal cells with a sulphide silver method whereas no such reaction can be found in the pigmented epithelium of the retina. These rods are also stained with silver methenamine indicating the presence of reducing groups which probably appeared after hydrolization of cysteine.  相似文献   

16.
The retina of a South American swamp eel, Synbranchus marmoratus (Synbranchidae), was studied by Golgi impregnation, light and electron microscopy. Its principal features include (1) the presence of a dense matrix, possibly a new type of tapetum lucidum, in the pigment epithelium, (2) a well developed photoreceptor layer containing large rods, single, double and triple cones, and (3) well developped inner nuclear and plexiform layers, with the exception of horizontal cells which are few and relatively small. These and other observations are discussed in relation to the photic environment and habits of this fish. The presence of microfilament bundles and two unusual features, microtubuleladen dense bodies and paracrystalline inclusions, in cone myoids are discussed in terms of their possible involvement in retinomotor responses.  相似文献   

17.
The choroidally located tapetum lucidum of the southern fiddler ray (Trygonorhina fasciata) has been examined by light and electron microscopy in both light- and dark-adaptation. In this species, the tapetum consists of a single layer of overlapping cells oriented at an angle of about 30 degrees to the incoming light. These are situated immediately external to the choriocapillaris. These tapetal cells alternate with and are separated from one another by melanocytes which have an inner extension that curves and intervenes between the tapetal cells and the choriocapillaris. The tapetal cells and the melanocytes are flattened cells with their widest dimension facing the retina. Internally the tapetal cells display a peripherally-located, vesicular nucleus with most of the cell organelles in a paranuclear location. The bulk of the cell is packed with regularly-spaced crystals reported to be guanine. The size and spacing of these reflective crystals is commensurate with constructive interference. In light-adaptation the small melanosomes of the melanocytes are widely dispersed and fill the portion of the cell intervening between the tapetal cells and the incoming light. This effectively occludes the tapetum as light is unable to reach the reflective material. In dark-adaptation the melanosomes withdraw from this location, exposing the tapetum to light and allowing it to act as a reflective layer. The retinal epithelium overlying the tapetal area is totally unpigmented so as not to interfere with the passage of light.  相似文献   

18.
Retinoids have many functions in the eye, including, perhaps, the visual guidance of ocular growth. Therefore, we identified where retinoid receptors, binding proteins, and biosynthetic enzymes are located in the ocular tissues of the chick as a step toward discovering where retinoids are generated and where they act. Using antibodies to interphotoreceptor retinoid binding protein (IRBP), cellular retinol binding protein (CRBP), cellular retinoic acid binding protein (CRABP), cellular retinaldehyde binding protein (CRALBP), retinaldehyde dehydrogenase (RALDH), and retinoic acid receptors (RAR and RXR), we localized these proteins to cells in the retina, retinal pigmented epithelium, choroid and sclera of the chick eye. IRBP was detected in the photoreceptor layer and pigmented epithelium; CRBP was in the pigmented epithelium; CRABP was in amacrine and bipolar cells in the retina; CRALBP was in Müller cells, pigmented epithelium, choroid, and fibrous sclera; RALDH was in retinal amacrine cells, pigmented epithelium, and choroid; RAR was in amacrine cells, choroid, and chondrocytes and fibroblasts in the sclera; and RXR was in amacrine and ganglion cells, bipolar cell nuclei, choroid, and chondrocytes. We also found that the growth-modulating toxins colchicine and quisqualate destroyed selectively different subsets of CRABP-containing amacrine cells. We conclude that the distribution of proteins involved in retinoid metabolism is consistent with a role of retinoids not only in phototransduction, but also in maintenance of cellular phenotype and visual guidance of ocular growth.  相似文献   

19.
We have previously shown that an antibody against neuron-specific enolase (NSE) selectively labels Müller cells (MCs) in the anuran retina (Wilhelm et al. 1992). In the present study the light- and electron-microscopic morphology of MCs and their distribution were described in the retina of the toad, Bufo marinus, using the above antibody. The somata of MCs were located in the proximal part of the inner nuclear layer and were interconnected with each other by their processes. The MCs were uniformly distributed across the retina with an average density of 1500 cells/mm2. Processes of MCs encircled the somata of photoreceptor cells isolating them from each other by glial sheath, except for those of the double cones. Some of the photoreceptor pedicles remained free of glial sheath. Electron-microscopic observations confirmed that MC processes provide an extensive scaffolding across the neural retina. At the outer border of the ganglion cell layer these processes formed a non-continuous sheath. The MC processes traversed through the ganglion cell layer and spread beneath it between the neuronal somata and the underlying optic axons. These processes formed a continuous inner limiting membrane separating the optic fibre layer from the vitreous tissue. Neither astrocytic nor oligodendrocytic elements were found in the optic fibre layer. The significance of the uniform MC distribution and the functional implications of the observed pattern of MC scaffolding are discussed.  相似文献   

20.
The aim of the study was to investigate the presence and distribution of PE-11, a peptide derived from chromogranin B, in the rat eye. For this purpose, newborn rats were injected with a single dosage of 50 mg/kg capsaicin subcutaneously under the neck fold and after three months, particular eye tissues were dissected and the concentration of PE-11-like immunoreactivity was determined by radioimmunoassay. Furthermore, PE-11-like immunoreactivities were characterized in an extract of the rat eye by reversed phase HPLC. Then, the distribution pattern of PE-11 was investigated in the rat eye and rat trigeminal ganglion by immunofluorescence. As a result, PE-11 was present in each tissue of the rat eye and capsaicin pretreatment led to a 88.05% (±7.07) and a 64.26% (±14.17) decrease of the levels of PE-11 in the cornea and choroid/sclera, respectively, and to a complete loss in the iris/ciliary body complex. Approximately 70% of immunoreactivities detected by the PE-11 antiserum have been found to represent authentic PE-11. Sparse nerve fibers were visualized in the corneal and uveal stroma, surrounding blood vessels at the limbus, ciliary body and choroid and in association with the dilator and sphincter muscle. Furthermore, immunoreactivity was present in the corneal endothelium. In the retina and optic nerve, glia was labeled. In the rat trigeminal ganglion, PE-11-immunoreactivity was visualized in small and medium sized ganglion cells with a diameter of up to 30 μm. In conclusion, there is unequivocal evidence that PE-11 is a constituent of capsaicin-sensitive sensory neurons innervating the rat eye and the distribution pattern is typically peptidergic in the peripheral innervation but in the retina completely atypical for neuropeptides and unique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号