首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
2.
3.
Pennacchio  G. E.  Santonja  F. E.  Neira  F. J.  Bregonzio  C.  Soaje  M. 《Neurochemical research》2022,47(5):1317-1328

Prenatal exposure to amphetamine induces changes in dopamine receptors in mesolimbic areas and alters locomotor response to amphetamine during adulthood. Sex differences have been reported in amphetamine-induced brain activity and stress sensitivity. We evaluated the effects of prenatal amphetamine exposure on locomotor activity, dopamine receptors and tyrosine hydroxylase mRNA expression in nucleus accumbens and caudate-putamen in response to amphetamine challenge in adult female and male rats. The role of estrogen in the response to restraint stress was analyzed in ovariectomized, prenatally amphetamine-exposed rats. Pregnant rats were treated with d-amphetamine during days 15–21 of gestation. Nucleus accumbens and caudate-putamen were processed for mRNA determination by real-time PCR. In nucleus accumbens, higher mRNA dopamine (D3) receptor expression was found in basal and d-amphetamine-challenge conditions in female than male, and prenatal amphetamine increased the difference. No sex differences were observed in caudate-putamen. Basal saline-treated females showed higher locomotor activity than males. Amphetamine challenge in prenatally amphetamine-exposed rats increased locomotor activity in males and reduced it in females. In nucleus accumbens, estrogen diminished mRNA D1, D2 and D3 receptor expression in basal, and D1 and D3 in ovariectomized stressed rats. Estrogen prevented the increase in tyrosine hydroxylase expression induced by stress in ovariectomized prenatally exposed rats. In conclusion, estrogen modulates mRNA levels of D1, D2 and D3 receptors and tyrosine hydroxylase expression in nucleus accumbens; prenatal amphetamine-exposure effects on D3 receptors and behavioral responses were gender dependent.

  相似文献   

4.
5.
Abstract: The ability of estrogen to modulate mesolimbic dopamine (DA) was examined using in vivo voltammetry. Estrogen priming (5 μg, 48 h) of ovariectomized (ovx) female rats resulted in a slight decrease in K+-stimulated DA release measured in the nucleus accumbens: this decrease was accompanied by a significant increase in both DA reuptake and DA clearance times. Following estrogen priming nomifensine, a potent inhibitor of the DA uptake carrier, was still able to potentiate K+-stimulated DA release and alter the time course of DA availability, but the response was attenuated compared with ovx controls. Direct infusion of 17β-estradiol hemisuccinate (17β-E, 20–50 pg) into the nucleus accumbens resulted in a biphasic potentiation of K+-stimulated release. An initial increase in release was observed 2 min after 17β-E infusion; this increase, although reduced by 15 min, was still significantly higher than control values. A subsequent potentiation was observed 60 min after the initial 17β-E infusion; this response remained for at least an additional 60 min. Nomifensine did not significantly alter K+-stimulated DA release following 17β-E infusion, but was still able to potentiate the total time DA was available extracellularly. These data suggest that the mesolimbic A10 DA neurons that terminate in the nucleus accumbens can be modulated in vivo by estrogen and that this modulation may be mediated by both genomic (long term) and nongenomic (short term) mechanisms.  相似文献   

6.
The nongenotoxic carcinogens phenobarbitone (PB) and methyl clofenapate (MCP) and the hepatomitogen pregnenolone 16α carbonitrile (PCN) are direct inducers of hepatic S -phase in rats, whereas the S -phase seen after partial hepatectomy is regenerative. We have investigated S -phase and immediate-early gene expression (c-myc and c-jun) in rat liver following these treatments to study the differences in gene expression associated with direct vs. regenerative responses. Both partial hepatectomy (one- and two-thirds) and mitogen treatment caused an increase in hepatic S -phase that peaked around 36 hours. Two-thirds partial hepatectomy caused the greatest increase in S -phase followed by one-third partial hepatectomy, then the mitogens PCN, MCP, and PB in that order. This order of response was also seen with c-jun and to a lesser degree with c-myc expression, suggesting that immediate-early gene expression might be linked not only to regenerative S -phase but also to direct mitogen-induced responses. © 1997 John Wiley & Sons, Inc. J Biochem Toxicol 12: 79–82, 1998  相似文献   

7.
Abstract: The specific opioid receptor antagonist naloxone attenuates the behavioral and neurochemical effects of amphetamine. Furthermore, the amphetamine-induced increase in locomotor activity is attenuated by intracisternally administered naltrindole, a selective δ-opioid receptor antagonist, but not by the irreversible μ-opioid receptor antagonist β-funaltrexamine. Therefore, this research was designed to determine if naltrindole would attenuate the neurochemical response to amphetamine as it did the behavioral response. In vivo microdialysis was used to monitor the change in extracellular concentrations of dopamine in awake rats. Naltrindole (3.0, 10, or 30 µg) or vehicle was given 15 min before and β-funaltrexamine (10 µg) or vehicle 24 h before the start of cumulative dosing, intracisternally in a 10-µl volume, while the rats were lightly anesthetized with methoxyflurane. Cumulative doses of subcutaneous d-amphetamine (0.0, 0.1, 0.4, 1.6, and 6.4 mg/kg) followed pretreatment injections at 30-min intervals. Dialysate samples were collected every 10 min from either the striatum or nucleus accumbens and analyzed for dopamine content by HPLC. Amphetamine dose-dependently increased dopamine content in both the striatum and nucleus accumbens, as reported previously. Naltrindole (3.0, 10, and 30 µg) significantly reduced the dopamine response to amphetamine in the striatum. In contrast, 30 µg of naltrindole did not modify the dopamine response to amphetamine in the nucleus accumbens. On the other hand, β-funaltrexamine (10 µg) had no effect in the striatum but significantly attenuated the amphetamine-induced increase in extracellular dopamine content in the nucleus accumbens. These data suggest that δ-opioid receptors play a relatively larger role than μ-opioid receptors in mediating the amphetamine-induced increase in extracellular dopamine content in the striatum, whereas μ-opioid receptors play a larger role in mediating these effects in the nucleus accumbens.  相似文献   

8.
9.
The hormone bombesin(BBS) and its mammalian equivalent gastrin-releasing peptide (GRP) actthrough specific GRP receptors (GRP-R) to affect multiple cellularfunctions in the gastrointestinal tract; the intracellular signalingpathways leading to these effects are not clearly defined. Previously,we demonstrated that the human gastric cancer SIIA possesses GRP-R andthat BBS stimulates activator protein-1 (AP-1) gene expression. Thepurpose of our present study was to determine the signaling pathwaysleading to AP-1 induction in SIIA cells. A rapid induction ofc-jun and jun-B gene expression was noted afterBBS treatment; this effect was blocked by specific GRP-R antagonists,indicating that BBS is acting through the GRP-R. The signaling pathwaysleading to increased AP-1 gene expression were delineated using phorbol12-myristate 13-acetate (PMA), which stimulates protein kinase C(PKC)-dependent pathways, by forskolin (FSK), which stimulates proteinkinase A (PKA)-dependent pathways, and by the use of various protein kinase inhibitors. Treatment with PMA stimulated AP-1 gene expression and DNA binding activity similar to the effects noted with BBS; FSKstimulated jun-B expression but produced only minimalincreases of c-jun mRNA and AP-1 binding activity.Pretreatment of SIIA cells with either H-7 or H-8 (primarily PKCinhibitors) inhibited the induction of c-jun andjun-B mRNAs in response to BBS, whereas H-89 (PKA inhibitor)exhibited only minimal effects. Pretreatment with tyrphostin-25, aprotein tyrosine kinase (PTK) inhibitor, attenuated the BBS-mediatedinduction of c-jun and jun-B, but the effect wasnot as pronounced as with H-7. Collectively, our results demonstratethat BBS acts through its receptor to produce a rapid induction of bothc-jun and jun-B mRNA and AP-1 DNA binding activity in the SIIA human gastric cancer. Moreover, this induction ofAP-1, in response to BBS, is mediated through both PKC- and PTK-dependent signal transduction pathways with only minimalinvolvement of PKA.

  相似文献   

10.
Summary 1. The amygdaloid complex is a key structure in mechanisms of fear and anxiety. Expression of the immediate-early gene c-fos has been reported in the central nucleus of the amygdala following various stressors, but the functional role of this phenomenon has remained unknown.2. c-fos expression was observed in the central nucleus when rats were subjected to a pharmacologically validated animal model of anxiety, the Vogel conflict test, but not after mere exposure to the test apparatus. Bilateral amygdala injection of a 15-mer phosphorothioate c-fos antisense oligodeoxynucleotide prior to testing blocked conflict-induced c-fos expression and had behavioral effects similar to those of established antianxiety drugs.3. Separate experiments determined that antisense treatment did not affect conflict behavior by acting on shock thresholds or drinking motivation.4. These findings provide evidence that neuronal activation and c-fos induction in the amygdala may be of importance for mechanisms of fear and anxiety.  相似文献   

11.
12.
Expression of c-fos and jun protooncogenes was analyzed in the ovine extraembryonic trophoblast from days 14–18 of gestation, using Northern and Western blotting and immunohistochemistry. This study was carried out in relation to the early implantation process and the expression of interferon-tau, which is secreted in large amounts for a few days before implantation. Our results demonstrated that c-fos, c-jun, and junB were differently expressed in the ovine trophoblast around the time of implantation. The c-fos mRNA and protein were detected at high levels prior to attachment and decreased thereafter, following the pattern of expression of interferon-tau, whereas c-jun expression was maintained at relatively high levels during the implantation process. By contrast, the levels of junB mRNA and protein decreased prior to attachment. Immunohistochemical studies indicated that JunB, like C-Fos and interferon tau, was no longer expressed in the trophoblastic cells which had established cellular contacts with the uterine epithelium. A striking finding in this study is the temporal correlation between the accumulation of c-Fos and c-Jun proteins and the expression of the interferon-tau (days 14 and 15 of gestation). We also showed by gel-retardation assays that an AP-1-like site present in the promoter of one interferon-tau gene was functional in vitro, as judged by its ability to bind day-15 trophoblast nuclear protein extracts. Nuclear proteins binding to this site had the characteristics of AP-1, as judged by the ability to be competed efficiently by a consensus TRE (12.0-tetradecanoyl phorbol 13-acetate-responsive element)-site oligonucleotide and by antibodies to c-Fos and Jun proteins. These results suggest that Fos and Jun could form regulatory complexes of interferon-tau expression and/or are regulated by common mechanisms which are still unknown. Mol Reprod Dev 46:127–137, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

13.
Del Arco A  Segovia G  Mora F 《Amino acids》2000,19(3-4):729-738
Summary. Using microdialysis, the effects of endogenous glutamate on extracellular concentrations of taurine in striatum and nucleus accumbens of the awake rat were investigated. The glutamate uptake inhibitor L-trans-pyrrolidine-2,4-dicarboxylic acid (PDC) was used to increase the extracellular concentration of glutamate. PDC (1, 2 and 4 mM) produced a dose-related increase of extracellular concentrations of glutamate and taurine in striatum and nucleus accumbens. Increases of extracellular taurine were significantly correlated with increases of extracellular glutamate, but not with PDC doses, which suggests that endogenous glutamate produced the observed increases of extracellular taurine in striatum and nucleus accumbens. The role of ionotropic glutamate receptors on the increases of taurine was also studied. In striatum, perfusion of the antagonists of NMDA and AMPA/kainate glutamate receptors attenuated the increases of extracellular taurine. AMPA/kainate, but not NMDA receptors, also reduced the increases of extracellular taurine in nucleus accumbens. These results suggest that glutamate-taurine interactions exist in striatum and nucleus accumbens of the awake rat. Received March 5, 1999/Accepted September 22, 1999  相似文献   

14.
Administration of estrogen to adult male rats increases the density of striatal dopamine receptors. The densities of the dopamine receptors in the nucleus accumbens and cortex are not altered, while the density of those in the hippocampus is decreased. In the pituitary the density, on a whole pituitary basis, is not changed. The increased density of striatal dopamine receptors normally observed after estrogen treatment is prevented by prior injection into the striatum of kainic acid, which destroys the intrinsic neurons in the striatum. In addition, the benzodiazepine receptors in the striatum, cortex, hippocampus, and cerebellum are not altered by estrogen treatment, showing the specificity of the estrogen treatment and suggesting that the effects of estrogen are not mediated through benzodiazepine receptors.  相似文献   

15.
Estrogen enhances dopamine-mediated behaviors, which make women and female rats more sensitive to the effects of the psychostimulant drugs, cocaine and amphetamine. How cocaine and amphetamine elicit more robust behavioral responses in females remains unclear, but studies have shown that the Regulator of G-protein Signaling 9-2 (RGS9-2) protein is an important modulator of the behavioral responses to these drugs. Previously, we reported that 17-beta estradiol reduced RGS9-2 mRNA expression in the shell of the nucleus accumbens, but not the core. The present studies were designed to further evaluate the involvement of RGS9-2 in estradiol enhancement of amphetamine-induced place preference behavior and to examine which estrogen receptor subtype mediates the effect of estradiol. Female Sprague-Dawley rats were ovariectomized and treated for 14 days with an inert vehicle or 17-beta estradiol (by Silastic implant or injection [80 microg/kg]). 17-beta-Estradiol-treated female rats had enhanced amphetamine-induced conditioned place preference behavior compared to vehicle-treated, ovariectomized female rats. In situ hybridization histochemistry and Western blotting identified an inverse relationship between RGS9-2 protein expression in the nucleus accumbens shell and the hormonal enhancement of amphetamine-induced place preference behavior. A similar relationship was not found between place preference behavior and RGS9-2 expression in the accumbens core. Moreover, treatment of ovariectomized female rats with the selective estrogen receptor-beta agonist, diarylpropionitrile (1 mg/kg), for 2 weeks also facilitated amphetamine-induced place preference behavior and selectively reduced nucleus accumbens shell RGS9-2 protein expression. These data provide insight into a potential mechanism by which estrogen and/or sex modulate mesoaccumbal dopamine receptor signaling and possibly, addictive behaviors.  相似文献   

16.
Amphetamine-, cocaine-, and morphine-induced c-fos expression patterns were examined following an injection protocol that has previously been shown to produce behavioral sensitization and enhanced dopamine release in the striatal complex. Drug-specific c-fos patterns were observed in both acute and sensitization injection paradigms. A sensitization pretreatment schedule did, however, alter the c-fos expression patterns induced by all the drugs in the caudate putamen, nucleus accumbens, and the cerebral cortex. In some striatal and cortical regions, there was an increase or recruitment of cells expressing c-fos whereas in others there was an apparent decrease or inhibition. The somatosensory cortex was one area where pretreatment with all three drugs increased c-fos expression. The results suggest that the neuronal networks that are modulated by systemic drug injections in the sensitized animal differ from those affected by the initial drug exposure; areas of overlap may indicate common ‘sensitization’ circuits. Special issue dedicated to Dr. Eric J. Simon.  相似文献   

17.
18:1/docosahexaenoic acid (DHA)-containing phosphatidylethanolamine (PE) enhanced cell differentiation and growth inhibition of HL-60 induced by dibutyryl cAMP (dbcAMP) in a dose-dependent manner. The combined treatment of 200 μM dbcAMP and 50 μM 18:1/DHA-PE increased the NBT reducing activity, which is as an indicator of cell differentiation, to more than 75% from 40% of cells treated with 200 μM dbcAMP alone. In HL-60 cells treated with 50 μM 18:1/DHA-PE and 200 μM dbcAMP for 24 h, the expression level of c-jun mRNA and c-Jun protein were remarkably elevated compared to cells treated with dbcAMP alone. In contrast, there was no difference in the expression levels of c-fos mRNA and c-Fos protein between the combination of 18:1/DHA-PE + dbcAMP or dbcAMP alone. On the other hand, the combine treatment of 18:1/DHA-PE and dbcAMP markedly reduced the expression level of c-myc oncogene during 48 h incubation. The decreases of c-myc mRNA by 18:1/DHA-PE and/or dbcAMP was correlated with growth inhibition effect. Thus, 18:1/DHA-PE might enhance dbcAMP-induced HL-60 cell differentiation and growth inhibition by regulation of c-jun and c-myc mRNA and their products.  相似文献   

18.
Binding of hepatocyte growth factor (HGF) to its receptor Met induces autophosphorylation and activation of the tyrosine kinase activity. In HGF-treated HepG2 cells, we studied: (i) the expression patterns of early(c-myc,c-jun,and c-fos) and delayed-early (ornithinedecarboxylase and c-met) response genes and (ii) thepossible involvement of protein kinase transducersin the control of the expression of c-metand of other genes eventually induced downstream. c-metand c-mycmRNAs peaked 1–2 h after HGF, while c-junandc-fosmRNAs slightly increased at 1 h. Ornithinedecarboxylase activity was induced earlier (4 h) thanthe mRNA (8–10 h). The transducers involved in HGF-triggered gene inductions were investigated using different protein kinase inhibitors: genistein for the receptor tyrosine kinase, herbimycin A for the nonreceptor tyrosine kinase (pp60c-src), wortmannin for phosphatidylinositol 3-kinase (PI3K) and H7 for protein kinase C (PKC). The similarity of responses to PKC inhibition led to suppose that c-mycand ornithinedecarboxylase mRNAs were induced sequentially along the same transduction pathway triggered by HGF. Ornithine decarboxylase activity seemed to be largely regulated by phosphorylation(s). The mRNA expression of c-junwas likely to undergo a negative regulation through a mechanism involving PI3K, while that ofc-metseemed to be almost independent from various protein kinases (PI3K, pp60c-src, and PKC).  相似文献   

19.
The aim of the present study was to investigate, using microdialysis, the effects of aging on the glutamate/dopamine/GABA interaction in striatum and nucleus accumbens of the awake rat. For that, the effects of an increase of the endogenous concentration of glutamate on the extracellular concentration of dopamine and GABA in striatum and nucleus accumbens of young (2-4 months), middle-aged (12-14 months), aged (27-33 months), and very aged (37 months) male Wistar rats were studied. Endogenous extracellular glutamate was selectively increased by perfusing the glutamate uptake inhibitor L-trans-pyrrolidine-3,4-dicarboxylic acid (PDC) through the microdialysis probe. In young rats, PDC (1, 2, and 4 mM) produced a dose-related increase of dialysate concentrations of glutamate in both striatum and nucleus accumbens. PDC also increased dialysate dopamine and GABA in both structures. These increases were significantly correlated with the increases of glutamate but not with the PDC dose used, which strongly suggests that the increases of dopamine and GABA were produced by glutamate. In striatum, there were no significant differences in the dopamine/glutamate and GABA/glutamate correlations between young and aged rats. This means that the effects of glutamate on dopamine and GABA do not change during aging. On the contrary, in the nucleus accumbens of aged rats, the increases of dopamine, when correlated with the increases of glutamate, were significantly lower than in young rats. Moreover, the ratio of dopamine to glutamate increases at maximal increases of glutamate was negatively correlated with aging. On the contrary, the ratio of GABA to glutamate increases in nucleus accumbens was positively correlated with aging, which suggests that the effects of endogenous glutamate on GABA tend to be higher in the nucleus accumbens of aged rats. The findings of this study suggest that aging changes the interaction between endogenous glutamate, dopamine, and GABA in nucleus accumbens, but not in striatum, of the awake rat.  相似文献   

20.
Spermidine/spermine N1-acetyltransferase (cSAT), a key enzyme in polyamine degradation, is induced by various hepatotoxins and liver tumor promoters. In this paper we demonstrate that physiological factors, such as cytokines, control cSAT expression in HepG2 human hepatocarcinoma cells. Hepatocyte growth factor (HGF) induced the cSAT mRNA precursor (3.5 kb) at 4 h. The mature form of mRNA (1.3 kb) increased 6–8-fold between 8 and 10 h, and remained elevated until 18 h. An increase in cSAT activity (2-fold) and high levels of N1-acetylspermidine were observed concomitantly. Interleukin-1β (IL-1β) enhanced cSAT expression (both mRNA and enzyme activity) similar to HGF, while tumor necrosis factor-α (TNFα) was less effective. This system also provides a useful means for examining the involvement of negative and positive changes of polyamines in the induction of cSAT and c-jun, a gene that participates in the control of cSAT expression. α-Difluoromethylornithine (DFMO) pretreatment, by lowering putrescine and spermidine in HGF- or IL-1β-treated cells, prevented the induction of cSAT. This effect was reversed by exogenous putrescine or spermidine. IL-1β induced c-jun mRNA more than HGF. DFMO prevented almost completely the enhancement of c-jun mRNA expression by IL-1β, and this effect was reversed by exogenous putrescine or spermidine. Therefore, we suggest that cSAT and c-jun expression is specifically regulated by polyamine-mediated mechanisms in IL-1β treated HepG2 cells. Since cSAT is inducibile by cytokines that control tumor metabolism and growth as well as tumor-host interaction, we hypothesize an involvement of cSAT in hepatoma growth. J. Cell. Physiol. 174:125–134, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号