首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stela Manova 《Morphology》2010,20(1):267-296
This article extends the empirical scope of the most recent approach to affix ordering, the Parsability Hypothesis (Hay 2001, 2002, 2003) or Complexity-Based Ordering (CBO) (Plag 2002; Hay and Plag 2004; Plag and Baayen 2009), to the inflecting-fusional morphological type, as represented by the South Slavic language Bulgarian. In order to account properly for the structure of the Bulgarian word, I distinguish between suffixes that are in the derivational word slot and suffixes that are in the inflectional word slot and show that inflectional suffix combinations are more easily parsable than derivational suffix combinations. Derivational suffixes participate in mirror-image combinations of AB–BA type and can be also attached recursively. The order of 12 out of the 22 derivational suffixes under scrutiny in this article is thus incompatible with CBO. With respect to recursiveness and productivity, the Bulgarian word exhibits three domains of suffixation (in order of increasing productivity): (1) a non-diminutive derivational domain, where a suffix may attach recursively on non-adjacent cycles; (2) a diminutive domain, where a suffix may attach recursively on adjacent cycles; and (3) an inflectional domain, where a suffix never attaches recursively. Overall, the results of this study conform to the last revision of the Parsability Hypothesis (Baayen et al. 2009); and if we see the derivational suffix slot and the inflectional suffix slot of the Bulgarian word as parallel to the non-native stratum and the Germanic stratum respectively in English word-formation, we can conclude that suffixes that are closer to the root tend to exhibit idiosyncrasies and appear less parsable in both languages.  相似文献   

2.
This paper is based on my lecture in a macroevolution course I team-teach with Profs. Daniel Brooks and David Evans at the University of Toronto. The lecture has undergone many revisions over the years as I grappled with problems discussing certain areas (e.g., rape as an adaptive strategy, gender “roles”). Eventually, I realized that the problem areas said more about my personal conflicts than they did about the science. This was one of those epiphany moments, a time when I recognized that I was less likely to accept hypotheses that contradicted the way I wanted the world to be and more likely to uncritically accept hypotheses that confirmed my world view. That epiphany, in turn, led me to realize that science is never separate from the personal biases/demons of its practitioners, especially when we are asking questions about the evolution of human behavior. That realization was not novel within the vast literature of sociology and philosophy. But it was novel for me. I was aware of discussions about personal biases clouding scientific interpretation; I just didn’t think it applied to me (I absorbed the philosophical discussions without making the connection to “my world”). So, on the heels of that epiphany, the following is a very personal take on the question of teaching sociobiology, based on where my journey, aided by my experience as an ethologist and phylogeneticist and colored by my own history, has taken me.  相似文献   

3.
Jensen PB 《Annals of botany》2005,95(3):569-570
Prof. P. Boysen Jensen Raadmandsgade 49 KøbenhavnN. 24 September 1955 Professor Masami Monsi Dear colleague Please allow me to reply in German. In this language, it iseasiest for me to find the right expressions. I would like to cordially thank you for your kind letter, andalso for the reprints, which I have read with great interest. Of course I am very pleased to hear that my Japanese colleagueswant to continue my investigations on productivity. I myselfhave  相似文献   

4.
Rochelle Lieber 《Morphology》2006,16(2):247-272
Selection—the tendency of derivational affixes to choose the category of their base—has most often been couched in terms of syntactic categories such as Noun, Verb, and Adjective. In recent years several theories have claimed, however, that roots are categoryless, and receive category only by virtue of being merged with functional projections of various sorts. This article examines three such theories—Distributed Morphology, Borer’s Exo-Skeletal model, and DiSciullo’s Asymmetrical Morphology, and determines that none of them can handle the phenomenon of affixal selection. We may, however, maintain the claim that roots lack syntactic category if we make use of a system of lexical semantic categorization that allows us to state selection in terms of semantic categories. It is shown that the framework of Lieber (2004) allows for such categorization, and moreover that semantic categorization permits us to make generalizations that are not available in a theory in which selection is purely on the basis of syntactic category. I am grateful to the faculty and students of the University of Patras, Greece for discussion and comments on an earlier version of this work. Thanks also to Sergio Scalise, Antonietta Bisetto, Chiara Melloni, and three anonymous reviewers for useful comments.  相似文献   

5.
Gaia Pigino studies the molecular mechanisms and principles of self-organization in cilia using 3D cryo-EM.

Gaia Pigino was only 3 yr old when she became fascinated with nature in the beautiful countryside of Siena, Italy, where she grew up. The neighbor’s daughter showed her a hen in the chicken coop, and they caught it in the act of laying an egg. Gaia remembers, “This was for me almost a shock, as my experience about eggs was that they come directly out of paper boxes!” Her father was also an important part of awakening Gaia’s curiosity for the amazing things in nature. He used to bring home the award-winning magazine Airone, the Italian equivalent of National Geographic. Gaia never missed an issue; even before learning to read, she could spend hours looking at the captivating photos of the wildlife. She wanted to understand what she was seeing, and maybe because of that, she was determined to do science.Gaia Pigino. Photo courtesy of Human Technopole.Gaia took her first “scientific” steps with Professor Fabio Bernini and Professor Claudio Leonzio at the University of Siena, where she studied bioindicators of soil contamination and detoxification strategies of soil arthropods as part of her PhD project. But it was later, when she joined the laboratory of Professor Pietro Lupetti and met Professor Joel Rosenbaum, a pioneer of cilia research, that Gaia discovered the world of 3D EM and felt her place was “inside a single cell.” She solidified her interest in the structure of protein complexes of cilia and flagella and boosted her passion for cryo-electron tomography (ET) in the laboratory of Professor Takashi Ishikawa, first at the ETH Zurich and then at the Paul Scherrer Institut in Switzerland. In 2012, Gaia started her own laboratory at the Max Planck Institute of Molecular Cell Biology and Genetics in Dresden, Germany, with the vision of creating a truly interdisciplinary laboratory. Her team combines techniques from different fields such as biophysics, cell biology, and structural biology to answer open questions in the cilia field. Gaia recently moved countries again—this time to take over the position of Associate Head of the Structural Biology Research Centre, at the Human Technopole, Milan, Italy.We reached out to Gaia to learn more about her scientific journey and future research directions.What interested you about cilia?The first thing that attracted me toward cilia and flagella were some EM micrographs, by Professor Romano Dallai in Siena, that showed the beautiful geometrical microtubular structures of sperm flagella. I was intrigued by the apparent perfection of these organelles that clearly showed me that a cell is a coordinated system of complex molecular machines, the mechanism of many of which we do not understand. Soon after, Professor Joel Rosenbaum introduced me to the bidirectional transport of components inside cilia, which, he explained to me, is required for both assembly and function of virtually all cilia and flagella, from the motile cilia in our lungs to the primary cilium in our kidneys. He called it intraflagellar transport (IFT) and compared it to a Paternoster elevator, where the individual cabins were what we now call IFT trains. I was completely fascinated by the IFT system, the structure, the function, the dynamics, and the mechanism of which were still largely unknown. Quickly, I realized that in addition to IFT, cilia represent a virtually infinite source of open biological questions waiting to be solved, from the mechanics and regulation of the beating to the sensory function of primary cilia, and their importance for human health.What are some of the scientific questions currently of interest in your laboratory?In the past few years, we have made substantial contributions to the current understanding of the structure and the mechanism of the IFT (1, 2, 3). Currently, we are investigating how the structure of IFT trains relates to their functions by looking, in cryo-electron tomography, at how anterograde trains transform into retrograde trains and at how different ciliary cargoes are loaded on the trains. Beside this more classical line of research, we are exploring other approaches to study IFT, for instance we have developed a method to reactivate IFT trains in vitro on reconstituted microtubules. We want to use this approach to investigate the behavior of IFT trains, and their motors, in experimentally controllable conditions, e.g., in the presence of only certain tubulin posttranslational modifications. We have also made interesting discoveries about the distribution of tubulin posttranslational modifications on the microtubule doublets of the axoneme and how this spatially defined tubulin code affects the function of different ciliary components. We hope we will be able to share these new “stories” with the structural and cell biology community very soon!What kind of approach do you bring to your work?I believe that the main reason for why science became an integral, and dominant, part of my life is because it provides infinite riddles and continuous challenges. I have always been curious about how things work in nature, but I quickly realized that learning from books didn’t satisfy me. My desire was to be at the frontline, to be among the ones that see things happening in front of their eyes, at the microscope, for the first time. I wanted to be among the ones that make the discoveries that students read about in textbooks. Thus, what I bring to my work is an endless desire of solving biological riddles, curiosity, creativity, determination, and energy, with which I hope to inspire the members of my team. My laboratory uses an interdisciplinary approach; we use whatever method, technique or technology is needed to reach our goal, from the most basic tool to the most sophisticated cryo-electron microscope. And if the method we need does not yet exist, we try to invent it.A young Gaia Pigino (3 yr old) the day she discovered how eggs are made. Photo courtesy of Giancarlo Pigino.Could you tell us a bit about the Structural Biology Research Centre at the Human Technopole (HT)?At the HT Structural Biology Centre, we are working to create a vibrant and interdisciplinary scientific environment that will attract molecular, structural, cell, and computational biologists from all over the world. We are creating fantastic facilities, including one of the most well equipped and advanced electron microscopy facilities in Europe—and likely the world—headed by Paolo Swuec. My team, together with the teams of my colleague Alessandro Vannini and the research group leaders Ana Casañal, Francesca Coscia, and Philipp Erdmann, already cover a vast range of competences and know-how from classical molecular and structural biology approaches, such as crystallography and protein biophysics, to cryo-CLEM, cryo-FIB SEM and cryo-ET, all of which allow us to address questions in cell biology. Our goal is to create a scientific infrastructure and culture that will enable biologists to obtain a continuum of structural and functional information across scales.What did you learn during your PhD and postdoc that helped prepare you for being a group leader? What were you unprepared for?I learned that everyday research is mostly made of failures, but that with the right amount of obsession, persistence, curiosity, and creativity, it is always possible to succeed and discover new things. Being given the freedom to develop your own ideas and your own project very early in your career is a treat; science is not only about having good ideas! One needs to follow up on these ideas with intense work and troubleshooting to make them reality. In addition, I realized that being fearless and attempting what is considered too difficult by others, despite challenges, can turn into a worthy learning experience. Also, how you present your work to the scientific community matters for swinging the odds of success in your favor. Different places might work in very different ways, and conducting good science does not only depend on you, but also on the possibilities given to you by your environment.What was I unprepared for?—I guess several things, but one comes immediately to mind: I underestimated how much being responsible not only for my own life and career, but also the career of students, postdocs, and others in the laboratory, would affect me personally.Structure of the 96-nm axonemal repeat reconstructed by cryo-ET and subtomogram averaging. Image courtesy of Gonzalo Alvarez Viar, Pigino Lab.What has been the biggest accomplishment in your career so far?This is a tricky question for me... I tend to look into the future more than celebrating the past. I fight to succeed in something, but as soon as I conquer it, I find it less of an achievement than the thing I could conquer next. Nevertheless, I am happy about the discoveries and the papers published together with my students and postdocs (1, 2, 3, 4, 5). I am extremely excited about the fact that after many years of work I am now leading an interdisciplinary laboratory, where we combine techniques from different fields. I am also happy that three times my husband and I were able to move from one world class academic institution to the another to start exciting and fitting jobs and could still live together in the same place. We worked hard for this, but we also got lucky.What has been the biggest challenge in your career so far?I studied French in school; I had almost no exposure to spoken English until the end of my PhD. To avoid having to show my English insufficiencies, I did hide beside the board of my poster at the first international conference I attended in 2004! It took me a while to overcome this barrier and feel confident to express my thoughts and ideas in English.What do you think you would be if you were not a scientist?I had been a good fencer during my youth. I was a member of the Italian National Team between ages 14 and 19 and saw quite a bit of the world, which was cool! When my sporting career failed, due to diabetes, I was torn between art and science. I guess that in a parallel universe, I am a wildlife photographer and a potter specialized in wood kiln firing. [Gaia confesses that she misses “the amazing and addictive adrenaline rush of a good fencing match!”]Any tips for a successful research career?Do not compare your performances to the ones of the people at your career stage; compare yourself with people that are already successful one level higher than you currently are at. For example, if you are a PhD student, ask yourself what in your current performance separates you from being a good postdoc—once a postdoc, what is missing to be a good PI.  相似文献   

6.
In the current paper, we examine the degree to which a 2-year-old Polishspeaking child exhibits productivity in her use of noun morphology. Using densely collected naturalistic data (five recording sessions per week) we assess the range of noun inflections she produces, the degree of productivity in her use of individual nouns, and the contextual productivity in her use of individual inflections. We adopt careful controls to allow comparison between the child’s noun use and that of her caregiver. Our data show that although the child uses the same range of noun inflections as her mother, she shows a much more limited productivity in her use of both individual nouns and individual inflections with respect to their contexts of use. We discuss the results in the light of two different theoretical approaches to inflectional morphology: the usage-based, schema approach and the rule-based approach.  相似文献   

7.
8.
9.
We examine the notion of ??(inflectional) periphrasis?? within the framework of Canonical Typology, and argue that the canonical approach allows us to define a logically coherent notion of periphrasis. We propose a set of canonical criteria for inflectional morphology and a set of canonical criteria for functional syntax, that is, syntactic constructions which include functional elements and which express grammatical features. We argue that canonical periphrasis is exemplified in our theoretical space of possibilities whenever a cell in a (canonically morphological) inflectional paradigm (??feature intersection??) is expressed by a multiword construction which respects the canonical properties of functional syntax. We compare our canonically-based approach with the approach of other authors, notably, Ackerman & Stump (2004), who argue for three sufficient conditions for a construction to be regarded as periphrastic: feature intersection, non-compositionality and distributed exponence. We argue that non-compositionality and distributed exponence, while sometimes diagnostic of periphrasis on a language-particular basis, do not constitute canonical properties of periphrasis. We also examine crucial but neglected syntactic aspects of periphrastic constructions: recursion of periphrases and headedness of periphrastic constructions. The approach we propose allows us to distinguish between constructions in actual languages which approximate the ideal of canonical periphrasis to various degrees without committing us to a categorical distinction between periphrastic and non-periphrastic constructions. At the same time we can capture the intuition that there is in some languages a distinct identifiable set of multiword constructions whose principal role is to realize grammatical features.  相似文献   

10.
Jochen Trommer 《Morphology》2013,23(2):269-289
Syncretism in inflectional paradigms corresponds often only partially to natural classes. In this paper, I propose Morpheme Generalization Grammars, a novel paradigm-based approach to this phenomenon where the morphosyntactic content of every affix corresponds to the maximal area of the paradigm where it regularly occurs, whereas additional Morpheme Generalization Rules selectively extend its paradigmatic coverage by deleting part of the featural content of affixes for specific paradigm cells. The resulting formalism maximizes the use of paradigmatic extension rules familiar from the Rules of Referral in Paradigm Function Morphology, but has also close parallels to Impoverishment rules in Distributed Morphology. By imposing inherent restrictions on the content of inflectional affixes, it substantially reduces the amount of analytic ambiguity in the modeling of inflectional morphology.  相似文献   

11.
I am tremendously honored to receive the 2012 Women in Cell Biology Junior Award. In this essay, I recount my career path over the past 15 years. Although many details are specific to my own experiences, I hope that some generalizations can be made to encourage more women to pursue independent scientific careers. Mine is a story of choosing a captivating question, making the most of your opportunities, and finding a balance with life outside the lab.It is a great honor to have been awarded the 2012 Women in Cell Biology Junior Award from the ASCB. Looking back at the 15 years I have spent doing research in cell biology, my overwhelming feeling is that it has been and still is a lot of fun. I am extremely fortunate to have a job that I truly enjoy and that gives me complete intellectual freedom. My lab choices over the years were motivated by scientific curiosity and enthusiasm for new environments and topics, rather than by career building. It is thus truly amazing to be rewarded for (rather a lot of) work enjoyed.  相似文献   

12.
Larry M. Hyman 《Morphology》2009,19(2):177-206
In this study I present a comparative and historical analysis of “frequentative” Bantu verb-stem reduplication, many of whose variants have been described for a number of Eastern and Southern Bantu languages. While some languages have full-stem compounding, where the stem consists of the verb root plus any and all suffixes, others restrict the reduplicant to two syllables. Two questions are addressed: (i) What was the original nature of reduplication in Proto-Bantu? (ii) What diachronic processes have led to the observed variation? I first consider evidence that the frequentative began as full-stem reduplication, which then became restricted either morphologically (by excluding inflectional and ultimately derivational suffixes) and/or phonologically (by imposing a bisyllabic maximum size constraint). I then turn to the opposite hypothesis and consider evidence and motivations for a conflicting tendency to rebuild full-stem reduplication from the partial reduplicant. I end by attempting to explain why the partial reduplicant is almost always preposed to the fuller base.  相似文献   

13.
Primates - In this paper, I summarize the major facets of my 50-year career as a primatologist. I briefly describe the aspects of my upbringing and early education that led me to the study of...  相似文献   

14.
Mind molecules     
Scientific styles vary tremendously. For me, research is largely about the unfettered pursuit of novel ideas and experiments that can test multiple ideas in a day, not a year, an approach that I learned from my mentor Julius "Julie" Axelrod. This focus on creative conceptualizations has been my métier since working in the summers during medical school at the National Institutes of Health, during my two years in the Axelrod laboratory, and throughout my forty-five years at Johns Hopkins University School of Medicine. Equally important has been the "high" that emerges from brainstorming with my students. Nothing can compare with the eureka moments when, together, we sense new insights and, better yet, when high-risk, high-payoff experiments succeed. Although I have studied many different questions over the years, a common theme emerges: simple biochemical approaches to understanding molecular messengers, usually small molecules. Equally important has been identifying, purifying, and cloning the messengers' relevant biosynthetic, degradative, or target proteins, at all times seeking potential therapeutic relevance in the form of drugs. In the interests of brevity, this Reflections article is highly selective, and, with a few exceptions, literature citations are only of findings of our laboratory that illustrate notable themes.  相似文献   

15.
German linking elements are sometimes classified as inflectional affixes, sometimes as derivational affixes, and in any case as morphological units with at least seven realisations (e.g. -s-, -es-, -(e)n-, -e-). This article seeks to show that linking elements are hybrid elements situated between morphology and phonology. On the one hand, they have a clear morphological status since they occur only within compounds (and before a very small set of suffixes) and support the listener in decoding them. On the other hand, they also have to be analysed on the phonological level, as will be shown in this article. Thus, they are marginal morphological units on the pathway to phonology (including prosodics). Although some alloforms can sometimes be considered former inflectional endings and in some cases even continue to demonstrate some inflectional behaviour (such as relatedness to gender and inflection class), they are on their way to becoming markers of ill-formed phonological words. In fact, linking elements, above all the linking -s-, which is extremely productive, help the listener decode compounds containing a bad phonological word as their first constituent, such as Geburt+s+tag ‘birthday’ or Religion+s+unterricht ‘religious education’. By marking the end of a first constituent that differs from an unmarked monopedal phonological word, the linking element aids the listener in correctly decoding and analysing the compound. German compounds are known for their length and complexity, both of which have increased over time—along with the occurrence of linking elements, especially -s-. Thus, a profound instance of language change can be observed in contemporary German, one indicating its typological shift from syllable language to word language.  相似文献   

16.
This paper outlines a neurocognitive approach to human language, focusing on inflectional morphology and grammatical function in English. Taking as a starting point the selective deficits for regular inflectional morphology of a group of non-fluent patients with left hemisphere damage, we argue for a core decompositional network linking left inferior frontal cortex with superior and middle temporal cortex, connected via the arcuate fasciculus. This network handles the processing of regularly inflected words (such as joined or treats), which are argued not to be stored as whole forms and which require morpho-phonological parsing in order to segment complex forms into stems and inflectional affixes. This parsing process operates early and automatically upon all potential inflected forms and is triggered by their surface phonological properties. The predictions of this model were confirmed in a further neuroimaging study, using event-related functional magnetic resonance imaging (fMRI), on unimpaired young adults. The salience of grammatical morphemes for the language system is highlighted by new research showing that similarly early and blind segmentation also operates for derivationally complex forms (such as darkness or rider). These findings are interpreted as evidence for a hidden decompositional substrate to human language processing and related to a functional architecture derived from non-human primate models.  相似文献   

17.
A career in science is a journey of wonder and discovery. To succeed in science requires curiosity, perseverance, a good dose of luck, and wise guidance from those who have taken the journey ahead of you. We also need to use our science skills to contribute to public debate on complex issues of the day.Being honored by the 2009 American Society for Cell Biology Women in Cell Biology (WICB) Senior Award has provided me with an opportunity to look back and examine the importance of mentorship and role models, both female and male, in my career. I am fundamentally a basic biologist, driven by my curiosity about how the world works. The question that has fascinated me for over 30 years is one that we can all relate to: How is it that complex, rational organisms such as ourselves can arise from a single cell, the size of a speck of dust?Over the years my lab colleagues and I have explored many aspects of that question, using mice as our model system, and we''ve discovered more and more about the hierarchy of cell decisions that begins when sperm hits egg. Along the way we have contributed to the development of techniques for manipulating the mouse genome, helped identify key signaling pathways that control blood vessel development, and isolated novel stem cells from the mouse blastocyst. But I always return to the fundamental questions of lineage development in the early embryo, attacking the problem with new tools as they become available.  相似文献   

18.
The transition from bench science to science policy is not always a smooth one, and my journey stretched as far as the unemployment line to the hallowed halls of the U.S. Capitol. While earning my doctorate in microbiology, I found myself more interested in my political activities than my experiments. Thus, my science policy career aspirations were born from merging my love of science with my interest in policy and politics. After receiving my doctorate, I accepted the Henry Luce Scholarship, which allowed me to live in South Korea for 1 year and delve into the field of science policy research. This introduction into science policy occurred at the South Korean think tank called the Science and Technology Policy Institute (STEPI). During that year, I used textbooks, colleagues, and hands-on research projects as my educational introduction into the social science of science and technology decision-making. However, upon returning to the United States during one of the worst job markets in nearly 80 years, securing a position in science policy proved to be very difficult, and I was unemployed for five months. Ultimately, it took more than a year from the end of the Luce Scholarship to obtain my next science policy position with the American Society for Microbiology Congressional Fellowship. This fellowship gave me the opportunity to work as the science and public health advisor to U.S. Senator Harry Reid. While there were significant challenges during my transition from the laboratory to science policy, those challenges made me tougher, more appreciative, and more prepared to move from working at the bench to working in the field of science policy.  相似文献   

19.
No one maps out their tenure as a postdoc anticipating a life-altering tragedy. But mental health crises of all kinds affect academic trainees and staff at similar or higher levels than the general public. While the mental health resources available to trainees are often set by healthcare providers, all levels of university leadership can work to remove material and immaterial obstacles that render such resources out of reach. I describe how access to care via telemedicine helped me following a loss in my family.

Over the years, my siblings and close friends have sought mental health resources like therapy, psychoanalysis, or psychiatry, so I loosely understood their benefits. When I was a PhD student I went to therapy briefly, but my counselor and I decided I could do without it. Since I started my postdoc, stress manifested in some new ways but I managed it well with my usual coping strategies and support. That changed one bright December morning in 2019 while I was preparing for our weekly lab meeting. My phone rang indicating a call from my father, whom I had spoken to the night before to celebrate the news of my nephew’s birth. But the voice on the phone was that of a family friend, telling me that my father had died overnight of an undiagnosed heart condition. In the moment I couldn’t even understand what was happening, saying over and over, “but I talked to him last night.” Soon I was sitting at home, dazed, on a string of tearful calls with family and friends.I often read words like “lifted” or “buoyed” to describe the stabilizing support of a network of loved ones. In my case this network was tethering me to reality over the next few weeks, preventing me from spinning off the Earth’s surface in a storm of sorrow and anxiety. The trauma also took a strange physical form and convinced me that I was suffering from a cardiac condition of my own. I had a panic attack during which I went to urgent care convinced my own heart was about to give way. Night after night these physical symptoms prevented me from sleeping.Graced by many loving connections with my siblings, my boyfriend, and close friends, I was actually weathering the process as well as one can. My PI gave me a firm directive to take as much time off as I needed. These were two key elements early in my healing process: a supportive network and an understanding advisor. The third was getting professional help, which I soon realized I needed. Even if I felt OK one day, I didn’t trust that I’d be OK the next. My grief formed too thick and too broad a landscape for me to navigate without help.Deciding to seek mental health resources and realizing that one needs them are often the hardest parts. Connecting with those resources once the decision has been made should be as simple as possible. I called a mental health number, and a triage counselor noted my therapy needs and verified my insurance. She asked what times and locations I preferred and then searched for an open appointment with a therapist who accepted my insurance. She also informed me that my coverage allowed 12 sessions with no copay, which was a pleasant surprise. The therapist who agreed to see me had very few openings, in part because this all happened in December—the holidays are especially busy for therapists. I was aiming for a time after normal working hours, or in the morning before I would head to lab, but none of those times were available. I didn’t like interrupting my workday to trot off to therapy. Taking a long break once a week meant I couldn’t run experiments or mentor my student during that time. But I made the sacrifice because my highest priority was getting the help I needed. There was no shortcut. Prioritizing mental health over lab work is tough for researchers, and I would never have accepted that kind of weekly disruption before my dad’s passing. But as a wonderful mentor of mine used to say, “You are the most valuable reagent in the lab.” She wasn’t describing mental health at the time, but the phrase now provided a guiding principle for my recovery. My first few sessions were on Tuesdays at 2:00 pm.The afternoon break turned out to be less disruptive than I had feared, because I had recently come back to the lab and was working short days. Had she asked, I would have told my PI where I was on Tuesday afternoons, but she wasn’t normally abreast of my daily schedule, so I didn’t seek her approval beforehand. Coordinating experiments with lab members thankfully wasn’t an issue because my work was largely independent; I simply let lab members know that I’d would be out of the lab for a bit on those days.The weeks went by, and the benefits of therapy accrued, helping me in large and small ways as I grieved. In mid-March of 2020, my therapist followed public health guidelines and asked all her clients to transition to remote sessions. While this was easy and sensible, it was still a little disappointing. Therapists are professional empaths, among many other things, and doing away with the physical presence and exchange with her was a blow. Yet therapy via video felt less odd simply because most of my social interactions were now virtual. Thankfully I didn’t have to move out of state for the lockdown (as did many students living in campus housing), which meant I could stay with the same therapist without any insurance complications.A few weeks into lockdown, I asked my therapist whether we had reached the limit of my 12 sessions without a copay. She replied with the good news that my insurance provider had waived all copays for mental health costs due to the pandemic. By that time therapy had generated a platform and an outlet to explore areas of my grief beyond the trauma of my father’s passing. Without needing to weigh the costs and benefits of this resource, I saw my therapist for another 4 months. I slowly took stock of my upbringing in an unconventional family and the loss of my mother when I was 25 and waded through a series of difficult decisions regarding my father’s estate. My father’s death changed me at a depth that is untouched by any amount of therapy or treatment. I’m not “healed”: I feel aged, more brittle, and a little ground down compared with who I had been. But therapy guided me through the worst of my grief, past the acute trauma to help me grasp what I was going through.Since the pandemic began, the number of people reporting increased stress or mental health issues has steadily increased (information on the impact of COVID-19 measures on mental health: https://www.apa.org/workforce/publications/depression-anxiety-coronavirus.pdf) (also see Mental health resources for trainees). I am fortunate to have affordable health insurance and the support from my lab and my department. The ease of finding my institution’s phone number for mental health resources was itself an important benefit. I share these pieces of my story with humility and understanding that not everyone enjoys the privileges that I do and the knowledge that everyone weathers life’s tragedies in their own way. It is not lost on me that some benefits stemmed from a policy change made by a private insurance provider. The provider made the right decision to waive copays, freeing me from having to choose between cost and my mental health needs. Yet had I been a student who had to move out of state due to COVID-19, access to mental health resources might have been disrupted or cut off. The need for reduced out-of-pocket costs for healthcare is known and needs no repetition, but the benefits of telehealth should be a low-cost component of health plans offered to students and staff (information on telehealth recommendations: https://www.apaservices.org/advocacy/news/congress-patient-telehealth?_ga=2.231013471.1538013741.1619359426-1228006513.1619359425 and http://www.apaservices.org/practice/advocacy/state/leadership/telebehavioral-health-policies.pdf?_ga=2.3385904.1067518037.1620039082-1228006513.1619359425.I’m not a cloud of emotions attached to a pair of good pipetting hands, I’m a human who is choosing to spend my time doing research. This observation is easy to repeat, by trainees as much as by faculty and administrators, but much harder to act upon in the midst of conflicting priorities. Consider my story a success: Because I could access the resources I needed, I was able to prioritize my mental health in the midst of my ambitious research program even during the lockdown.MEET THE AUTHORI have been a postdoc in Stefani Spranger’s lab at MIT for 4 years. Supported by an Irvington Fellowship from the Cancer Research Institute, my work examines the behaviors of dendritic cells in tumors that contribute to productive or unproductive anti-tumor immune responses. My doctoral work examined modes of multicellular invasion controlled by the actin cytoskeleton with Margaret Gardel at the University of Chicago. Earlier I was a lab technician with Thea Tlsty at the University of California, San Francisco, which followed a bachelor’s degree in biology at the University of California, Santa Cruz. I serve on the Committee for Students and Postdocs at the American Society for Cell Biology, where I chair the Outreach Subcommittee.  相似文献   

20.
Anthropologists working at ‘home’ or in realms of the familiar often share a considerable sense of connection with participants. In these contexts, the researcher's potential position as an ‘insider’ offers particular opportunities for utilising self as a key resource. Through my own fieldwork at ‘home’ in Melbourne as an ‘insider’ among Bosnian migrants, I was confronted with the challenge of using my self to understand others' experiences. In this paper I discuss the autoethnographic process and consider how its application enabled me to consciously understand my own experiences and utilise my experiential self to inform my study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号