首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The subalpine warbler Sylvia cantillans is formally considered a polytypic species, with four subspecies, European S. c. cantillans, albistriata, moltonii (recently resumed name: subalpina) and North African S. c. inornata. They are very similar in external morphology but clearly differ in their vocalizations. We evaluated their uncertain taxonomic status reconstructing the phylogenetic and phylogeographic relationships among populations sampled across major biogeographical areas in the European species’ range, using nucleotide sequences of the mitochondrial cytochrome b gene (mtDNA cyt b). A variety of phylogenetic analyses concordantly led to identify four major groups, only partially corresponding to the three European nominal subspecies. Phylogenetic trees showed a monophyletic group including all moltonii individuals, well diverged from all other taxa. Populations taxonomically assigned to cantillans were polyphyletic being split into two distinct clades (western and southern cantillans), with monophyletic albistriata closely related to southern cantillans. Individuals of moltonii and southern cantillans sampled in sites of sympatry in central Italy were assigned to their respective groups, with perfect concordance between phenotypic and genetic identifications. All findings indicate that moltonii should be ranked as a distinct species. Former subspecies cantillans is polyphyletic, but additional data are needed to define the taxonomic status of its two clades. Albistriata is phylogenetically related to southern cantillans and should be provisionally kept as a subspecies of S. cantillans. The cantillans complex thus provides an interesting case-study illustrating geographical structuring across small geographical ranges, and it exemplifies speciation through differentiation in allopatry leading to reproductive isolation after a secondary contact.  相似文献   

2.
Sequences of chloroplast gene rbcL and partial nuclear 26S rDNA were used to evaluate phylogenetic relationships of Asteropyrum. Four primary clades were recognized in Ranunculaceae, corresponding to subfamilies Hydrastidoideae, Coptidoideae, Thalictroideae, and Ranunculoideae. Our results place Asteropyrum in Ranunculoideae, sister to the tribe Actaeeae, which includes Beesia, Cimicifuga, and Eranthis. This is supported by chromosome characters, including chromosome size and basic number, and the stainability of prophase chromosomes and interphase nuclei. Our results do not support previous placements of Asteropyrum in either Coptidoideae or Thalictroideae. Considering its uniqueness in a few characters (e.g. simple peltate leaves, accumulating benzylisoquinoline alkaloids, vessel elements with only typical scalariform perforation plates), we recognize Asteropyrum as a monotypic tribe of Ranunculoideae, Asteropyreae W. T. Wang et C. Y. Chang.  相似文献   

3.
Although Echinosophora Nakai has been known as a monotypic and endemic genus of Papillionoideae of Fabaceae in Korea, it has been controversial whether it is distinct from or merged with Sophora. To resolve this matter, we conducted molecular phylogenetic analyses using nucleotide sequence data from the plastid rbcL gene and trnL (UAA) intron. Parsimony analysis, using a total of 53 taxa of the Papillionoideae (including E. koreensis [Nakai] Nakai and several species of Sophora and related genera) and using 20 taxa of Caesalpinioideae and Mimosoideae as outgroups, showed that, although the examined species of Sophora are split into two clades, E. koreensis formed a common clade with S. tomentosa (the type species of the genus) and S. flavescens. E. koreensis therefore should be treated as S. koreensis Nakai, and the generic name Echinosophora be eliminated. We also investigated the embryology of S. koreensis (=E. koreensis) and S. flavescens and found that no differences existed between them. Our molecular study, like other studies, strongly suggested that Sophora is polyphyletic. In this study we presented a summary of embryological features of the core Sophora for future critical comparison with related and unrelated taxa.  相似文献   

4.
The family Sordariaceae incorporates a number of fungi that are excellent model organisms for various biological, biochemical, ecological, genetic and evolutionary studies. To determine the evolutionary relationships within this group and their respective phylogenetic placements, multiple-gene sequences (partial nuclear 28S ribosomal DNA, nuclear ITS ribosomal DNA and partial nuclear β-tubulin) were analysed using maximum parsimony and Bayesian analyses. Analyses of different gene datasets were performed individually and then combined to generate phylogenies. We report that Sordariaceae, with the exclusion Apodus and Diplogelasinospora, is a monophyletic group. Apodus and Diplogelasinospora are related to Lasiosphaeriaceae. Multiple gene analyses suggest that the spore sheath is not a phylogenetically significant character to segregate Asordaria from Sordaria. Smooth-spored Sordaria species (including so-called Asordaria species) constitute a natural group. Asordaria is therefore congeneric with Sordaria. Anixiella species nested among Gelasinospora species, providing further evidence that non-ostiolate ascomata have evolved from ostiolate ascomata on several independent occasions. This study agrees with previous studies that show heterothallic Neurospora species to be monophyletic, but that homothallic ones may have a multiple origins. Although Gelasinospora and Neurospora are closely related and not resolved as monophyletic groups, there is insufficient evidence to place currently accepted Gelasinospora and Neurospora species into the same genus.  相似文献   

5.
The phylogenetic utility of chloroplast (atpB-rbcL, petD, rps16, trnL-F) and nuclear (ETS, ITS) DNA regions was investigated for the tribe Spermacoceae of the coffee family (Rubiaceae). ITS was, despite often raised cautions of its utility at higher taxonomic levels, shown to provide the highest number of parsimony informative characters, in partitioned Bayesian analyses it yielded the fewest trees in the 95% credible set, it resolved the highest proportion of well resolved clades, and was the most accurate region as measured by the partition metric and the proportion of correctly resolved clades (well supported clades retrieved from a combined analysis regarded as “true”). For Hedyotis, the nuclear 5S-NTS was shown to be potentially as useful as ITS, despite its shorter sequence length. The chloroplast region being the most phylogenetically informative was the petD group II intron.We also present a phylogeny of Spermacoceae based on a Bayesian analysis of the four chloroplast regions, ITS, and ETS combined. Spermacoceae are shown to be monophyletic. Clades supported by high posterior probabilities are discussed, especially in respect to the current generic classification. Notably, Oldenlandia is polyphyletic, the two subgenera of Kohautia are not sister taxa, and Hedyotis should be treated in a narrow sense to include only Asian species.  相似文献   

6.
To study the phylogeny and evolution of archiascomycetes, we determined the full sequence of the nuclear 18S rRNA gene from 14Taphrina species and 2Protomyces species, and the partial sequence ofSchizosaccharomyces japonicus var.japonicus. The sequences were phylogenetically analyzed by the neighbor-joining, maximum parsimony, and maximum-likelihood methods. We also looked at their principal phenotypic characters and genotypic character. Relationships within the Ascomycota are concordant with the previously published phylogenies inferred from 18S rDNA sequence divergence and divide the archi-, hemi-and euascomycetes into distinct major lineages. All the trees show that, within the archiascomycete lineage, 11 of the 14Taphrina species and the 2Protomyces species are monophyletic. A core groups ofTaphrina andProtomyces is always monophyletic. The evidence from molecular and phenotypic characters such as cell wall sugar composition, ubiquinone, cell wall ultrastructure, and mode of conidium ontogeny, strongly suggests that ‘T’. californica CBS 374.39, ‘T’. maculans CBS 427.69 and ‘T’. farlowii CBS 376.39 should be excluded from the archiascomycete lineage. ‘Taphrina’ farlowii CBS 376.39 groups withCandida albicans in the Saccharomycetales, whereas ‘T’. californica CBS 374.39 and ‘T’. maculans CBS 427.69 have a basidiomycete affinity and group with Tremellalean members in the hymenomycete lineage.Schizosaccharomyces is monophyletic. The strictly anamorphic yeastSaitoella complicata groups with the apothecial ascomyceteNeolecta vitellina rather than theTaphrina/Protomyces branch.  相似文献   

7.
The phylogeny of Auriculoscypha anacardiicola, an associate of scale insects in India, is investigated using subcellular characters and MP and Bayesian analyses of combined nuLSU-rDNA, nuSSU-rDNA and 5.8S rDNA sequence data. It has simple septa with a pulley-wheel-shaped pore plug, which is diagnostic of phytoparasitic members of the Pucciniomycetes, and hyphal wall break on branching, a phenomenon unique to some simple septate heterobasidiomycetes. The septal ultrastructure of A. anacardiicola is similar to that of the genus Septobasidium. The close relationship to Septobasidium is also confirmed by rDNA sequence analyses. The polyphyletic nature of the order Platygloeales, noted in earlier studies, is evident from the present molecular analysis as well. The placement of Auriculoscypha in the Platygloeales can no longer be justified and both ultrastructural and molecular evidence strongly support the placement of Auriculoscypha in the Septobasidiales.  相似文献   

8.
A new genus of a deep-sea ascomycete with one new species, Alisea longicolla, is described based on analyses of 18S and 28S rDNA sequences and morphological characters. A. longicolla was found together with Oceanitis scuticella, on small twigs and sugar cane debris trawled from the bottom of the Pacific Ocean off Vanuatu Islands. Molecular and morphological characters indicate that both fungi are members of Halosphaeriaceae. Within this family, O. scuticella is phylogenetically related to Ascosalsum and shares similar ascospore morphology and appendage ontogeny. The genus Ascosalsum is considered congeneric with Oceanitis and Ascosalsum cincinnatulum, Ascosalsum unicaudatum and Ascosalsum viscidulum are transferred to Oceanitis, an earlier generic name.  相似文献   

9.
The hypothesis that similar conidial morphologies in aquatic hyphomycetes are a result of convergent evolution was tested using molecular sequence data. Cladistic analyses were performed on partial sequences of 28S rDNA of seven species of Lemonniera, one species of Margaritispora and one species of Goniopila. Lemonniera has tetraradiate conidia with long arms, whereas Margaritispora and Goniopila have typically globose (isodiametric) conidia, with short conical protuberances in a stellate or quadrangular arrangement. Lemonniera and Margaritispora have phialidic conidiogenesis and both produce dark, minute sclerotia in culture whereas Goniopila has holoblastic conidiogenesis and does not produce sclerotia in culture. Goniopila produces a microconidial phialidic synanamorph in culture. All three genera have schizolytic conidial secession. Molecular analyses demonstrate that Lemonniera species are placed in two distinct clades: one within Leotiomycetes; the other within Pleosporales, Dothideomycetes. Margaritispora is placed with Lemonniera species within Leotiomycetes. Goniopila and Lemonniera pseudofloscula are placed within Dothideomycetes. No morphological character was entirely congruent with the molecular derived phylogeny. This suggests that for the group of species studied, conidial shape is not a reliable indicator of phylogeny but more likely the result of convergent evolution in response to the aquatic environment.  相似文献   

10.
Two sympatric species of Platygyra have been identified from Hong Kong waters: i.e., P. sinensis and P. pini. The former has been further subdivided into 4 morphotypes based on colony growth form as follows: classic, encrusting, hillocky, and long-valley. Taxonomic confusion raised by overlapping morphological variations and frequent sympatric occurrences, however, has posed problems in relation to Platygyra ecology and population dynamics. This study attempted to differentiate Platygyra pini and morphotypes of P. sinensis by both morphological and ITS1, 5.8S, and partial ITS2 ribosomal DNA sequence analysis. Morphological data based on 9 skeletal characters were subjected to multivariate analysis. No clear groupings were obtained using a multidimensional scaling plot. Most parsimony analysis was conducted using either the rDNA data set including ITS1, 5.8S, and partial ITS2 or the ITS1 region only. Maximum parsimony (MP) and neighbor-joining (NJ) trees obtained from both data sets, clustered samples of P. sinensis and P. pini into 2 clades. The interspecific Kimura 2-parameter sequence divergence value (k2) obtained by the former rDNA data set was 14.275 ± 0.507%, which is greater than the intraspecific values (1.239 ± 1.147% for P. sinensis and 0.469 ± 0.364% for P. pini), indicating that this marker of ITS1, 5.8S, and ITS2 contains substantially high levels of inherent diversity and is useful in resolving the problematic taxonomy of Platygyra.  相似文献   

11.
Phylogenetic relationships, limits of species, and genera within Lycoperdaceae, were inferred by use of ITS and LSU nu-rDNA sequence data. Lycoperdaceae was confirmed as monophyletic, and Mycenastrum corium as a sister taxon to the ingroup. Four major clades were identified and received weak to moderate support and correspond with the genera Lycoperdon, Bovista, Calvatia, and Disciseda. The Lycoperdon clade includes species from Lycoperdon, Vascellum, Morganella, Handkea, Bovistella, and Calvatia. The structure within the Lycoperdon clade is unresolved and several clades are more or less unsupported, which suggests treating the supported Lycoperdon clade as the genus Lycoperdon. L. nigrescens and L. caudatum occur on single branches and their phylogenetic positions could not be resolved. The phylogenetic analyses identified 31 species of Lycoperdon, 11 species of Bovista, six species of Calvatia, and two species of Disciseda. In Lycoperdon three new species were recognized. A new species closely related to B. limosa is identified and discussed. A classification of Lycoperdaceae is proposed based on the results of the phylogenetic analyses. Morphological characters of species within and among identified clades are discussed.  相似文献   

12.
Phylogenetic relationships among chain-forming Cochlodinium species, including the harmful red tide forming dinoflagellate Cochlodinium polykrikoides, were investigated using specimens collected from coastal waters of Canada, Hong Kong, Japan, Korea, Malaysia, México, Philippines, Puerto Rico, and USA. The phylogenetic tree inferred from partial (D1–D6 regions) large subunit ribosomal RNA gene (LSU rDNA) sequences clearly differentiated between C. polykrikoides and a recently described species, Cochlodinium fulvescens. Two samples collected from the Pacific coasts of North America (British Columbia, Canada and California, USA) having typical morphological characters of C. fulvescens such as the sulcus located in the intermediate region of the cingulum, were closely related to C. fulvescens from western Japan in the phylogenetic tree. Cochlodinium polykrikoides formed a monophyletic group positioned as a sister group of the C. fulvescens clade with three well-supported sub-clades. These three clades were composed of (1) East Asian, including specimens collected from Hong Kong, western Japan, and southern Korea, (2) Philippines, from Manila Bay, Philippines and Omura Bay, Japan, and (3) American/Malaysian, from the Atlantic coasts of USA, the Pacific coast of México, Puerto Rico, and Borneo Island, Malaysia. Each of these clades is considered to be a so-called “ribotype” representing the population inhabiting each region, which is distinguished based on ribosomal RNA gene sequences in the species despite similarities in their morphological characters.  相似文献   

13.
14.
Allium subgenus Melanocrommyum (Alliaceae) from Eurasia comprises about 150 mostly diploid species adapted to arid conditions. The group is taxonomically complicated with different and contradictory taxonomic treatments, and was thought to include a considerable number of hybrid species, as the taxa show an admixture of assumed morphological key characters. We studied the phylogeny of the subgenus, covering all existing taxonomic groups and their entire geographic distribution. We analyzed sequences of the nuclear rDNA internal transcribed spacer region (ITS) for multiple individuals of more than 100 species. Phylogenetic analyses of cloned and directly sequenced PCR products confirmed the monophyly of the subgenus, while most sections were either para- or polyphyletic. The splits of the large sections are supported by differences in the anatomy of flower nectaries. ITS data (i) demand a new treatment at sectional level, (ii) do not support the hypotheses of frequent gene flow among species, (iii) indicate that multiple rapid radiations occurred within different monophyletic groups of the subgenus, and (iv) detected separately evolving lineages within three morphologically clearly defined species (cryptic species). In two cases these lineages were close relatives, while in Allium darwasicum they fall in quite different clades in the phylogenetic tree. Fingerprint markers show that this result is not due to ongoing introgression of rDNA (ITS capture) but that genome-wide differences between both lineages exist. Thus, we report one of the rare cases in plants where morphologically indistinguishable diploid species occurring in mixed populations are non-sister cryptic species.  相似文献   

15.
The phylogenetic relationships within many clades of the Crassulaceae are still uncertain, therefore in this study attention was focused on the “Acre clade”, a group comprised of approximately 526 species in eight genera that include many Asian and Mediterranean species of Sedum and the majority of the American genera (Echeveria, Graptopetalum, Lenophyllum, Pachyphytum, Villadia, and Thompsonella). Parsimony and Bayesian analyses were conducted with 133 species based on nuclear (ETS, ITS) and chloroplast DNA regions (rpS16, matK). Our analyses retrieved four major clades within the Acre clade. Two of these were in a grade and corresponded to Asian species of Sedum, the rest corresponded to a European–Macaronesian group and to an American group. The American group included all taxa that were formerly placed in the Echeverioideae and the majority of the American Sedoideae. Our analyses support the monophyly of three genera – Lenophyllum, Thompsonella, and Pachyphytum; however, the relationships among Echeveria, Sedum and the various segregates of Sedum are largely unresolved. Our analyses represents the first broad phylogenetic framework for Acre clade, but further studies are necessary on the groups poorly represented here, such as the European and Asian species of Sedum and the Central and South American species of Echeveria.  相似文献   

16.
This study investigates the molecular phylogeny of seven lionfishes of the genera Dendrochirus and Pterois. MP, ML, and NJ phylogenetic analysis based on 964 bp of partial mitochondrial DNA sequences (cytochrome b and 16S rDNA) revealed two main clades: (1) “Pterois” clade (Pterois miles and Pterois volitans), and (2) “Pteropterus–Dendrochirus” clade (remainder of the sampled species). The position of Dendrochirus brachypterus either basal to the main clades or in the “Pteropterus–Dendrochirus” clade cannot be resolved. However, the molecular phylogeny did not support the current separation of the genera Pterois and Dendrochirus. The siblings P. miles and P. volitans are clearly separated and our results support the proposed allopatric or parapatric distribution in the Indian and Pacific Ocean. However, the present analysis cannot reveal if P. miles and P. volitans are separate species or two populations of a single species, because the observed separation in different clades can be either explained by speciation or lineage sorting. Molecular clock estimates for the siblings P. miles and P. volitans suggest a divergence time of 2.4–8.3 mya, which coincide with geological events that created vicariance between populations of the Indian and Pacific Ocean.  相似文献   

17.
Dinoflagellates of the genus Alexandrium are known producers of paralytic shellfish toxins. Species within the genus have similar phenotypes making morphological identification problematical. The use of Alexandrium rDNA sequence data is therefore increasing, resulting in the improved resolution of evolutionary relationships by phylogenetic inferences. However, the true branching pattern within Alexandrium remains unresolved, with minimal support shown for the main phylogentic branch. The aim of this study is to improve phylogenetic resolution via a concatenated rDNA approach with a broad sample of taxa, allowing inference of the evolutionary pattern between species and toxins. 27 Alexandrium strains from 10 species were tested with HPLC for PSP toxin presence and additionally sequenced for 18S, ITS1, 5.8S, ITS2 and 28S rDNA before being phylogenetically inferred together with all available orthologous sequences from NCBI. The resulting alignment is the largest to date for the genus, in terms of both inferred characters and taxa, thus allowing for the improved phylogenetic resolution of evolutionary patterns there in. No phylogenetic pattern between PSP producing and non-producing strains could be established, however the terminal tamarense complex was shown to produce more PSP analogues than basal clades. Additionally, we distinguish a high number of polymorphic regions between the two copies of A. fundyense rDNA, thus allowing us to demonstrate the presence of chimeric sequences within GenBank, as well as a possible over estimation of diversification within the tamarense complex.  相似文献   

18.
Hampl V  Cepicka I  Flegr J  Tachezy J  Kulda J 《Protist》2007,158(3):365-383
The family Monocercomonadidae (Parabasala, Trichomonadida) is characterized by the absence of a costa and in most species also of an undulating membrane; both of which are typical structures of trichomonadids. We have examined 25 isolates of Monocercomonadidae species by sequencing of the SSU rDNA and the ITS region and by light and transmission electron microscopy. The isolates formed three distinct phylogenetically unrelated clades: (1) Monocercomonas colubrorum, (2) Monocercomonas ruminantium together with a strain ATCC 50321 designated as Pseudotrichomonas keilini, and (3) Hexamastix. Twenty isolates of Monocercomonas colubrorum split into three clades with no host-specificity. The morphological differences among clades were insufficient to classify them as a separate species. Non-monophyly of the cattle commensal Monocercomonas ruminantium with the type species Monocercomonas colubrorum and absence of Pseudotrichomonas characters in the free-living strain ATCC 50321 led to their reclassification into a new genus (Honigbergiella gen. nov.). The close relationship of these strains indicates a recent switch between a free-living habit and endobiosis. Two strains of Hexamastix represented different species -Hexamastix kirbyi Honigberg 1955 and Hexamastix mitis sp. nov. Polyphyly of the Monocercomonadidae confirmed that the absence of a costa and an undulating membrane are not taxonomically significant characters and were probably secondarily lost in some or all clades. Our observations, however, indicated that other characters - infrakinetosomal body, comb-like structure, marginal lamella, and the type of axostyle - are fully consistent with the position of Monocercomonadidae species in the parabasalian tree and are, therefore, reasonable taxonomic characters.  相似文献   

19.
20.
The phylogenetic relationships of Chalara and allied taxa are studied based on ribosomal DAN sequences. Partial 28S rDNA and 18S rDNA regions from 26 strains were sequenced in this study. These and related sequences from GenBank were analyzed using parsimony and Bayesian analyses. Most of the Chalara species clustered in a strongly supported monophyletic lineage representing Helotiales. However, a few Chalara species appeared closely related to Xylariales. The phylogenetic significance of morphological characters observed in Chalara species are evaluated based on our sequence analyses. Conidial septation, conidial width and conidiophore pigmentation are thought to be indicative in understanding their evolutionary relationships. Sterile setae, which traditionally have been used to delimitate Chaetochalara from Chalara, are phylogenetically insignificant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号