首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
氨基糖苷类抗生素是一类广谱型抗细菌感染药物,其不断增加的细菌耐药性很大程度上限制了它的临床应用,研究和开发新型氨基糖苷类抗生素具有重要意义。将氨基糖苷类抗生素固定到玻璃片基上,制成糖芯片,再分别与荧光标记的RNAs和蛋白质杂交,通过分析杂交后的荧光信号强度检测它们之间的相互作用。结果显示,氨基糖苷类抗生素芯片可以特异性地与r RNA的A位点模拟物、I型核酶和蛋白酶结合。因此糖芯片技术不仅可以检测氨基糖苷类抗生素与r RNAs的特异性结合,而且可以应用于寻找新型RNA结合配体的研究,为快速鉴定和筛选可紧密结合RNA靶标且毒性较低的新型氨基糖苷类抗生素奠定了一定的基础。  相似文献   

2.
2-Deoxystreptamine (2-DOS) aminoglycoside antibiotics bind specifically to the central region of the 16S rRNA A site and interfere with protein synthesis. Recently, we have shown that the binding of 2-DOS aminoglycosides to an A site model RNA oligonucleotide is linked to the protonation of drug amino groups. Here, we extend these studies to define the number of amino groups involved as well as their identities. Specifically, we use pH-dependent 15N NMR spectroscopy to determine the pK(a) values of the amino groups in neomycin B, paromomycin I, and lividomycin A sulfate, with the resulting pK(a) values ranging from 6.92 to 9.51. For each drug, the 3-amino group was associated with the lowest pK(a), with this value being 6.92 in neomycin B, 7.07 in paromomycin I, and 7.24 in lividomycin A. In addition, we use buffer-dependent isothermal titration calorimetry (ITC) to determine the number of protons linked to the complexation of the three drugs with the A site model RNA oligomer at pH 5.5, 8.8, or 9.0. At pH 5.5, the binding of the three drugs to the host RNA is independent of drug protonation effects. By contrast, at pH 9.0, the RNA binding of paromomycin I and neomycin B is coupled to the uptake of 3.25 and 3.80 protons, respectively, with the RNA binding of lividomycin A at pH 8.8 being coupled to the uptake of 3.25 protons. A comparison of these values with the protonation states of the drugs predicted by our NMR-derived pK(a) values allows us to identify the specific drug amino groups whose protonation is linked to complexation with the host RNA. These determinations reveal that the binding of lividomycin A to the host RNA is coupled to the protonation of all five of its amino groups, with the RNA binding of paromomycin I and neomycin B being linked to the protonation of four and at least five amino groups, respectively. For paromomycin I, the protonation reactions involve the 1-, 3-, 2'-, and 2"'-amino groups, while, for neomycin B, the binding-linked protonation reactions involve at least the 1-, 3-, 2', 6'-, and 2"'-amino groups. Our results clearly identify drug protonation reactions as important thermodynamic participants in the specific binding of 2-DOS aminoglycosides to the A site of 16S rRNA.  相似文献   

3.
Aminoglycoside antibiotics have recently emerged as an intriguing family of RNA binding molecules and they became leading structures for the design of novel RNA ligands. The demystification of the aminoglycoside-RNA recognition phenomenon is required for the development of superior binders. To explore the existence of multiple binding sites in a large RNA molecule, we have synthesized covalently linked symmetrical and nonsymmetrical dimeric aminoglycosides. These unnatural derivatives were compared to their natural "monomeric" counterparts in their ability to inhibit the Tetrahymena ribozyme. The dimeric aminoglycosides inhibit ribozyme function 20 to 1.2 x 10(3) fold more effectively than their natural parent compounds. The inhibition curves of dimeric aminoglycosides have characteristic shapes suggesting the presence of at least two high affinity-binding sites within the ribozyme's three-dimensional fold. The interaction of a dimeric aminoglycoside with two complementary sites of the RNA molecule is proposed. This binding motif may have implications on the development of new drugs targeting pivotal RNA molecules of bacterial and viral pathogens.  相似文献   

4.
Blount KF  Tor Y 《Nucleic acids research》2003,31(19):5490-5500
To quantitatively understand the binding affinity and target selectivity of small-molecule RNA interactions, it is useful to have a rapid, highly reproducible binding assay that can be readily generalized to different RNA targets. To that end, an assay has been developed and validated for measuring the binding of low-molecular weight ligands to RNA by monitoring the fluorescence of a covalently incorporated fluorophore. As a test system, the fluorescence of a pyrene-derivatized HIV-1 TAR (transactivating response element) RNA was measured upon titration with aminoglycoside antibiotics. The binding isotherms thus obtained fit well with a model for a 1:1 interaction and yield an accurate measure of the equilibrium dissociation constant. Among a series of natural aminoglycosides, the binding affinity correlates with the number of amines, supporting an electrostatic compensation model for binding. Furthermore, the ionic strength dependence confirms that much of the binding energy is electrostatic. Finally, by measuring the binding affinity in the presence of nucleic acid competitors, we confirm that although aminoglycosides show high RNA to DNA selectivity, their selectivity among different RNA targets is sub- optimal. We conclude that this newly developed assay can be generalized to measure the binding affinities and selectivities of a variety of small molecules to a specific RNA target.  相似文献   

5.
Aminoglycoside antibiotics are used against severe bacterial infections. They bind to the bacterial ribosomal RNA and interfere with the translation process. However, bacteria produce aminoglycoside modifying enzymes (AME) to resist aminoglycoside actions. AMEs form a variable group and yet they specifically recognize and efficiently bind aminoglycosides, which are also diverse in terms of total net charge and the number of pseudo‐sugar rings. Here, we present the results of 25 molecular dynamics simulations of three AME representatives and aminoglycoside ribosomal RNA binding site, unliganded and complexed with an aminoglycoside, kanamycin A. A comparison of the aminoglycoside binding sites in these different receptors revealed that the enzymes efficiently mimic the nucleic acid environment of the ribosomal RNA binding cleft. Although internal dynamics of AMEs and their interaction patterns with aminoglycosides differ, the energetical analysis showed that the most favorable sites are virtually the same in the enzymes and RNA. The most copied interactions were of electrostatic nature, but stacking was also replicated in one AME:kanamycin complex. In addition, we found that some water‐mediated interactions were very stable in the simulations of the complexes. We show that our simulations reproduce well findings from NMR or X‐ray structural studies, as well as results from directed mutagenesis. The outcomes of our analyses provide new insight into aminoglycoside resistance mechanism that is related to the enzymatic modification of these drugs. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
Conformations of ribostamycin and isepamicin, aminoglycoside antibiotics, bound to an aminoglycoside antibiotic, 3′-phosphotransferase, were determined by transferred nuclear Overhauser effect spectroscopy and molecular modeling. Two major conformers of enzyme-bound ribostamycin, a neomycin-group aminoglyeoside were observed. The 3′- and 5″-OH groups (reactive hydroxyl groups) in the conformers are placed in approximate locations. One of the conformers is similar to the structure of paromomycin bound to a 27-nucleotide piece of ribosomal RNA that represents the A-site of the small ribosomal subunit, where rings A and C are in an orthogonal arrangement. Isepamicin, a kanamycin-group aminoglycoside antibiotic, also showed two major enzyme-bound conformations. Both conformations were similar to those observed for bound isepamicin in the active site of an aminoglycoside(6′)-acetyl transferase-Ii. Conformations of other RNA-bound kanamycin-group aminoglycosides were also similar to the enzyme-bound conformations of isepamicin. These observations suggest that aminoglycosides may adopt similar conformations when bound to RNA and protein targets. This may have significant implications in the design of enzyme inhibitors and/or antibiotics.  相似文献   

7.
Aminoglycoside antibiotics, including paromomycin, neomycin and gentamicin, target a region of highly conserved nucleotides in the decoding region aminoacyl-tRNA site (A site) of 16 S rRNA on the 30 S subunit. Change of a single nucleotide, A1408 to G, reduces the affinity of many aminoglycosides for the ribosome; G1408 distinguishes between prokaryotic and eukaryotic ribosomes. The structures of a prokaryotic decoding region A-site oligonucleotide free in solution and bound to the aminoglycosides paromomycin and gentamicin C1a were determined previously. Here, the structure of a eukaryotic decoding region A-site oligonucleotide bound to paromomycin has been determined using NMR spectroscopy and compared to the prokaryotic A-site-paromomycin structure. A conformational change in three adenosine residues of an internal loop, critical for high-affinity antibiotic binding, was observed in the prokaryotic RNA-paromomycin complex in comparison to its free form. This conformational change is not observed in the eukaryotic RNA-paromomycin complex, disrupting the binding pocket for ring I of the antibiotic. The lack of the conformational change supports footprinting and titration calorimetry data that demonstrate approximately 25-50-fold weaker binding of paromomycin to the eukaryotic decoding-site oligonucleotide. Neomycin, which is much less active against Escherichia coli ribosomes with an A1408G mutation, binds non-specifically to the oligonucleotide. These results suggest that eukaryotic ribosomal RNA has a shallow binding pocket for aminoglycosides, which accommodates only certain antibiotics.  相似文献   

8.
The 16S bacterial ribosomal A-site decoding rRNA region is thought to be the pharmacological target for the aminoglycoside antibiotics. The clinical utility of aminoglycosides could possibly depend on the preferential binding of these drugs to the prokaryotic A-site versus the corresponding A-site from eukaryotes. However, quantitative aminoglycoside binding experiments reported here on prokaryotic and eukaryotic A-site RNA constructs show that there is little in the way of differential binding affinities of aminoglycosides for the two targets. The largest difference in affinity is 4-fold in the case of neomycin, with the prokaryotic A-site construct exhibiting the higher binding affinity. Mutational studies revealed that decoding region constructs retaining elements of non-Watson-Crick (WC) base pairing, specifically bound aminoglycosides with affinities in the muM range. These studies are consistent with the idea that aminoglycoside antibiotics can specifically bind to RNA molecules as long as the latter have non-A form structural elements allowing access of aminoglycosides to the narrow major groove.  相似文献   

9.
Hermann T 《Biochimie》2002,84(9):869-875
The role of static structure and conformational flexibility in the recognition of RNA targets by small molecule ligands is discussed with emphasis on the natural aminoglycoside antibiotics and their promiscuity in RNA target binding. A brief overview is given of previous efforts to design simplified aminoglycoside derivatives targeted at the bacterial decoding site RNA.  相似文献   

10.
Structure of a eukaryotic decoding region A-site RNA   总被引:4,自引:0,他引:4  
The aminoglycoside antibiotics target a region of highly conserved nucleotides in the aminoacyl-tRNA site (A site) of 16 S RNA on the 30 S subunit. The structures of a prokaryotic decoding region A-site oligonucleotide free in solution and bound to the aminoglycosides paromomycin and gentamicin C1A have been determined. Here, the structure of a eukaryotic decoding region A-site oligonucleotide has been determined using homonuclear and heteronuclear NMR spectroscopy, and compared to the unbound prokaryotic rRNA structure. The two structures are similar, with a U1406-U1495 base-pair, a C1407-G1494 Watson-Crick base-pair, and a G1408-A1493 base-pair instead of the A1408-A1493 base-pair of the prokaryotic structure. The two structures differ in the orientation of the 1408 position with respect to A1493; G1408 is rotated toward the major groove, which is the binding pocket for aminoglycosides. The structures also differ in the stacking geometry of G1494 on A1493, which could have slight long-range conformational effects.  相似文献   

11.
Modulation of RNA function by aminoglycoside antibiotics   总被引:4,自引:0,他引:4  
One of the most important families of antibiotics are the aminoglycosides, including drugs such as neomycin B, paromomycin, gentamicin and streptomycin. With the discovery of the catalytic potential of RNA, these antibiotics became very popular due to their RNA-binding capacity. They serve for the analysis of RNA function as well as for the study of RNA as a potential therapeutic target. Improvements in RNA structure determination recently provided first insights into the decoding site of the ribosome at high resolution and how aminoglycosides might induce misreading of the genetic code. In addition to inhibiting prokaryotic translation, aminoglycosides inhibit several catalytic RNAs such as self-splicing group I introns, RNase P and small ribozymes in vitro. Furthermore, these antibiotics interfere with human immunodeficiency virus (HIV) replication by disrupting essential RNA-protein contacts. Most exciting is the potential of many RNA-binding antibiotics to stimulate RNA activities, conceiving small-molecule partners for the hypothesis of an ancient RNA world. SELEX (systematic evolution of ligands by exponential enrichment) has been used in this evolutionary game leading to small synthetic RNAs, whose NMR structures gave valuable information on how aminoglycosides interact with RNA, which could possibly be used in applied science.  相似文献   

12.
Aptamers can be highly specific for their targets, which implies precise molecular recognition between aptamer and target. However, as small polymers, their structures are more subject to environmental conditions than the more constrained longer RNAs such as those that constitute the ribosome. To understand the balance between structural and environmental factors in establishing ligand specificity of aptamers, we examined the RNA aptamer (NEO1A) previously reported as specific for neomycin-B. We show that NEO1A can recognize other aminoglycosides with similar affinities as for neomycin-B and its aminoglycoside specificity is strongly influenced by ionic strength and buffer composition. NMR and 2-aminopurine (2AP) fluorescence studies of the aptamer identified a flexible pentaloop and a stable binding pocket. Consistent with a well-structured binding pocket, docking analysis results correlated with experimental measures of the binding energy for most ligands. Steady state fluorescence studies of 2AP-substituted aptamers confirmed that A16 moves to a more solvent accessible position upon ligand binding while A14 moves to a less solvent accessible position, which is most likely a base stack. Analysis of binding affinities of NEO1A sequence variants showed that the base in position 16 interacts differently with each ligand and the interaction is a function of the buffer constituents. Our results show that the pentaloop provides NEO1A with the ability to adapt to external influences on its structure, with the critical base at position 16 adjusting to incorporate each ligand into a stable pocket by hydrophobic interactions and/or hydrogen bonds depending on the ligand and the ionic environment.  相似文献   

13.
The ribosomal decoding site is the target of aminoglycoside antibiotics that specifically recognize an internal loop RNA structure. We synthesized RNA-targeted 2,5-dideoxystreptamine-4-amides in which a sugar moiety in natural aminoglycosides is replaced by heterocycles.  相似文献   

14.
Electrostatic interactions often play key roles in the recognition of small molecules by nucleic acids. An example is aminoglycoside antibiotics, which by binding to ribosomal RNA (rRNA) affect bacterial protein synthesis. These antibiotics remain one of the few valid treatments against hospital-acquired infections by Gram-negative bacteria. It is necessary to understand the amplitude of electrostatic interactions between aminoglycosides and their rRNA targets to introduce aminoglycoside modifications that would enhance their binding or to design new scaffolds. Here, we calculated the electrostatic energy of interactions and its per-ring contributions between aminoglycosides and their primary rRNA binding site. We applied either the methodology based on the exact potential multipole moment (EPMM) or classical molecular mechanics force field single-point partial charges with Coulomb formula. For EPMM, we first reconstructed the aspherical electron density of 12 aminoglycoside-RNA complexes from the atomic parameters deposited in the University at Buffalo Databank. The University at Buffalo Databank concept assumes transferability of electron density between atoms in chemically equivalent vicinities and allows reconstruction of the electron densities from experimental structural data. From the electron density, we then calculated the electrostatic energy of interaction using EPMM. Finally, we compared the two approaches. The calculated electrostatic interaction energies between various aminoglycosides and their binding sites correlate with experimentally obtained binding free energies. Based on the calculated energetic contributions of water molecules mediating the interactions between the antibiotic and rRNA, we suggest possible modifications that could enhance aminoglycoside binding affinity.  相似文献   

15.
Cho J  Rando RR 《Nucleic acids research》2000,28(10):2158-2163
The translational initiator codon in thymidylate synthetase (TS) mRNA is located in a stem–loop structure with a CC bubble. TS is an important target for anticancer drugs. Aminoglycoside antibiotics have been shown to specifically bind to TS mRNA site 1 constructs and, furthermore, specific binding requires the non-duplex CC bubble region. It is shown here that DNA intercalating agents and DNA minor groove-binding drugs also bind to a TS mRNA site 1 construct. This binding is competitive with aminoglycosides, suggesting that the binding sites overlap. Hoechst 33258 binds with a dissociation constant of 60 nM, a value significantly lower than the ~1 µM values found for aminoglycosides. Footprinting and direct binding studies show that the CC bubble is important for binding of the Hoechst compound. However, the exact structure of the bubble is unimportant. Interestingly, mutations in regions adjacent to the bulge also affect binding. These studies point to the important role of non-duplex RNA structures in binding of the DNA minor groove binder Hoechst 33258.  相似文献   

16.
Vaiana AC  Westhof E  Auffinger P 《Biochimie》2006,88(8):1061-1073
Aminoglycoside antibiotics interfere with the translation mechanism by binding to the tRNA decoding site of the 16S ribosomal RNA. Crystallographic structures of aminoglycosides bound to A-site systems clarified many static aspects of RNA-ligand interactions. To gain some insight on the dynamic aspects of recognition phenomena, we conducted molecular dynamics simulations of the aminoglycoside paromomycin bound to a eubacterial ribosomal decoding A-site oligonucleotide. Results from 25 ns of simulation time revealed that: (i) the neamine part of the antibiotic represents the main anchor for binding, (ii) additional sugar rings provide limited and fragile contacts, (iii) long-resident water molecules present at the drug/RNA interface are involved in the recognition phenomena. The combination of MD simulations together with systematic structural information offers striking insights into the molecular recognition processes underlying RNA/aminoglycoside binding. Important methodological considerations related to the use of medium resolution starting structures and associated sampling problems are thoroughly discussed.  相似文献   

17.
Aminoglycoside antibiotics specifically interact with a variety of RNA sequences, and in particular with the decoding region of 16S ribosomal RNA in the aminoacyl tRNA acceptor site (A-site). Ring II of aminoglycosides (2-deoxystreptamine) is the most conserved element among aminoglycoside antibiotics that bind to the A-site. NMR structures of aminoglycoside-A-site RNA complexes suggested that the 2-deoxystreptamine core of aminoglycosides specifically recognizes (5')G-U(3') and potentially (5')G-G(3') or (5')U-G(3') steps in the major groove of RNA. Here, we show that isolated deoxystreptamine specifically interacts with G-U steps within the major groove of the A-site RNA. The bulge residue of A-site RNA is required to open the major groove for accommodation of deoxystreptamine. The chemical groups of deoxystreptamine presented to the RNA by the framework of the 6-carbon ring modulate RNA recognition.  相似文献   

18.
Since 1944, we have come a long way using aminoglycosides as antibiotics. Bacteria also have got them selected with hardier resistance mechanisms. Aminoglycosides are aminocyclitols that kill bacteria by inhibiting protein synthesis as they bind to the 16S rRNA and by disrupting the integrity of bacterial cell membrane. Aminoglycoside resistance mechanisms include: (a) the deactivation of aminoglycosides by N-acetylation, adenylylation or O-phosphorylation, (b) the reduction of the intracellular concentration of aminoglycosides by changes in outer membrane permeability, decreased inner membrane transport, active efflux, and drug trapping, (c) the alteration of the 30S ribosomal subunit target by mutation, and (d) methylation of the aminoglycoside binding site. There is an alarming increase in resistance outbreaks in hospital setting. Our review explores the molecular understanding of aminoglycoside action and resistance with an aim to minimize the spread of resistance.  相似文献   

19.
The off-target binding of aminoglycosides (AGs) to the A site of human mitochondrial ribosomes in addition to bacterial ribosomes causes ototoxicity and limits their potential as antibiotics. A fluorescence assay was employed to determine relative binding affinities of classical and improved AG compounds to synthetic RNA constructs representing the bacterial and mitochondrial A sites. Results compared well with previously reported in vitro translation assays with engineered ribosomes. Therefore, the minimal RNA motifs and fluorescence assay are shown here to be useful for assessing the selectivity of new compounds.  相似文献   

20.
Abstract The effect of about 20 aminoglycoside antibiotics comprising compounds with specific 70S or with 70S plus 80S activity on polypeptide synthesis and translational misreading by ribosomes from the archaebacterium Methanococcus vannielii was investigated. A clear structure-activity relationship was found: sensitivity was observed only to the class of 4,5-disubstituted deoxystreptamine compounds, with neomycin and paromomycin as the most active ones. The streptomycin class aminoglycosides were completely inactive whereas the gentamicin group compounds solely affected misreading and only at high concentrations. Viomycin, a specific inhibitor of the translocation reaction at the eubacterial ribosome which competes with binding of 2-deoxystreptamine aminoglycosides was inactive as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号