首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Congenital disorders of glycosylation (CDG) are being recognized as a rapidly growing and complex group of disorders. The pathophysiology results from depressed synthesis or remodeling of oligosaccharide moieties of glycoproteins. The ultimate result is the formation of abnormal glycoproteins affecting their structure and metabolic functions. The most thoroughly studied subset of CDG are the type I defects affecting N-glycosylation. Causal mutations occur in at least 12 different genes which encode primarily monosaccharide transferases necessary for N-glycosylation in the endoplasmic reticulum. The broad clinical presentation of these glycosylation defects challenge clinicians to test for these defects in a variety of clinical settings. The first described CDG was a phosphomannomutase deficiency (CDG-Ia). The original method used to define the glycosylation defect was isoelectric focusing (IEF) of transferrin. More recently, the use of other charge separation methods and electrospray-mass spectrometry (ESI-MS) has proven valuable in detecting type I CDG defects. By mass resolution, the under-glycosylation of transferrin is characterized as the total absence of one or both N-linked oligosaccharide. Beyond providing a new understanding of the structure of transferrin in type I CDG patients, it is adaptable to high throughput serum analysis. The use of transferrin under-glycosylation to detect the type I CDG provides limited insight into the specific site of the defect in oligosaccharide assembly since its value is constrained to observation of the final product of glycoprotein synthesis. New analytical targets and tools are converging with the clinical need for diagnosis of CDG. Defining the biosynthetic sites responsible for specific CDG phenotypes is in progress, and ten more type I defects have been putatively identified. This review discusses current methods, such as IEF and targeted proteomics using mass spectrometry, that are used routinely to test for type I CDG disorders, along with some newer approaches to define the defective synthetic sites responsible for the type I CDG defects. All diagnostic endeavors are followed by the quest for a reliable treatment. The isolated success of CDG-Ib treatment will be described with the hope that this may expand to other type I CDG disorders.  相似文献   

2.
The carbohydrate-deficient glycoprotein syndromes (CDGS) are a group of autosomal recessive multisystemic diseases characterized by defective glycosylation of N-glycans. This review describes recent findings on two patients with CDGS type II. In contrast to CDGS type I, the type II patients show a more severe psychomotor retardation, no peripheral neuropathy and a normal cerebellum. The CDGS type II serum transferrin isoelectric focusing pattern shows a large amount (95%) of disialotransferrin in which each of the two glycosylation sites is occupied by a truncated monosialo-monoantennary N-glycan. Fine structure analysis of this glycan suggested a defect in the Golgi enzyme UDP-GlcNAc:alpha-6-D-mannoside beta-1,2-N-acetylglucosaminyltransferase II (GnT II; EC 2.4.1.143) which catalyzes an essential step in the biosynthetic pathway leading from hybrid to complex N-glycans. GnT II activity is reduced by over 98% in fibroblast and mononuclear cell extracts from the CDGS type II patients. Direct sequencing of the GnT II coding region from the two patients identified two point mutations in the catalytic domain of GnT II, S290F (TCC to TTC) and H262R (CAC to CGC). Either of these mutations inactivates the enzyme and probably also causes reduced expression. The CDG syndromes and other congenital defects in glycan synthesis as well as studies of null mutations in the mouse provide strong evidence that the glycan moieties of glycoproteins play essential roles in the normal development and physiology of mammals and probably of all multicellular organisms.  相似文献   

3.
Faid V  Chirat F  Seta N  Foulquier F  Morelle W 《Proteomics》2007,7(11):1800-1813
Glycosylation of proteins is a very complex process which involves numerous factors such as enzymes or transporters. A defect in one of these factors in glycan biosynthetic pathways leads to dramatic disorders named congenital disorders of glycosylation (CDG). CDG can affect the biosynthesis of not only protein N-glycans but also O-glycans. The structural analysis of glycans on serum glycoproteins is essential to solving the defect. For this reason, we propose in this paper a strategy for the simultaneous characterization of both N- and O-glycan chains isolated from the serum glycoproteins. The serum (20 microL) is used for the characterization of N-glycans which are released by enzymatic digestion with PNGase F. O-glycans are chemically released by reductive elimination from whole serum glycoproteins using 10 microL of the serum. Using strategies based on mass spectrometric analysis, the structures of N- and O-glycan chains are defined. These strategies were applied on the sera from one patient with CDG type IIa, and one patient with a mild form of congenital disorder of glycosylation type II (CDG-II) that is caused by a deficiency in the Cog1 subunit of the complex.  相似文献   

4.
Untreated classic galactosemia (galactose-1-phosphate uridyltransferase [GALT] deficiency) is known as a secondary congenital disorders of glycosylation (CDG) characterized by galactose deficiency of glycoproteins and glycolipids (processing defect or CDG-II). The mechanism of this undergalactosylation has not been established. Here we show that in untreated galactosemia, there is also a partial deficiency of whole glycans of serum transferrin associated with increased fucosylation and branching as seen in genetic glycosylation assembly defects (CDG-I). Thus galactosemia seems to be a secondary "dual" CDG causing a processing as well as an assembly N-glycosylation defect. We also demonstrated that in galactosemia patients, transferrin N-glycan biosynthesis is restored upon dietary treatment.  相似文献   

5.
Type I congenital disorders of glycosylation (CDG I) are diseases presenting multisystemic lesions including central and peripheral nervous system deficits. The disease is characterized by under-glycosylated serum glycoproteins and is caused by mutations in genes encoding proteins involved in the stepwise assembly of dolichol-oligosaccharide used for protein N-glycosylation. We report that fibroblasts from a type I CDG patient, born of consanguineous parents, are deficient in their capacity to add the eighth mannose residue onto the lipid-linked oligosaccharide precursor. We have characterized cDNA corresponding to the human ortholog of the yeast gene ALG12 that encodes the dolichyl-P-Man:Man(7)GlcNAc(2)-PP-dolichyl alpha6-mannosyltransferase that is thought to accomplish this reaction, and we show that the patient is homozygous for a point mutation (T571G) that causes an amino acid substitution (F142V) in a conserved region of the protein. As the pathological phenotype of the fibroblasts of the patient was largely normalized upon transduction with the wild type gene, we demonstrate that the F142V substitution is the underlying cause of this new CDG, which we suggest be called CDG Ig. Finally, we show that the fibroblasts of the patient are capable of the direct transfer of Man(7)GlcNAc(2) from dolichol onto protein and that this N-linked structure can be glucosylated by UDP-glucose:glycoprotein glucosyltransferase in the endoplasmic reticulum.  相似文献   

6.
Carbohydrate-deficient glycoprotein syndrome type I (CDG I) is characterized clinically by severe nervous system involvement and biochemically by defects in the carbohydrate residues in a number of serum glycoproteins. The CDG1 gene was recently localized by us to a 13-cM interval in chromosome region 16p13. In this study 44 CDG I families from nine countries were analyzed with available markers in a region ranging from marker D16S495 to D16S497, and haplotype and linkage disequilibrium analyses were performed. One specific haplotype was found to be markedly overrepresented in CDG I patients from a geographically distinct region in Scandinavia, strongly indicating that CDG I families in this region share the same ancestral CDG1 mutation. Furthermore, analysis of the extent of the common haplotype in these families indicates that the CDG1 gene is located in the region defined by markers D16S513–AFMa284wd5–D16S768–D16S406–D16S502. The critical CDG1 region, in strong linkage disequilibrium with markers AFMa284wd5, D16S768, and D16S406, thus constitutes less than 1 Mb of DNA and less than 1 cM in the very distal part of the CDG1 region defined by us previously.  相似文献   

7.
The carbohydrate-deficient glycoprotein syndromes are a recentlydelineated group of genetic, multisystemic diseases with majornervous system involvement. Three distinct variants have beenrecognized and there are probably many more. They are characterizedby a deficiency of the carbohydrate moiety of secretory glycoproteins,lysosomal enzymes and probably also membranous glycoproteins.The biochemical changes are most readily observed in serum transferrinand the diagnosis is usually made by isoelectric focusing ofthis glycoprotein. The deficiency of sialic acid, in particular,results in a cathodal shift and hence the presence of abnormalisoforms of transferrin with higher isoelectric points thannormal. The basis defects are probably in the processing andsynthesis of the carbohydrate moiety of glycoproteins; thereis indirect evidence for a deficiency of asparagine-N-linkedoligosaccharide transfer in type I (endoplasmic reticulum defect)and for a deficiency of N-acetylglucosaminyltransferase II intype II (Golgi defect). From the large number of patients detectedin only a few years, it is expected that these diseases willbecome as important as, for example, the lysosomal, peroxisomalor mitochondrial disorders. Their study will undoubtedly yielda wealth of new information on the function of glycoproteinsand of their carbohydrate moiety. endoplasmic reticulum glycoproteins glycosylation Golgi sialotransferrins  相似文献   

8.
The biochemical hallmark of Congenital Disorders of Glycosylation (CDG) including type Ia is a defective N-glycosylation of serum glycoproteins. Hypoglycosylated forms of alpha1-antitrypsin have been detected by Western blot in serum from CDG Ia patients. In contrast we were not able to detect hypoglycosylation in alpha1-antitrypsin synthesized by fibroblasts, keratinocytes, enterocytes, and leukocytes. Similarly no hypoglycosylation was detectable in a membrane-associated N-linked glycoprotein, the facilitative glucose transporter GLUT-1 and also in serum immunoglobulin G isolated from sera of CDG Ia patients. We conclude that the phenotypic expression of CDG Ia is tissue-dependent.  相似文献   

9.
目的:对不同胃癌前病变中医证型和血清胃蛋白酶原(pepsinogen,PG)、胃泌素-17(gastrin-17,G-17)、癌胚抗原(carcinoembryonic antigen,CEA)和叶酸水平变化的关系进行探讨,为胃癌前病变的诊断提供一定的依据。方法:以80例胃癌前病变(precancerous lesion of gastric cancer,PLGC)患者研究组,80例健康者为对照组,对研究组患者进行中医临床辨证分型,对两组研究对象的血清PG、G-17、CEA和叶酸进行测定比较。结果:研究组PLGC患者中医证型分布不均匀,差异显著(P<0.05),由多到少依次为湿热蕴胃并/兼脾胃虚寒证>胃络瘀阻并/兼气阴两虚证>痰湿中阻并/兼脾胃气虚证>肝胃气滞并/兼气阴两虚证>肝胃气滞并/兼脾胃虚寒证>湿热蕴胃并/兼胃阴不足证。PLGC不同中医证型患者血清PG I和PG II水平差异显著(P<0.05);与对照组比较,各证型PG I水平均显著降低,PG II水平均显著升高(P<0.05)。且湿热蕴胃并/兼脾胃虚寒证和胃络瘀阻并/兼气阴两虚证的PG I水平显著低于其他证候,血清PG II水平显著高于其他(P<0.05)。与对照组比较,研究组不同证候的G-17、CEA水平显著升高,叶酸水平显著降低(P<0.05);观察组中湿热蕴胃并/兼脾胃虚寒证和胃络瘀阻并/兼气阴两虚证G-17、CEA显著高于其他证候,叶酸水平显著低于其他证候(P<0.05)。结论:胃癌前病变不同中医证型血清PG、G-17、CEA和叶酸存在明显差异。  相似文献   

10.
The carbohydrate moiety of immunoglobulin G (IgG) from patients with carbohydrate-deficient glycoprotein (CDG) syndrome was analyzed. Galactosyl species were reduced in the reversed-phase chromatogram of pyridylaminated oligosaccharides as compared with child controls, and the hypogalactosylation was remarkable in a patient with typical manifestations. The abnormality was verified by composition analysis of the hydrolyzed monosaccharides from this patient, but the contents of mannose andN-acetylglucosamine were not reduced. Hypogalactosylation is the characteristic feature of IgG molecules in CDG syndrome, in contrast to the oligosaccharide deficiency of transferrin from the same patients. These findings suggest that the molecular phenotypes of different glycoproteins from patients with CDG syndrome are diverse.  相似文献   

11.
Congenital disorder of glycosylation (CDG), formerly representing a group of diseases due to defects in the biosynthetic pathway of protein N-glycosylation, currently covers a wide range of disorders affecting glycoconjugates. Since its first application to serum transferrin from a CDG patient with phosphomannomutase-2 deficiency in 1992, mass spectrometry (MS) has been playing a key role in identification and characterization of glycosylation defects affecting glycoproteins. MS of native transferrin detects a lack of glycans characteristic to the classical CDG-I type of molecular abnormality. Electrospray ionization MS of native transferrin, especially, allows glycoforms to be analyzed precisely but requires basic knowledge regarding deconvolution of multiply-charged ions which may generate ghost signals upon transformation into a singly-charged form. MS of glycopeptides from tryptic digestion of transferrin delineates site-specific glycoforms and reveals a delicate balance of donor/acceptor substrates or the conformational effect of nascent proteins in cells. Matrix-assisted laser desorption ionization MS of apolipoprotein C-III is a simple method of elucidating the profiles of mucin-type core 1 O-glycans including site occupancy and glycoforms. In this technological review, the principle and pitfalls of MS for CDG are discussed and mass spectra of various types of CDG are presented.  相似文献   

12.
As carbohydrate-deficient glycoprotein syndromes (CDGS) are multisystemic disorders with impaired central nervous function in nearly all cases, we tested isoforms of beta-trace protein (beta TP), a 'brain-type' glycosylated protein in cerebrospinal fluid (CSF) of nine patients with the characteristic CDGS type I pattern of serum transferrin. Whereas the serum transferrin pattern did not discriminate between the various subtypes of CDGS type I (CDGS type Ia, type Ic, and patients with unknown defect), beta TP isoforms of CDGS type Ia patients differed from that of the other CDGS type I patients. The percentage of abnormal beta TP isoforms correlated with the severity of the neurological symptoms. Furthermore, two patients are described, who illustrate that abnormal protein N-glycosylation can occur restricted to either the 'peripheral' serum or the central nervous system compartment. This is the first report presenting evidence for an N-glycosylation defect restricted to the brain. Testing beta TP isoforms is a useful tool to detect protein N-glycosylation disorders in the central nervous system.  相似文献   

13.
Defects of lipid-linked oligosaccharide assembly lead to alterations of N-linked glycosylation known as "type I congenital disorders of glycosylation" (CDG). Dysfunctions along this stepwise assembly pathway are characterized by intracellular accumulation of intermediate lipid-linked oligosaccharides, the detection of which contributes to the identification of underlying enzymatic defects. Using this approach, we have found, in a patient with CDG, a deficiency of the ALG9 alpha 1,2 mannosyltransferase enzyme, which causes an accumulation of lipid-linked-GlcNAc(2)Man(6) and -GlcNAc(2)Man(8) structures, which was paralleled by the transfer of incomplete oligosaccharides precursors to protein. A homozygous point-mutation 1567G-->A (amino acid substitution E523K) was detected in the ALG9 gene. The functional homology between the human ALG9 and Saccharomyces cerevisiae ALG9, as well as the deleterious effect of the E523K mutation detected in the patient with CDG, were confirmed by a yeast complementation assay lacking the ALG9 gene. The ALG9 defect found in the patient with CDG--who presented with developmental delay, hypotonia, seizures, and hepatomegaly--shows that efficient lipid-linked oligosaccharide synthesis is required for proper human development and physiology. The ALG9 defect presented here defines a novel form of CDG named "CDG-IL."  相似文献   

14.
Single proteins, when analyzed with 2-D-PAGE, often show multiple spots due to PTMs. In gels of human body fluids, the spot patterns facilitate the assignment and identification of the proteins. We analyzed serums from patients with congenital disorders of glycosylation (CDG) in which glycoproteins are strongly impacted and exhibit highly distinguishable spot patterns compared to healthy controls. We detected a typical protein pattern for alpha1-acid glycoprotein (AGP) and transferrin (Trf) that are markers for CDG. AGP contains five glycosylation sites which results in a complex microheterogeneity of the glycoprotein. On the other hand, in Trf, a glycoprotein with only two glycosylation sites, mainly biantennary complex-type-N-linked glycans are bound. We used 2-D-PAGE, MALDI-TOF-MS, and ESI-MS for the analysis of these glycoproteins and their corresponding glycans. In AGP, the heterogenic glycosylation of the different glycosylation sites is responsible for the complex spot pattern. In contrast to AGP, the protein spots of Trf cannot be explained by glycosylation. We found strong evidence that oxidation of cysteine is responsible for the spot pattern. This study contradicts the commonly accepted assumption that the multiple protein spots of Trf observed in 2-D-PAGE are due, as in AGP, to the glycosylation of the protein.  相似文献   

15.
Carbohydrate-deficient-glycoprotein syndrome type 1 (CDG1; also known as "Jaeken syndrome") is an autosomal recessive disorder characterized by defective glycosylation. Most patients show a deficiency of phosphomannomutase (PMM), the enzyme that converts mannose 6-phosphate to mannose 1-phosphate in the synthesis of GDP-mannose. The disease is linked to chromosome 16p13, and mutations have recently been identified in the PMM2 gene in CDG1 patients with a PMM deficiency (CDG1A). The availability of the genomic sequences of PMM2 allowed us to screen for mutations in 56 CDG1 patients from different geographic origins. By SSCP analysis and by sequencing, we identified 23 different missense mutations and 1 single-base-pair deletion. In total, mutations were found on 99% of the disease chromosomes in CDG1A patients. The R141H substitution is present on 43 of the 112 disease alleles. However, this mutation was never observed in the homozygous state, suggesting that homozygosity for these alterations is incompatible with life. On the other hand, patients were found homozygous for the D65Y and F119L mutations, which must therefore be mild mutations. One particular genotype, R141H/D188G, which is prevalent in Belgium and the Netherlands, is associated with a severe phenotype and a high mortality. Apart from this, there is only a limited relation between the genotype and the clinical phenotype.  相似文献   

16.
Congenital disorders of glycosylation (CDGs) are a family of N-linked glycosylation defects associated with severe clinical manifestations. In CDG type-I, deficiency of lipid-linked oligosaccharide assembly leads to the underoccupancy of N-glycosylation sites on glycoproteins. Although the level of residual glycosylation activity is known to correlate with the clinical phenotype linked to individual CDG mutations, it is not known whether the degree of N-glycosylation site occupancy by itself correlates with the severity of the disease. To quantify the extent of underglycosylation in healthy control and in CDG samples, we developed a quantitative method of N-glycosylation site occupancy based on multiple reaction monitoring LC-MS/MS. Using isotopically labeled standard peptides, we directly quantified the level of N-glycosylation site occupancy on selected serum proteins. In healthy control samples, we determined 98-100% occupancy for all N-glycosylation sites of transferrin and alpha(1)-antitrypsin. In CDG type-I samples, we observed a reduction in N-glycosylation site occupancy that correlated with the severity of the disease. In addition, we noticed a selective underglycosylation of N-glycosylation sites, indicating preferential glycosylation of acceptor sequons of a given glycoprotein. In transferrin, a preferred occupancy for the first N-glycosylation site was observed, and a decreasing preference for the first, third, and second N-glycosylation sites was observed in alpha(1)-antitrypsin. This multiple reaction monitoring LC-MS/MS method can be extended to multiple glycoproteins, thereby enabling a glycoproteomics survey of N-glycosylation site occupancies in biological samples.  相似文献   

17.
Congenital disorders of glycosylation (CDG) constitute a group of diseases affecting N-linked glycosylation pathways. The classical type of CDG, now called CDG-I, results from deficiencies in the early glycosylation pathway for biosynthesis of lipid-linked oligosaccharide and its transfer to proteins in endoplasmic reticulum, while the CDG-II diseases are caused by defects in the subsequent processing steps. Mass spectrometry (MS) produced a milestone in CDG research, by localizing the CDG-I defect to the early glycosylation pathway in 1992. Currently, MS of transferrin, either by electrospray ionization or matrix-assisted laser desorption/ionization, plays the central role in laboratory screening of CDG-I. On the other hand, the glycopeptide analysis recently developed for site-specific glycans of glycoproteins allows detailed glycan analysis in a high throughput manner and will solve problems in CDG-II diagnosis. These techniques will facilitate studying CDG, a field now expanding to O-linked glycosylation and to acquired as well as inherited conditions that can affect protein glycosylation.  相似文献   

18.
19.
This study applied yolk immunoglobulins immunoaffinity separation and MALDI-TOF MS for clinical proteomics of congenital disorders of glycosylation (CDG) and secondary glycosylation disorders [galactosemia and hereditary fructose intolerance (HFI)]. Serum transferrin (Tf) and alpha1-antitrypsin (AAT) that are markers for CDG, were purified sequentially to obtain high-quality MALDI mass spectra to differentiate single glycoforms of the native intact glycoproteins. The procedure was found feasible for the investigation of protein macroheterogeneity due to glycosylation site underoccupancy then ensuing the characterization of patients with CDG group I (N-glycan assembly disorders). Following PNGase F digestion of the purified glycoprotein, the characterization of protein microheterogeneity by N-glycan MS analysis was performed in a patient with CDG group II (processing disorders). CDG-Ia patients showed a typical profile of underglycosylation where the fully glycosylated glycoforms are always the most abundant present in plasma with lesser amounts of partially and unglycosylated glycoforms in this order. Galactosemia and HFI are potentially fatal diseases, which benefit from early diagnosis and prompt therapeutic intervention. In symptomatic patients with galactosemia and in those with HFI, MALDI MS of Tf and AAT depicts a hypoglycosylation profile with a significant increase of underglycosylated glycoforms that reverses by dietary treatment, representing a clue for diagnosis and treatment monitoring.  相似文献   

20.
Phosphomannose isomerase (PMI) deficiency or congenital disorders of glycosylation type Ib (CDG Ib) is the only CDG that can be treated. Despite variable severity leading to dramatically different prognoses, clinical presentation is relatively homogeneous with liver and digestive features associated with hyperinsulinism and inconstant thrombosis. A feature of CDG is that coagulation factors are decreased. In our experience, mannose given orally at least 4 times per day not only transformed lethal CDG Ib into a treatable disease, but also improved the general condition and digestive symptoms of all reported patients but one. Liver disease, however, still persisted. Heparin can be used as an alternative to mannose in certain patients, particularly in the treatment of enteropathy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号