首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
JAVIER GONZALEZ  MICHAEL WINK 《Ibis》2010,152(4):761-774
Nucleotide sequence data (cytochrome b) and ISSR genomic fingerprints were used to analyse the genetic variation and population differentiation in Thorn‐tailed Rayadito, a widespread Patagonian forest bird. We included samples from eight populations of Thorn‐tailed Rayadito covering most of the distribution range of the species: from fragmented patches of Olivillo forest in northern Chile to Isla Navarino forests in the extreme south of South America. Low levels of genetic diversity were found among populations, with a large within‐population molecular variance indicating high levels of gene flow. The multivariate and cluster analyses based on ISSR markers show that the subspecies bullocki (from Mocha Island) differs significantly from all other populations. The subspecies fulva (Chiloé Island) shows less differentiation than bullocki, sharing several alleles with continental populations. Bayesian analyses suggest that the Mocha Island population contributes most to the total genetic diversity observed in the species. Mantel tests revealed no significant correlation between geographical distance and pairwise genetic distance and cytochrome b sequence analyses failed to detect differentiation among subspecies. Mocha Island might have been a palaeorefuge and this population may have diversified by genetic drift after the last glacial maximum. There is also the possibility of a postglacial colonization of the Thorn‐tailed Rayadito from an austral palaeorefugium, supporting a multiple refugia hypothesis. This study illustrates the usefulness of the rarely used ISSR genomic fingerprint method in avian phylogeography.  相似文献   

2.
Characterizing the current population structure of potentially invasive species provides a critical context for identifying source populations and for understanding why invasions are successful. Non‐native populations inevitably lose genetic diversity during initial colonization events, but subsequent admixture among independently introduced lineages may increase both genetic variation and adaptive potential. Here we characterize the population structure of the gypsy moth (Lymantria dispar Linnaeus), one of the world's most destructive forest pests. Native to Eurasia and recently introduced to North America, the current distribution of gypsy moth includes forests throughout the temperate region of the northern hemisphere. Analyses of microsatellite loci and mitochondrial DNA sequences for 1738 individuals identified four genetic clusters within L. dispar. Three of these clusters correspond to the three named subspecies; North American populations represent a distinct fourth cluster, presumably a consequence of the population bottleneck and allele frequency change that accompanied introduction. We find no evidence that admixture has been an important catalyst of the successful invasion and range expansion in North America. However, we do find evidence of ongoing hybridization between subspecies and increased genetic variation in gypsy moth populations from Eastern Asia, populations that now pose a threat of further human‐mediated introductions. Finally, we show that current patterns of variation can be explained in terms of climate and habitat changes during the Pleistocene, a time when temperate forests expanded and contracted. Deeply diverged matrilines in Europe imply that gypsy moths have been there for a long time and are not recent arrivals from Asia.  相似文献   

3.
Aim Many tropical tree species have poorly delimited taxonomic boundaries and contain undescribed or cryptic species. We examined the genetic structure of a species complex in the tree genus Carapa in the Neotropics in order to evaluate age, geographic patterns of diversity and evolutionary relationships, and to quantify levels of introgression among currently recognized species. Location Lowland moist forests in the Guiana Shield, the Central and Western Amazon Basin, Chocó and Central America. Methods Genetic structure was analysed using seven nuclear simple sequence repeats (nuSSR), five chloroplast SSRs (cpSSR), and two chloroplast DNA (cpDNA) intergenic sequences (trnH–psbA and trnC–ycf6). Bayesian clustering analysis of the SSR data was used to infer population genetic structure and to assign 324 samples to their most likely genetic cluster. Bayesian coalescence analyses were performed on the two cpDNA markers to estimate evolutionary relationships and divergence times. Results Two genetic clusters (nu_guianensis and nu_surinamensis) were detected, which correspond to the Neotropical species C. guianensis (sensu latu) and C. surinamensis. Fourteen cpDNA haplotypes clustered into six haplogroups distributed between the two nuclear genetic clusters. Divergence between the haplogroups was initiated in the Miocene, with some haplotype structure evolving as recently as the Pleistocene. The absence of complete lineage sorting between the nuclear and chloroplast genomes and the presence of hybrid individuals suggest that interspecific reproductive barriers are incomplete. NuSSR diversity was highest in C. guianensis and, within C. guianensis, cpDNA diversity was highest in the Central and Western Amazon Basin. Regional genetic differentiation was strong but did not conform to an isolation‐by‐distance process or exhibit a phylogeographical signal. Main conclusions The biogeographical history of Neotropical Carapa appears to have been influenced by events that took place during the Neogene. Our results point to an Amazonian centre of origin and diversification of Neotropical Carapa, with subsequent migration to the Pacific coast of South America and Central America. Gene flow apparently occurs among species, and introgression events are supported by inconsistencies between chloroplast and nuclear lineage sorting. The absence of phylogeographical structure may be a result of the ineffectiveness of geographical barriers among populations and of reproductive isolation mechanisms among incipient and cryptic species in this species complex.  相似文献   

4.
Aim We investigated the phylogeography, geographical variation in leaf morphology, freezing tolerance and climatic niches of two widespread evergreen sister oak species (Quercus) in the series Virentes. Location South‐eastern USA, Mexico and Central America. Methods Nuclear microsatellites and non‐recombining nuclear and chloroplast DNA sequences were obtained from trees throughout the range of two sister lineages of live oaks, represented by Quercus virginiana in the temperate zone and Q. oleoides in the tropics. Divergence times were estimated for the two major geographical and genetic breaks. Differentiation in leaf morphology, analysed from field specimens, was compared with the molecular data. Freezing sensitivities of Q. virginiana and Q. oleoides populations were assessed in common garden experiments. Results The geographical break between Q. virginiana and Q. oleoides was associated with strong genetic differentiation of possible early Pleistocene origin and with differentiation in freezing sensitivity, climatic envelopes and leaf morphology. A second important geographical and genetic break within Q. oleoides between Costa Rica and the rest of Central America showed a mid‐Pleistocene divergence time and no differentiation in leaf morphology. Population genetic differentiation was greater but genetic diversity was lower within the temperate Q. virginiana than within the tropical Q. oleoides, and genetic breaks largely corresponded to breaks in leaf morphology. Main conclusions Two major breaks, one between Mexico and the USA at the boundary of the two species, and a more recent one within Q. oleoides between Honduras and Costa Rica, implicate climatic changes as potential causes. The latter break may be associated with the formation of the Cordillera de Guanacaste, which was followed by seasonal changes in precipitation. In the former case, an ‘out of the tropics’ scenario is hypothesized, in which the acquisition of freezing tolerance in Q. virginiana permitted colonization of and expansion in the temperate zone, while differences in climatic tolerances between the species limited secondary contact. More pronounced Pleistocene changes in climate and sea level in the south‐eastern USA relative to coastal Mexico and Central America may explain the greater population differentiation within temperate Q. virginiana and greater genetic diversity in tropical Q. oleoides. These patterns are predicted to hold for other taxa that span temperate and tropical zones of North and Central America.  相似文献   

5.
To determine a hypothetical scenario that accounts for the diversification of the two species of the genus Antilophia, we conducted multilocus molecular comparisons and species distribution modeling for the two taxa, which have distinct male plumage coloration patterns and allopatric geographic distributions, despite the high degree of genetic similarity indicated by recent studies. Three mitochondrial and three nuclear fragments were analyzed. The results indicate clear differences in the genetic diversity of the two species, but with ample sharing of haplotypes in all the markers analyzed, reflecting the absence of reciprocal monophyly, presumably due to the relatively recent and still incomplete separation of the two species. The paleoclimatic distribution models, together with the observed genetic profile indicate a recent process of divergence by geographic isolation in the ancestral populations of the two species. This scenario coincides with the recent climatic events of the South American dry diagonal, which involves the gallery forests of the Cerrado biome and the cloud forest enclaves of the seasonal tropical dry forest of the Caatinga between the late Pleistocene and the mid Holocene.  相似文献   

6.
Aim Mechanisms generating biodiversity and endemism are influenced by both historical and ecological patterns, and the relative roles of history vs. ecological interactions are still being debated. The phylogeography of one rain forest‐restricted caddisfly species, Tasimia palpata, thought to have good dispersal abilities, is used to address questions about shifts of highland rain forest habitat during Pleistocene glaciations and about their consequences for haplotype composition and distribution. Location Tasimia palpata occurs in highland subtropical rain forest patches, which are separated from one another by lowland dry bush, in south‐eastern Queensland, Australia. Methods We sequenced 375 base pairs of the mitochondrial cytochrome oxidase I gene from 169 individuals (20 populations) of T. palpata, mainly from three fragmented subtropical rain forest blocks, revealing 46 haplotypes. Analysis of molecular variance (amova ), genetic divergence between populations, nested clade analyses and tests based on coalescent theory were used to analyse phylogeographical relationships among T. palpata populations. Results amova indicates spatial genetic structure between isolated subtropical rain forest patches, with an isolation‐by‐distance effect. Tests based on coalescent theory suggest a repeated process of population reductions and divergence between isolated rain forests during Pleistocene glaciations as a consequence of habitat constrictions followed by population expansions during interglacial periods when subtropical rain forest expanded. In addition, these results suggest that, prior to the Pleistocene, rain forest and T. palpata had more widespread distributions in this region. Main conclusions Historical rain forest expansion and contraction during the Pleistocene resulted in changes in demography and genetic diversity of T. palpata, as well as in an increase in genetic divergence between populations from different patches of subtropical rain forest. Despite the fact that this caddisfly species was isolated in separate highland rain forest patches at various times during the Pleistocene, there is no evidence of allopatric speciation during the Quaternary, which contrasts with other examples of endemism and high diversity in rain forest highlands.  相似文献   

7.
Various historical processes have been put forth as drivers of patterns in the spatial distribution of Amazonian trees and their population genetic variation. We tested whether five widespread tree species show congruent phylogeographic breaks and similar patterns of demographic expansion, which could be related to proposed Pleistocene refugia or the presence of geological arches in western Amazonia. We sampled Otoba parvifolia/glycycarpa (Myristicaceae), Clarisia biflora, Poulsenia armata, Ficus insipida (all Moraceae), and Jacaratia digitata (Caricaceae) across the western Amazon Basin. Plastid DNA (trnH–psbA; 674 individuals from 34 populations) and nuclear ribosomal internal transcribed spacers (ITS; 214 individuals from 30 populations) were sequenced to assess genetic diversity, genetic differentiation, population genetic structure, and demographic patterns. Overall genetic diversity for both markers varied among species, with higher values in populations of shade‐tolerant species than in pioneer species. Spatial analysis of molecular variance (SAMOVA) identified three genetically differentiated groups for the plastid marker for each species, but the areas of genetic differentiation were not concordant among species. Fewer SAMOVA groups were found for ITS, with no detectable genetic differentiation among populations in pioneers. The lack of spatially congruent phylogeographic breaks across species suggests no common biogeographic history of these Amazonian tree species. The idiosyncratic phylogeographic patterns of species could be due instead to species‐specific responses to geological and climatic changes. Population genetic patterns were similar among species with similar biological features, indicating that the ecological characteristics of species impact large‐scale phylogeography.  相似文献   

8.
The recovery of genetic variation in newly recolonized populations is an important concern in forest conservation genetics. We examined the potential recovery of genetic diversity and changes to genetic structure in populations of the wind‐pollinated species Tsuga canadensis that naturally regenerated following the extensive 19th century regional forest clearance for agriculture in west‐central Massachusetts. We genotyped 264 individuals across six microsatellite loci and compared levels and patterns of genetic variation between primary forests (forests that were logged but never cleared) and secondary forests (stands that were recolonized following agricultural abandonment). We found no significant reductions in genetic diversity in secondary forests (AR = 5.450; HS = 0.718) compared to primary forests (AR = 5.742; HS = 0.730). Moreover, the population genetic differentiation was also not significantly reduced in secondary compared to primary forests, with no significant genetic structure observed among all populations. These results suggest rapid genetic recovery of T. canadensis populations in recolonized forests compared with other late‐successional temperate tree species.  相似文献   

9.
Anogeissus dhofarica (Combretaceae) is an endemic tree of the monsoon affected coastal mountains of the southern Arabian Peninsula, being the character species of the Hybantho durae–Anogeissetum dhofaricae association, a drought deciduous, monsoon forest community found only in the Dhofar region of southern Oman and the eastern Al‐Mahra region of south‐east Yemen. Due to the steep precipitation gradient from the centre to the edges in this monsoon affected area, A. dhofarica is found in two different habitat types: in continuous woodland belts of the Hawf and Dhofar mountains, and in isolated, scattered woodland patches, as found especially in the Fartak Mts (south‐east Yemen). Fifteen populations (212 individuals) from across the whole distribution area of the species were analysed using amplified fragment length polymorphism fingerprinting to: (1) evaluate the consequences of population fragmentation on the genetic diversity harboured in isolated patches versus cohering stands of the species and (2) to reconstruct the phylogeographical pattern of A. dhofarica as a consequence of oscillations in the monsoon activity during the Pleistocene and Holocene. The analysis of among‐population genetic differentiation and within‐population genetic diversity in A. dhofarica populations resulted in a lack of genetic pauperization and genetic differentiation of populations of the distinctly isolated patches of the Fartak Mts compared to the more luxurious forests of the Hawf and Dhofar regions. This is considered to be due to the high buffer capacity against the loss of genetic diversity caused by the long‐lived life‐form of the species combined with the capability to propagate clonally and the relatively recent fragmentation of Anogeissus forests into the described patches rather than due to high values of gene flow among remnant populations caused by bee pollination and anemochorical and hydrochorical diaspore dispersal. The phylogeographical pattern of the species argues for a quite recent fragmentation of a once continuous forest belt of A. dhofarica that is rather connected with climate changes in the Holocene than triggered by aridity–humidity oscillations reported for the Pleistocene. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 97 , 40–51.  相似文献   

10.
Abstract Pleistocene fragmentation of the Amazonian rainforest has been hypothesized to be a major cause of Neotropical speciation and diversity. However, the role and even the reality of Pleistocene forest refugia have attracted much scepticism. In Amazonia, previous phylogeographical studies have focused mostly on organisms found in the forests themselves, and generally found speciation events to have predated the Pleistocene. However, molecular studies of open-formation taxa found both north and south of the Amazonian forests, probably because of vicariance resulting from expansion of the rainforests, may provide novel insights into the age of continuous forest cover across the Amazon basin. Here, we analyse three mitochondrial genes to infer the phylogeography of one such trans-Amazonian vicariant, the Neotropical rattlesnake (Crotalus durissus), which occupies primarily seasonal formations from Mexico to Argentina, but avoids the rainforests of Central and tropical South America. The phylogeographical pattern is consistent with gradual dispersal along the Central American Isthmus, followed by more rapid dispersal into and across South America after the uplift of the Isthmus of Panama. Low sequence divergence between populations from north and south of the Amazon rainforest is consistent with mid-Pleistocene divergence, approximately 1.1 million years ago (Ma). This suggests that the Amazonian rainforests must have become fragmented or at least shrunk considerably during that period, lending support to the Pleistocene refugia theory as an important cause of distribution patterns, if not necessarily speciation, in Amazonian forest organisms. These results highlight the potential of nonforest species to contribute to an understanding of the history of the Amazonian rainforests themselves.  相似文献   

11.
Two sibling species of the rodent genus Praomys occur in West African forests: P. tullbergi and P. rostratus. By sampling across their geographical ranges (459 individuals from 77 localities), we test the hypothesis that climatic oscillations during the Quaternary made an impact on the observed pattern of cytochrome b sequence variation. We show that, although these two species have parapatric geographical distributions, their phylogeographical histories are dissimilar, which could be related to their distinct ecological requirements. Since the arid phases of the Pleistocene were characterized by isolated forest patches, and intervening wetter periods by forest expansion, these changes in forest cover may be the common mechanism responsible for the observed phylogeographical patterns in both of these species. For example, in both species, most clades had either allopatric or parapatric geographical distributions; however, genetic diversity was much lower in P. tullbergi than in P. rostratus. The genetic pattern of P. tullbergi fits the refuge hypothesis, indicating that a very small number of populations survived in distinct forest blocks during the arid phases, then expanded again with forest recovery. In contrast, a number of populations of P. rostratus appear to have survived during the dry periods in more fragmented forest habitats, with varying levels of gene flow between these patches depending on climatic conditions and forest extent. In addition, historical variations of the West African hydrographic network could also have contributed to the pattern of genetic differentiation observed in both species.  相似文献   

12.
Pinus sabiniana Dougl. (grey pine) forms savanna forests in the foothills surrounding California's Great Central Valley. However, its fossil record, which dates from the late Miocene through the Pliocene and Pleistocene, is found exclusively in southern California, south of the species’ present range. A total of twenty-nine isozyme loci, representing eighteen enzyme systems, was assayed to analyse the genetic structure in eight populations of grey pine and attempt to track its migration history from southern to northern California. Expected heterozygosity in the two southernmost samples was 0.128 and 0.150, and heterozygosity tended to decrease with increasing latitude, suggesting the loss of diversity as grey pine dispersed northward. However, genetic distances between populations were very small, even on opposite sides of the treeless Great Central Valley; and estimated time since divergence was 900 to 9000 years at a maximum. Wright's FST, the proportion of total genetic diversity among populations, was only 0.057, which is similar to values found in many conifers with continuous distributions. Nm, the number of migrants among populations per generation, was 4.1 to 6.7, depending on estimator, and indicates that gene flow is extensive, or was so in the recent past. In every population, observed heterozygosity was less than expected heterozygosity, and the fixation index, FIS, for the progeny was 0.128, which indicates a fairly high rate of inbreeding. The genetic similarity of disjunct populations, in combination with paleogeographic and paleoclimatic evidence, suggests that grey pine formed a continuous population throughout the Great Central Valley, perhaps between 12,000 and 8000 yrs BP . Its range became fragmented during the Xerothermic, when it ascended into the foothills. Gaps in its range correlate with late Pleistocene–early Holocene lakes in adjacent basins and with the Sacramento–San Joaquin Delta.  相似文献   

13.
Cycles of Quaternary climatic change are assumed to be major drivers of African rainforest dynamics and evolution. However, most hypotheses on past vegetation dynamics relied on palaeobotanical records, an approach lacking spatial resolution, and on current patterns of species diversity and endemism, an approach confounding history and environmental determinism. In this context, a comparative phylogeographical study of rainforest species represents a complementary approach because Pleistocene climatic fluctuations may have left interpretable signatures in the patterns of genetic diversity within species. Using 1274 plastid DNA sequences from eight tree species (Afrostyrax kamerunensis, A. lepidophyllus, Erythrophleum suaveolens, Greenwayodendron suaveolens, Milicia excelsa, Santiria trimera, Scorodophloeus zenkeri and Symphonia globulifera) sampled in 50 populations of Atlantic Central Africa (ACA), we averaged divergence across species to produce the first map of the region synthesizing genetic distinctiveness and standardized divergence within and among localities. Significant congruence in divergence was detected mostly among five of the eight species and was stronger in the northern ACA. This pattern is compatible with a scenario of past forest fragmentation and recolonization whereby forests from eastern Cameroon and northeastern Gabon would have been more affected by past climatic change than those of western Cameroon (where one or more refugia would have occurred). By contrast, southern ACA (Gabon) displayed low congruence among species that may reflect less drastic past forest fragmentation or a more complex history of vegetation changes. Finally, we also highlight the potential impact of current environmental barriers on spatial genetic structures.  相似文献   

14.
Aim Central America is a biogeographically interesting area because of its location between the rich and very different biota of North and South America. We aim to assess phytogeographical patterns in the bryophyte floras of oak forests and páramo of the Cordillera de Talamanca, Costa Rica. Location Tropical America, in particular the montane area of Cordillera de Talamanca, Costa Rica. Methods The analysis is based on a new critical inventory of the montane bryophyte flora of Cordillera de Talamanca. All species were assigned to phytogeographical elements on the basis of their currently known distribution. Absolute and percentage similarities were employed to evaluate floristic affinities. Results A total of 401 species [191 hepatics (liverworts), one hornwort, 209 mosses] are recorded; of these, 251 species (128 hepatics, one hornwort, 122 mosses) occur in oak forests. Ninety‐three per cent of all oak forest species are tropical in distribution, the remaining 7% are temperate (4%) and cosmopolitan (3%) species. The neotropical element includes almost 74% of the species, the wide tropical element (pantropical, amphi‐atlantic, amphi‐pacific) only 19%. A significant part of the neotropical species from oak forests are species with tropical Andean‐centred ranges (27%). As compared with bryophyte species, vascular plant genera in the study region are represented by fewer neotropical, more temperate and more amphi‐pacific taxa. Bryophyte floras of different microhabitats within the oak forest and epiphytic bryophyte floras on Quercus copeyensis in primary, early secondary and late secondary oak forest show a similar phytogeographical make‐up to the total oak forest bryophyte flora. Comparison of oak forest and páramo reveals a greater affinity of the páramo bryophyte flora to temperate regions and the great importance of the páramo element in páramo. Surprisingly, oak forests have more Central American endemics than páramo. Main conclusions (1) Providing first insights into the phytogeographical patterns of the bryophyte flora of oak forests and páramo, we are able to confirm general phytogeographical trends recorded from vascular plant genera of the study area although the latter were more rich in temperate taxa. (2) Andean‐centred species are a conspicuous element in the bryophyte flora of Cordillera de Talamanca, reflecting the close historical connection between the montane bryophyte floras of Costa Rica and South America. (3) High percentages of Central American endemics in the bryophyte flora of the oak forests suggest the importance of climatic changes associated with Pleistocene glaciations for allopatric speciation.  相似文献   

15.
Summary 1. Fishes can often rebound numerically and distributionally from short‐term (i.e. seasonal) drought, yet their capacity to recover from decades or centuries of drought is less apparent. An exceedingly warm and dry period swept the intermontane west of North America ca. 7500 years BP, concomitant with an abrupt extinction of >35 mammal species. Were larger fishes in mainstem rivers also impacted by this drought? 2. The Colorado River Basin encompasses seven states in western North America and drains 600 000 km2. Its endemic mainstem fish community is ancient (i.e. Miocene) but depauperate. 3. We evaluated one widely distributed candidate species (flannelmouth sucker, Catostomus latipinnis) for basin‐wide genetic and geographic structure at three fast‐evolving mitochondrial (mt) DNA genes, ND2 with 589 bp and ATPase 8 and 6 with 642 bp. It is hypothesized that a concomitant signature would be present in the mtDNA of this species, if indeed it had been seriously bottlenecked by post‐Pleistocene drought. A total of 352 individuals were sequenced from 24 populations (4–40 individuals/population; average of 14.7). 4. Only 49 unique haplotypes were found, 53% of which represented single individuals. Haplotype diversity was high (0.905 ± 0.007) whereas nucleotide diversity was low (0.002 ± 0.000). 5. A significant and positive geographical cline (P < 0.001) in nucleotide diversity was observed as sampling locations progressed upstream from southwest to northeast. These results divided the Colorado River Basin into three reaches: the lower reach with six populations and 83 individuals; the upper reach with seven populations and 83 individuals; and the middle reach with 11 populations and 186 individuals. An analysis of molecular variance (amova ) revealed that 81.5% of the total genetic variation was within populations, 16% among populations within reaches and 2.5% among reaches. Only the last was significant. Populations from the three reaches diverged from one another by 3400–11 000 years BP. Haplotype distribution suggested populations in the upper Colorado River are expanding. 6. The lack of genetic variation and recent coalescence of lineages in C. latipinnis are unusual given its fossil history, broad geographical sampling, the rapid rate of mtDNA evolution and the number (and evolutionary rate) of the genes examined. The most parsimonious explanation for these data is a rapid expansion following a recent period of low effective population size at the end of the Pleistocene. 7. The intense drought is suggested at the end of the Pleistocene (late‐to‐mid‐Holocene), severely impacted not only large mammals but also larger fishes in western North American rivers. These perspectives have important implications for management of endangered and threatened species in this region.  相似文献   

16.
Understanding the past and future evolutionary dynamics of dominant species in a forest is important for guiding decisions for biodiversity conservation, forest management, and vegetation restoration. This study used Quercus schottkyana, a dominant tree in subtropical evergreen broad-leaved forests in southwest China, to investigate the influences of past environmental fluctuations and future changes in climate on the dynamics of tree demographics. Genomic data were obtained for 133 samples of Q. schottkyana from 22 populations using double-digest genotyping by sequencing. The single-nucleotide polymorphisms in the genome showed a uniform distribution. Based on principal component analysis and Admixture analysis, two distinct lineages and one mixed group were identified that corresponded to their geographical distribution. Approximate Bayesian computation analyses provided evidence that the divergence among Q. schottkyana populations could be driven by the collision between the Asian and Indian plates during the Miocene, and that climatic fluctuations in the late Pleistocene led to the introgression. The analysis of genotype-environment relationships showed that annual precipitation and geographic distance were associated with spatial genetic variation. Populations of Q. schottkyana in the northern area of the Jinsha River basin were predicted to be the most vulnerable to future climate change. To increase genetic diversity in the northern Jinsha River basin and to buffer threats from future climate change, managers could use a mixture of local and alien seeds during forest restoration and management. This case study can promote further investigations into assessing how past and future climate change impacts genetic divergence and local adaptation of trees in forests.  相似文献   

17.
Traditionally focused on Amazonian and Atlantic rainforests, studies on the origins of high Neotropical biodiversity have recently shifted to also investigate biodiversity processes in the South American dry diagonal, encompassing Chaco, Cerrado savannas, and Caatinga seasonally dry tropical forests. The plateau/depression hypothesis states that riparian forests in the Brazilian Shield in central Brazil are inhabited by Pleistocene lineages, with shallow divergences and signatures of population expansion. Moreover, riparian forests may have acted as a vegetation network in the Pleistocene, allowing gene/species flow across the South American dry diagonal. We tested these hypotheses using Colobosaura modesta, a small gymnophthalmid lizard from forested habitats in the Cerrado savannas and montane/submontane forests in the Caatinga. We conducted phylogeographic analyses using a multi-locus dataset, tested alternative demographic scenarios with Approximate Bayesian Computation, and also employed species delimitation tests. We recovered a history of recent colonization and expansion along riparian forests, associated with Pleistocene climate shifts, and the existence of a new species of Colobosaura restricted to the Serra do Cachimbo region. We also present evidence that riparian forests have provided an interconnected network for forest organisms within the South American dry diagonal and that Pleistocene events played an important role in their evolutionary history.  相似文献   

18.
ABSTRACT We quantified breeding bird abundance, diversity, and indicator species in riparian and upland dry forests along 6 third- to fourth-order streams on the east slope of the Cascade Range, Washington, USA. Upland dry forest on southerly aspects was dominated by open ponderosa pine (Pinus ponderosa) and dry Douglas-fir (Pseudotsuga menziesii) plant associations. Upland mesic forest on northerly aspects was dominated by closed-canopy Douglas-fir or dry grand fir (Abies grandis) plant associations. Riparian overstory vegetation was dominated by black cottonwood (Populus trichocarpa) plant associations with a prominent hardwood tree and shrub component. We quantified bird assemblages, diversity, and abundance from parallel point transects on riparian and adjacent dry and mesic upslope forests. We detected 80 bird species from >12,000 point-transect observations during 1998–1999. Eighteen species accounted for 75% of all detections. Species richness and evenness were similar in all 3 forest types, with approximately 35 species and high evenness (0.85) in each forest type. Bird species assemblages differed among dry, mesic, and riparian forest types, with the greatest differences between riparian and both dry and mesic upland forests. Riparian forest had the greatest number (9) of strong characteristic, or indictor, species among the 3 forest types. Upland mesic forest was characterized by 7 indicator species. Upland dry forest had 4 indicator species. Our results indicate that current standards and guidelines for riparian buffers zones would allow for avian refuge and corridor functions along these streams. Forest managers could use our indicator species to predict and monitor shifts in upland forest species composition from thinning and prescribed burning practices that are used to reduce fuels in uplands and to reduce continuity of fire effects between riparian and upland zones.  相似文献   

19.
Aim To investigate the phylogeography and execute a historical‐demographic analysis of the Neotropical rattlesnake, Crotalus durissus, thereby testing the hypothesis of a Pleistocene central Amazon corridor of dry forest or savanna that partitioned the Amazonian rain forest into western and eastern portions. Location South America. Methods Using sequences of three mitochondrial genes, we estimated the phylogeography, gene and nucleotide diversity across the South American range of C. durissus. Tree topology tests were used to test alternative biogeographical hypotheses, and tests of population genetic structure and statistical parsimony networks and nested clade phylogeographic analysis (NCPA) were used to infer connectivity and historical population processes on both sides of the Amazon basin. Results Tree topology tests rejected the hypothesis of a coastal dispersal in favour of a central corridor scenario. Gene diversity was similar on both sides of the Amazon basin. Nucleotide diversity indicated that the populations from north of the Amazon basin represented ancestral populations. Analysis of molecular variance (amova ) showed that intra‐population molecular variation was greater than between regions. Historical‐demographic statistics showed significant population expansion south of the Amazon, and little differentiation in the north, indicating moderate past gene flow between north and south of the Amazon. The parsimony network connected clades from the Roraima and Guyana populations with Mato Grosso, suggesting an Amazonian central corridor, and NCPA supported allopatric fragmentation between north and south of the Amazon. Main conclusions The distribution of C. durissus on both sides of the Amazon basin is evidence of changes in the distribution of rain forest vegetation during the Pleistocene. Our results suggest a formerly continuous distribution of this rattlesnake along a central Amazonian corridor during the middle Pleistocene. Allopatric fragmentation inferred from NCPA is consistent with vicariance resulting from a subsequent closure of this habitat corridor. This study emphasizes the potential of trans‐Amazonian open formation species to inform the debate on the past distribution of rain forests in the Amazon Basin.  相似文献   

20.
Mangrove killifishes of the genus Kryptolebias have been historically classified as rare because of their small size and cryptic nature. Major gaps in distribution knowledge across mangrove areas, particularly in South America, challenge the understanding of the taxonomic status, biogeographical patterns and genetic structuring of the lineages composing the self-fertilizing “Kryptolebias marmoratus species complex.” In this study, the authors combined a literature survey, fieldwork and molecular data to fill major gaps of information about the distribution of mangrove killifishes across western Atlantic mangroves. They found that selfing mangrove killifishes are ubiquitously distributed across the Caribbean, Central and South American mangroves and report 14 new locations in South America, extending the range of both the “Central clade” and “Southern clade” lineages which overlap in the Amazon. Although substantial genetic differences were found between clades, the authors also found further genetic structuring within clades, with populations in Central America, north and northeast Brazil generally showing higher levels of genetic diversity compared to the clonal ones in southeast Brazil. The authors discuss the taxonomic status and update the geographical distribution of the Central and Southern clades, as well as potential dispersal routes and biogeographical barriers influencing the distribution of the selfing mangrove killifishes in the western Atlantic mangroves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号