首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Mice with null mutations for metallothionein genes MT-1 and MT-2 were used to study the role that metallothionein plays in protecting cellular targets in vivo from oxidative stress. Wild-type (MT(+/+)) and MT-null (MT(-/-)) mice were treated with either saline or zinc and exposed to two types of oxidative stress: gamma-irradiation or 2-nitropropane. There was no alteration in the antioxidant defense system (superoxide dismutase, catalase, or glutathione peroxidase and glutathione levels) to compensate for the lack of the metallothionein in the MT(-/-) mice. The amount of oxidative damage to liver DNA, lipids, and proteins were similar for the MT(-/-) and MT(+/+) mice even though the levels of metallothionein in the livers of the saline- or zinc-pretreated MT(+/+) mice were 5- to 100-fold greater than found in the MT(-/-) mice. To determine if metallothionein can protect mice from the lethal effects of ionizing radiation, the mean survivals of MT(-/-) and MT(+/+) mice exposed to whole body gamma-irradiation were measured and found to be similar. However, the mean survival increased significantly after zinc pretreatment for both the MT(-/-) and MT(+/+) mice. These results demonstrate that tissue levels of metallothionein do not protect mice in vivo against oxidative stress.  相似文献   

2.
Alkylating agents comprise a major class of front-line cancer chemotherapeutic compounds, and while these agents effectively kill tumor cells, they also damage healthy tissues. Although base excision repair (BER) is essential in repairing DNA alkylation damage, under certain conditions, initiation of BER can be detrimental. Here we illustrate that the alkyladenine DNA glycosylase (AAG) mediates alkylation-induced tissue damage and whole-animal lethality following exposure to alkylating agents. Aag-dependent tissue damage, as observed in cerebellar granule cells, splenocytes, thymocytes, bone marrow cells, pancreatic β-cells, and retinal photoreceptor cells, was detected in wild-type mice, exacerbated in Aag transgenic mice, and completely suppressed in Aag −/− mice. Additional genetic experiments dissected the effects of modulating both BER and Parp1 on alkylation sensitivity in mice and determined that Aag acts upstream of Parp1 in alkylation-induced tissue damage; in fact, cytotoxicity in WT and Aag transgenic mice was abrogated in the absence of Parp1. These results provide in vivo evidence that Aag-initiated BER may play a critical role in determining the side-effects of alkylating agent chemotherapies and that Parp1 plays a crucial role in Aag-mediated tissue damage.  相似文献   

3.
It is well known that AKR mice with spontaneous leucosis are more sensitive to ionizing irradiation as compared to normal F1 (CBA x C57BL) mice. A study on changes of the structural characteristics of spleen DNA and level of protein p53 in the blood serum under the action of low-level gamma-irradiation in a dose of 1.2 cGy and injections of 10(-14) or 10(-4) mol/kg phenozan was performed. The changes in the structural characteristics of DNA (the adsorption on nitrocellulose filters and number of double-strand breaks) and p53 content were observed for each line of mice under gamma-irradiation and each phenozan concentration. Both factors showed long-time post-effects, and structural changes in AKR DNA were consistent with the life span of these mice. Phenozan in the above doses has abolished the induction of double-strand breaks in case of irradiation of F1 mice in a dose of 1.2 cGy and showed long-time post-irradiation effect. These facts suggest a radioprotection property of phenozan.  相似文献   

4.
AimsTo investigate the effect of repeated stress on DNA damage in seven organs of dyslipidemic mice, and the preventive role of metallothionein (MT).Main methodsFemale adult 129/Sv wild-type and MT-null mice fed high-fat diet (HFD) were repeatedly subjected to mild stress of fasting or restraint in weeks 2 to 4 of 4-week study period. Serum cholesterol level, DNA damage in the liver, pancreas, spleen, bone marrow, kidney, lung and gastric mucosa, and other parameters were determined.Key findingsBody weights were increased in both types of mice fed HFD compared to those fed standard diet (STD), and further increased by 12 h-fasting, while they were markedly decreased by 1–3 h-restraint. Fasting accelerated accumulation of fat in the liver, and increase in serum cholesterol of both types of mice fed HFD. Feeding of HFD increased DNA damage in the pancreas, spleen and bone marrow of both types of mice, compared with those fed STD. In the wild-type mice fed HFD, 24 h-fasting increased DNA damage in the liver and spleen, while restraint increased the damage in the liver, pancreas, spleen and bone marrow. DNA damage in the cells of organs was markedly increased in the MT-null mice. Specifically, damage in the liver, pancreas, spleen and bone marrow was greatly increased with the intensity of stress increased, and the damage was much greater in the restraint mice than in the fasting mice.SignificanceMT plays a tissue-dependent preventive role against DNA damage in various murine organs induced by repeated stress.  相似文献   

5.
6.
Infection of adult 129 Sv/Ev mice with consensus Sindbis virus strain TR339 is subclinical due to an inherent restriction in early virus replication and viremic dissemination. By comparing the pathogenesis of TR339 in 129 Sv/Ev mice and alpha/beta interferon receptor null (IFN-alpha/betaR(-/-)) mice, we have assessed the contribution of IFN-alpha/beta in restricting virus replication and spread and in determining cell and tissue tropism. In adult 129 Sv/Ev mice, subcutaneous inoculation with 100 PFU of TR339 led to extremely low-level virus replication and viremia, with clearance under way by 96 h postinoculation (p.i.). In striking contrast, adult IFN-alpha/betaR(-/-) mice inoculated subcutaneously with 100 PFU of TR339 succumbed to the infection within 84 h. By 24 h p.i. a high-titer serum viremia had seeded infectious virus systemically, coincident with the systemic induction of the proinflammatory cytokines interleukin-12 (IL-12) p40, IFN-gamma, tumor necrosis factor alpha, and IL-6. Replicating virus was located in macrophage-dendritic cell (DC)-like cells at 24 h p.i. in the draining lymph node and in the splenic marginal zone. By 72 h p.i. virus replication was widespread in macrophage-DC-like cells in the spleen, liver, lung, thymus, and kidney and in fibroblast-connective tissue and periosteum, with sporadic neuroinvasion. IFN-alpha/beta-mediated restriction of TR339 infection was mimicked in vitro in peritoneal exudate cells from 129 Sv/Ev versus IFN-alpha/betaR(-/-) mice. Thus, IFN-alpha/beta protects the normal adult host from viral infection by rapidly conferring an antiviral state on otherwise permissive cell types, both locally and systemically. Ablation of the IFN-alpha/beta system alters the apparent cell and tissue tropism of the virus and renders macrophage-DC-lineage cells permissive to infection.  相似文献   

7.
The modification of DNA damage by three radiosensitizing drugs, present during gamma-irradiation of hypoxic Chinese hamster cells, was investigated. Both 2-methyl-5-nitroimidazole-1-ethanol (metronidazole) and 1-(2-nitro-1-imidazole)-3-methoxy-2-propranol (Ro-07-0582) were found to cause large increases in the yield of DNA single-strand breaks (SSB); triacetoneamine-N-oxyl (TAN) was found to have only a small effect on SSB production. The three drugs tested did not inhibit the rejoining of SSB. A pulse label and chase procedure was used to examine post-irradiation DNA synthesis. TAN present during irradiation under hypoxia was found to cause interruptions in subsequent DNA synthesis. Metronidazole and Ro-07-0582 had no effect on post-irradiation DNA synthesis. In addition, the effects of pre- and post-irradiation exposure to TAN were investigated, since these treatments have shown increased cell-killing in survival studies. TAN pre- and post-treatments were found to have no significant effect on subsequent DNA synthesis.  相似文献   

8.
PARP-1-deficient mice display a severe defect in the base excision repair pathway leading to radiosensitivity and genomic instability. They are protected against necrosis induced by massive oxidative stress in various inflammatory processes. Mice lacking p53 are highly predisposed to malignancy resulting from defective cell cycle checkpoints, resistance to DNA damage-induced apoptosis as well as from upregulation of the iNOS gene resulting in chronic oxidative stress. Here, we report the generation of doubly null mutant mice. We found that tumour-free survival of parp-1(-/-)p53(-/-) mice increased by 50% compared with that of parp- 1(+/+)p53(-/-) mice. Tumour formation in nude mice injected with oncogenic parp-1(-/-)p53(-/-) fibroblasts was significantly delayed compared with parp-1(+/+)p53(-/-) cells. Upon gamma-irradiation, a partial restoration of S-phase radiosensitivity was found in parp-1(-/-)p53(-/-) primary fibroblasts compared with parp-1(+/+)p53(-/-) cells. In addition, iNOS expression and nitrite release were dramatically reduced in the parp-1(-/-)p53(-/-) mice compared with parp-1(+/+)p53(-/-) mice. The abrogation of the oxydated status of p53(-/-) cells, due to the absence of parp-1, may be the cause of the delay in the onset of tumorigenesis in parp-1(-/-)p53(-/-) mice.  相似文献   

9.
Poly (ADP-ribose) polymerase-1 (Parp1) plays a central role in the maintenance of genomic integrity and has been unequivocally associated to DNA base excision repair (BER) but its involvement in double-strand break (DSB) repair pathways remains unclear. In this work, using transgenic Parp1-deficient mice harbouring the lacZ reporter gene, we provide in vivo evidence that Parp1 contributes to the prevention of deletions/insertions in testis following an alkylation insult. In response to N-Methyl-N-Nitrosurea (MNU) treatment no significant difference in the mutant frequency (MF) in the liver and testis could be attributed to Parp1 status, given that both Parp1+/+ and Parp1−/− mice showed a similar significant increase in the overall MF. However, restriction analysis of MNU-induced mutants evidenced a shift in the distribution of mutations between deletions/insertions and point mutations in testis, but not in the liver, dependent on the Parp1 status. A significant higher frequency of deletions/insertions was observed in testis from Parp1−/− in comparison to Parp1+/+ mice, whereas point mutations were not significantly affected. Overall, our findings show that Parp1 participates in the prevention of deletions/insertions induced by methylating agents and that organ-specific factors may influence its capacity to protect against genotoxic damage.  相似文献   

10.
11.
Using siRNA technology, we down-regulated in human B-lymphoblastoid TK6 cells the two major oxidative DNA glycosylases/AP lyases that repair free radical-induced base damages, hNTH1 and hOGG1. The down-regulation of hOGG1, the DNA glycosylase whose main substrate is the mutagenic but not cytotoxic 8-oxoguanine, resulted in reduced radiation cytotoxicity and decreased double strand break (DSB) formation post-irradiation. This supports the idea that the oxidative DNA glycosylases/AP lyases convert radiation-induced clustered DNA lesions into lethal DSBs and is in agreement with our previous finding that overexpression of hNTH1 and hOGG1 in TK6 cells increased radiation lethality, mutant frequency at the thymidine kinase locus and the enzymatic production of DSBs post-irradiation [N. Yang, H. Galick, S.S. Wallace, Attempted base excision repair of ionizing radiation damage in human lymphoblastoid cells produces lethal and mutagenic double strand breaks, DNA Repair (Amst) 3 (2004) 1323-1334]. Interestingly, cells deficient in hNTH1, the DNA glycosylase that repairs a major lethal single free radical damage, thymine glycol, were more radiosensitive but at the same time fewer DSBs were formed post-irradiation. These results indicate that hNTH1 plays two roles in the processing of radiation damages: repair of potentially lethal single lesions and generation of lethal DSBs at clustered damage sites. In contrast, in hydrogen peroxide-treated cells where the majority of free radical DNA damages are single lesions, the base excision repair pathway functioned to protect the cells. Here, overexpression of hNTH1 and hOGG1 resulted in reduced cell killing while suppression of glycosylase expression resulted in elevated cell death.  相似文献   

12.
ERM (ezrin/radixin/moesin) proteins are organizers of apical actin cortical layer in general. We previously reported that the knockout of radixin resulted in Rdx(-/-) mice with displacement/loss of the canalicular transporter Mrp2, giving rise to Dubin-Johnson syndrome-like conjugated hyperbilirubinemia in the mixed genetic background (C57BL/6-129/Sv) (Kikuchi, et al. (2002) Nature Genetics 31, 320-325). However, when these mice were kept under mixed genetic background for years (late mixed backgrounds; LMB), the conjugated hyperbilirubinemia gradually became inconspicuous, while evidence of liver injury increased. We examined the effect of genetic background by backcrossing LMB Rdx(-/-) mice to C57BL/6 and 129/Sv wild type mice with the result that the Rdx(-/-) congenic mice regained hyperbilirubinemia with reduced hepatocellular damage. As revealed by immunofluorescence and western blots, the localization/expression of apical transporters, Mrp2, CD26, P-gps, and Bsep were not influenced by backcrossing, though those of a basolateral transporter, Mrp3, were strikingly increased by backcrossing.  相似文献   

13.
Cdk1 was proposed to compensate for the loss of Cdk2. Here we present evidence that this is possible due to premature translocation of Cdk1 from the cytoplasm to the nucleus in the absence of Cdk2. We also investigated the consequence of loss of Cdk2 on the maintenance of the G1/S DNA damage checkpoint. Cdk2(-/-) mouse embryonic fibroblasts in vitro as well as regenerating liver cells after partial hepatectomy (PH) in Cdk2(-/-) mice, arrest promptly at the G1/S checkpoint in response to gamma-irradiation due to activation of p53 and p21 inhibiting Cdk1. Furthermore re-entry into S phase after irradiation was delayed in Cdk2(-/-) cells due to prolonged and impaired DNA repair activity. In addition, Cdk2(-/-) mice were more sensitive to lethal irradiation compared to wild-type and displayed delayed resumption of DNA replication in regenerating liver cells. Our results suggest that the G1/S DNA damage checkpoint is intact in the absence of Cdk2, but Cdk2 is important for proper repair of the damaged DNA.  相似文献   

14.
Defects in DNA single‐strand break repair (SSBR) are linked with neurological dysfunction but the underlying mechanisms remain poorly understood. Here, we show that hyperactivity of the DNA strand break sensor protein Parp1 in mice in which the central SSBR protein Xrcc1 is conditionally deleted (Xrcc1Nes‐Cre) results in lethal seizures and shortened lifespan. Using electrophysiological recording and synaptic imaging approaches, we demonstrate that aberrant Parp1 activation triggers seizure‐like activity in Xrcc1‐defective hippocampus ex vivo and deregulated presynaptic calcium signalling in isolated hippocampal neurons in vitro. Moreover, we show that these defects are prevented by Parp1 inhibition or deletion and, in the case of Parp1 deletion, that the lifespan of Xrcc1Nes‐Cre mice is greatly extended. This is the first demonstration that lethal seizures can be triggered by aberrant Parp1 activity at unrepaired SSBs, highlighting PARP inhibition as a possible therapeutic approach in hereditary neurological disease.  相似文献   

15.
The carcinogenicity of many alkylating agents is derived from their ability to form persistent DNA adducts that induce mutations. This paper presents and validates methodology, based on LC with tandem mass spectrometry, for the separate or concurrent quantification by isotope dilution of O(6)-methyl-2'-deoxyguanosine (O(6)Me-dG) and O(6)-ethyl-2'-deoxyguanosine (O(6)Et-dG) DNA adducts. The limits of quantification were estimated to be < or =0.2 adducts/10(8) nucleotides for either adduct. This sensitivity permitted evaluation of adduct levels in livers from separate groups of untreated adult C57BL/6N/Tk(+/-) and C57BL/6N X Sv129 mice (undetectable to 5.5+/-6.7 O(6)Me-dG/10(8) nucleotides; undetectable to 0.04 O(6)Et-dG/10(8) nucleotides). Treatment of adult C57BL/6N/Tk(+/-) mice with equimolar doses (342micromol/kg body weight) of N-methyl-N-nitrosourea and N-ethyl-N-nitrosourea produced adduct levels in liver of 1700+/-80 O(6)Me-dG/10(8) nucleotides and 260+/-60 O(6)Et-dG/10(8) nucleotides, respectively, when assessed 4h after dosing. These methods should be useful for evaluations of DNA adducts in relation to cellular processes that modify carcinogenic and toxicological responses in experimental animals and humans.  相似文献   

16.
We report in this study the generation of a novel rat mAb that recognizes mouse plasmacytoid dendritic cells (pDC). This Ab, named 120G8, stains a small subset of CD11c(low) spleen cell with high specificity. This population produces high amounts of IFN-alpha upon in vitro viral stimulation. Both ex vivo- and in vitro-derived 120G8(+) cells display a phenotype identical with that of the previously described mouse pDC (B220(high)Ly6C(high)Gr1(low)CD11b(-)CD11c(low)). Mice treated with 120G8 mAb are depleted of B220(high)Ly6C(high)CD11c(low) cells and have a much-reduced ability to produce IFN-alpha in response to in vivo CpG stimulation. The mAb 120G8 stains all and only B220(high)Ly6C(high)CD11c(low) pDC in all lymphoid organs. Immunohistochemical studies performed with this mAb indicate that pDC are located in the T cell area of spleen, lymph nodes, and Peyer's patches. Although the Ag recognized by 120G8 is not yet known, we show that its expression is up-regulated by type I IFN on B cells and DC. Using this mAb in immunofluorescence studies demonstrates strain- and organ-specific differences in the frequency of pDC and other DC subsets. 129Sv mice have a much higher frequency of pDC, together with a lower frequency of conventional CD8alpha(+)CD11c(high) DC, compared with C57BL/6 mice, both in spleen and blood. The higher ability of 129Sv mice to produce IFN-alpha in vivo is related to a higher number of pDC, but also to a higher ability of pDC from 129Sv mice to produce IFN-alpha in vitro in response to viral stimulation.  相似文献   

17.
Lessons from the adrenomedullin knockout mouse   总被引:6,自引:0,他引:6  
Ando K  Fujita T 《Regulatory peptides》2003,112(1-3):185-188
Because vasolidator peptide adrenomedullin (AM) exhibits complicated action, we developed AM knockout mice in order to elucidate the physiological and pathophysiological role of AM. The AM(-/-) mice were embryonic lethal, so we could not evaluate directly the role of AM in this mutant mice. Thus, we loaded angiotensin II (AngII) and salt in AM(+/-) mice, which were viable and fertile. As a result, AngII and salt loading caused coronary vascular damage and left ventricular hypertrophy in AM(+/-) mice more greatly than AM(+/+) mice. Moreover, cuff placement of femoral artery stimulated intimal thickening more severely. This treatment increased local AM levels in AM(+/+) mice but not in AM(+/-) mice. The accelerated organ damage in AM(+/-) mice was accompanied with enhanced production of oxidative stress. Thus, our data suggest that intrinsic AM play a vascular protective role.  相似文献   

18.
19.
The sperm mitochondria-associated cysteine-rich protein (SMCP) is a cysteine- and proline-rich structural protein that is closely associated with the keratinous capsules of sperm mitochondria in the mitochondrial sheath surrounding the outer dense fibers and axoneme. To investigate the function of SMCP, we generated mice with a targeted disruption of the gene Smcp by homologous recombination. Homozygous mutant males on a mixed genetic background (C57BL/6J x 129/Sv) are fully fertile, while they are infertile on the 129/Sv background, although spermatogenesis and mating are normal. Homozygous Smcp(-/-) female mice are fertile on both genetic backgrounds. Electron microscopical examination demonstrated normal structures of sperm head, mitochondria, and tail. In vivo experiments with sperm of Smcp(-/-) 129/Sv mice revealed that the migration of spermatozoa from the uterus into the oviduct is reduced. This result is supported by the observation that sperm motility as determined by the computer-assisted semen analysis system (CASA) is significantly affected as compared to wild-type spermatozoa. In vitro fertilization assays showed that Smcp-deficient spermatozoa are able to bind to the oocyte but that the number of fertilized eggs is reduced by more than threefold relative to the wild-type control. However, removal of the zona pellucida resulted in an unaffected sperm-egg fusion which was monitored by the presence of pronuclei and generation of blastocyts. These results indicate that the infertility of the male Smcp(-/-) mice on the 129/Sv background is due to reduced motility of the spermatozoa and decreased capability of the spermatozoa to penetrate oocytes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号