首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The reactions of six diimine ligands with Cu(II) and Ni(II) halide salts have been investigated. The diimine ligands were Ph2CN(CH2)nNCPh2 (n = 2 (Bz2en, 1a), 3 (Bz2pn, 1b), 4 (Bz2bn, 1c)), N,N′-bis-(2-tert-butylthio-1-ylmethylenebenzene)-2,2′diamino-biphenyl (2), N,N′-bis-(2-chloro-1-ylmethylenebenzene)-1,3-diaminobenzene (3) and N,N′-bis-(2-chloro-1-ylmethylenebenzene)-1,2-ethanediamine (4). Reactions of 1a-c, 2-4 with CuCl2·2H2O in dry ethanol at ambient temperature led to complete or partial hydrolysis of the diimine ligands to ultimately form copper diamine complexes. The non-hydrolyzed complexes of 1b and 1c, [Cu(L)Cl2] (L = 1b, 1c), could be isolated when the reactions were carried out at low temperatures, and the half-hydrolyzed complex [Cu(Bzpn)Cl2] could also be identified via X-ray crystallography. Similarly, reactions of 1a or 1b with NiCl2·6H2O or [NiBr2(dme)] led to rapid hydrolysis of the imines and Ni complexes containing half-hydrolyzed 1a (Bzen; [trans-[Ni(Bzen)2Br2]) and 1b (Bzpn; [Ni(Bzpn)Br2] could be isolated and identified via single crystal X-ray analysis. Kinetic studies were made of the hydrolyses of 1a, 1b in THF and 2 in acetone, in the presence of Cu(II), and of 1a in acetonitrile, in the presence of Ni(II). Activation parameters were determined for the latter reaction and for the copper-catalyzed hydrolysis of 2; the relatively large negative activation entropies clearly indicate rate-determining steps of an associative nature.  相似文献   

2.
New t-butyl-aryl thioethers where the aryl group is 2,6-bis(phosphino)phenyl have been synthesized. The syntheses were completed via sequential ortho-lithiations of t-butylphenylsulfide, followed by chlorophosphine (ClPR2) quenches; symmetric (2,6-bis(diphenylphosphino)phenyl, (4a)) and unsymmetric (2-diisopropylphosphino-6-diphenylphosphino)phenyl, (4b) aryl groups were obtained. Treatment of 4a with Li or Na naphthalenide yielded 2,6-bis(diphenylphosphino)thiophenol 5. Reactions of 4a or 5 with NiCl2 · 6H2O yielded nickel bis(phosphinothiophenolate) 6. Compounds 4a,b, 5 and 6 were characterized by 1H and 31P NMR, and by mass-spectrometry. In addition, 4a, 5 and 6 were characterized by single crystal X-ray diffraction methods.  相似文献   

3.
N,N′-Bis[allylamino]glyoxime, N,N′-bis[anilino]glyoxime, and N,N′-bis[1,2,3,4-tetrahydro-5-naphthalenamino]glyoxime have been prepared from corresponding amines and (E,E)-dichloroglyoxime. These ligands gave orange-red compound with NiCl2 in less acidic medium (pH ∼ 5) that are bis(E,E-dioximato)nickel(II) complexes {[(E,E)-Ni(HL)2]} (1a-3a) and green compounds in acidic medium (pH ∼ 2) that are tris(E,E-dioximato)nickel(II) dichloride complexes {[(E,E)-Ni(LH2)3]Cl2} (1b-3b). The crystal structures of all complexes have been determined by X-ray diffraction on a single crystal. The study of absorption spectra of these two types of complexes shows that they may be converted to each other by addition of acids (1a-3a) or bases (1b-3b) and there is no way for the amphi form.  相似文献   

4.
Condensation of salicylic aldehyde with 8-aminoquinoline afforded (ONN)-tridentate ligand 2-N-(quinoline-8-yl)iminomethylphenol (1), which was obtained as a crystalline solid for the first time and characterized by X-ray diffraction. Reaction between 1 and phenyltrichlorosilane in the presence of triethylamine results in the formation of the 1:1 chelate complex dichloro-[2-N-(quinoline-8-yl)imino-methylphenolato]-phenylsilane (2a) bearing a hexacoordinate silicon atom. The crystal structure of 2aCHCl3 reveals a rare coordination pattern: Although carrying two chlorine atoms, the hexacoordinate Si atom coordinates the tridentate ligand’s imine N atom in the trans position to the phenyl group. Silylation of 1 with hexamethyldisilazane and synthesis of dichloro-[2-N-(quinoline-8-yl)iminomethylphenolato]-methylsilane (2b) yielded few crystals of [2-N-(quinoline-8-yl)iminomethylphenolato]-salicylaldiminato-methylsiliconium chloride (2b′) as byproduct. 2b′ is the first structurally characterized main group element complex of salicylaldimine. This bidentate ligand exhibits an unusually strong N → Si coordination.  相似文献   

5.
1-Benzothiazol-2-yl-3,5-dimethyl-1H-pyrazole (1a) and 1-benzothiazol-2-yl-5-(2-hydroxyphenyl)-3-methyl-1H-pyrazole-4-carboxylic acid methyl ester (1b) were reacted with the hexahydrates of cobalt(II) chloride, cobalt(II) nitrate and cobalt(II) perchlorate to give the corresponding complexes 2a-4a and 2b-5b, respectively. Obtained compounds differ in coordination spheres of central atoms. The complex 2a includes a fivefold coordinated cobalt(II) ion, whereas 3a shows a distorted octahedral configuration around the cobalt(II) ion. All complexes were characterised by FTIR spectroscopy, MS and elemental analysis. The X-ray structures of 2a, 3a and 5b complexes were also solved. The cytotoxic properties of the ligand 1a and both series of Co(II) complexes were examined on human leukemia NALM-6 and HL-60 cells and melanoma WM-115 cells. The ligands, were found to have very low cytotoxicity. Complex 3b exhibited the highest cytotoxic activity with IC50 values in the range of 6.9-17.1 μM for three examined cell lines.  相似文献   

6.
4-aryl-2-amino-6-(4-hydroxy-2-oxo-2H-chromen-3-yl)-pyridin-3-carbonitrile (1), 4-aryl-2-oxo-6-(4-hydroxy-2-oxo-2H-chromen-3-yl)-pyridin-3-carbonitriles (2a-2c), 3-(6-aryl-1,2,5,6- tetrahydro-2-thioxopyrimidin-4-yl)-4-hydroxy-2H-chromen-2-one (3a, 3b) and pyrazol-3-yl-4-hydroxycoumarin derivatives (4a-4c, 5, 6a, 6b, 7a, 7b, and 8a-8c) were prepared in order to measure their % change dopamine release in comparison to amphetamine as reference, using PC-12 cells in different concentrations. In addition, the molecular modeling study of the compounds into 3BHH receptor was also demonstrated. The calculated inhibition constant (ki) implemented in the AutoDock program revealed identical correlation with the experimental results to that obtained binding free energy (ΔGb) as both parameters revealed reasonable correlation coefficients (R2) being 0.51 involving 10 compounds; (1, 2b, 2c, 3a, 3b, 4a, 4b, 6a, and 8c).  相似文献   

7.
The reactivity of [PtCl(η2-CH2CHR)(tmeda)]+ (R = H, 1a, or Me, 1b; tmeda = N,N,N,N′-tetramethyl-1,2-diaminoethane) towards some ambident nucleophiles like anilines and phenolate anion has been tested. The reaction of 1a with N-methylaniline gives immediately N-addition to the coordinated ethene (3a), but, in the presence of an inorganic carbonate, a partial rearrangement, with the para carbon of the phenyl ring taking the place of nitrogen, is observed (4a and 5a). Reaction with a tertiary aromatic amine, such as N,N-dimethylaniline, leads exclusively to the C-coupled species. The phenolate anion acts initially as an oxygen donor, however the resulting species (6a), in contact with free phenol, rearranges to C-bonded species (7a). For free phenol/6a ratios ? 5 the rearranged product has an isomeric ortho/para ratio of ≈3. For lower free phenol/6a ratios (? 1) oligomeric complexes, in which two or three platinum ethanide moieties are bound to the same phenol ring, are also formed. In the case of 1b, the above described reactivity has to compete with the base-induced deprotonation of propene, leading to formation of the allyl-bridged platinum dimer [{PtCl(tmeda)}(μ-η13-CHCHCH2){Pt(tmeda)}]+. The X-ray crystal structure of 1b has also been determined; the structural parameters are very similar to those previously reported for 1a. DFT calculations have shown a similar activation of the two complexes towards nucleophilic addition at the coordinated olefin, although in 1b the electrophilic character of the olefin is masked by the Brønsted acidity of the propene methyl protons.  相似文献   

8.
Four analogs with 3′-O-alkyl groups (9a: CH3, 9b: C2H5, 9c: C13H27 or 9d: CH2Ph) instead of the 3′-O-sulfate anion in salacinol (1), a naturally occurring potent α-glucosidase inhibitor, were synthesized by the coupling reaction of 1,4-dideoxy-1,4-epithio-d-arabinitols (18a and 18b) with appropriate epoxides (10a-10d). These analogs showed equal or considerably higher inhibitory activity against rat small intestinal α-glucosidases than the original sulfate (1), and one of them (9d) was found more potent than currently used α-glucosidase inhibitors as antidiabetics. Thus, introduction of a hydrophobic moiety at the C3′ position of this new class of inhibitor was found beneficial for onset of stronger inhibition against these enzymes.  相似文献   

9.
Yellow cyclometalatated ruthenium (II) complexes [Ru(o-X-2-py)(MeCN)4]PF6 (1, X = C6H4 (a) or 4-MeC6H3 (b)) react readily with 1,10-phenanthroline (LL) in MeCN to give brownish-red species cis-[Ru(o-X-2-py)(LL)(MeCN)2]PF6 in high yields. The same reaction of the same complexes under the same conditions with 2,2′-bipyridine results in a significant color change from yellow to brownish-orange suggesting a formation of new species. Surprisingly, X-ray structural studies of these two complexes showed that they are structurally indistinguishable from the starting complexes 1. Referred to as complexes 4a,b, the new compounds are slightly more stable in the air though their spectral characteristics in solution are similar to 1a,b. The diffuse reflectance spectroscopy is so far the only technique that indicated differences between 1 and 4.  相似文献   

10.
A new class of amidoalkyl dibenzofuranols and 1H-benzo[2,3]benzofuro[4,5-e][1,3]oxazin-3(2H)-ones was synthesized in very good yields through polyphosphoric acid supported on silica (PPA-SiO2) catalyzed one-pot three component condensation of 2-dibenzofuranol; aromatic aldehydes and acetamide or benzamide or urea under solvent free conditions. At 125 °C the reaction led to the formation of amidoalkyl dibenzofuranols 5a-k where as at 160 °C cyclization take place to give oxazin-3(2H)-one analogues 6a-e. Screening all the 16 compounds for in vitro antimycobacterial activity against Mycobacterium tuberculosis H37Rv (MTB) resulted 1-((4-chlorophenyl)(2-hydroxydibenzo[b,d]furanyl)methyl)urea 5h; 1-((4-bromophenyl)(2-hydroxydibenzo[b,d]furanyl)methyl)urea 5i; 1-phenyl-1H-benzo[2,3]benzo furo[4,5-e][1,3]oxazin-3(2H)-one 6a (MIC 3.13 μg/mL) and 1-(4-chlorophenyl)-1H-benzo[2,3]benzofuro[4,5-e][1,3]oxazin-3(2H)-one 6b; 1-(4-bromophenyl)-1H-benzo[2,3]benzofuro [4,5-e][1,3]oxazin-3(2H)-one 6c (MIC 1.56 μg/mL) as most active antitubercular agents.  相似文献   

11.
Complexes of the type (η4-BuC5H5)Fe(CO)2(P) (P = PPh2Py 3, PPhPy24, PPy35; Py = 2-pyridyl) were satisfactorily prepared. Upon treatment of 3 with M(CO)3(EtCN)3 (M = Mo, 6a; W, 6b), the pyridyl N-atom could be coordinated to the metal M, which then eliminates a CO ligand from the Fe-centre and induced an oxidative addition of the endo-C-H of (η4-BuC5H5). This results in a bridged hydrido heterodimetallic complex [(η5-BuC5H4)Fe(CO)(μ-P,N-PPh2Py)(μ-H)M(CO)4] (M = Mo, 7a, 81%; W, 7b, 76%). The reaction of 4 or 5 with 6a,b did not give the induced oxidative addition, although these complexes contain more than one pyridyl N-atom. The reaction of 4 with M(CO)4(EtCN)2 (M = Mo, 9a; W, 9b) produced heterodimetallic complexes [(η4-BuC5H5)Fe(CO)2(μ-P:N,N′-PPhPy2)M(CO)4] (M = Mo, 10a, 81%; W, 10b, 83%). Treatment of 5 with 6a,b gave [(η4-BuC5H5)Fe(CO)2(μ-P:N,N′,N″-PPy3)M(CO)3] (M = Mo, 12a, 96%; W, 12b, 78%).  相似文献   

12.
The synthesis of the unsaturated 4,6-dideoxy-3-fluoro-2-keto-β-d-glucopyranosyl nucleosides of 5-fluorouracil (6a), N6-benzoyl adenine (6b), uracil (6c), thymine (6d) and N4-benzoyl cytosine (6e), is described. Monoiodination of compounds 1a,b, followed by acetylation, catalytic hydrogenation and finally regioselective 2′-O-deacylation afforded the partially acetylated dideoxynucleoside analogues of 5-fluorouracil (5a) and N6-benzoyl adenine (5b), respectively. Direct oxidation of the free hydroxyl group at the 2′-position of 5a,b, with simultaneous elimination reaction of the β-acetoxyl group, afforded the desired unsaturated 4,6-dideoxy-3-fluoro-2-keto-β-d-glucopyranosyl derivatives 6a,b. Compounds 1c-e were used as starting materials for the synthesis of the dideoxy unsaturated carbonyl nucleosides of uracil (6c), thymine (6d) and N4-benzoyl cytosine (6e). Similarly a protection-selective deprotection sequence followed by oxidation of the free hydroxyl group at the 2′-position of the dideoxy benzoylated analogues 9c-e with simultaneous elimination reaction of the β-benzoyl group, gave the desired nucleosides 6c-e. None of the compounds was inhibitory to a broad spectrum of DNA and RNA viruses at subtoxic concentrations. The 5-fluorouracil derivative 6a was more cytostatic (50% inhibitory concentration ranging between 0.2 and 12 μM) than the other compounds.  相似文献   

13.
Six new coordination polymers namely [{Cu(μ-L1)(CH3COO)2}]1a, [{Cu(μ-L1)2(CH3COO)2]1b, [{Cu(μ-L1)2(H2O)2}(NO3)2]2, [{Cu(μ-L1)2(H2O)2}(ClO4)2]3, [{Cu(μ-L1)(H2O)2(μ-SO4)}·3H2O]4a and [{Cu(μ-L1)2SO4}·X]4b (L1 = N,N′-bis-(3-pyridyl)terephthalamide) have been synthesized. Single crystal structures of five coordination polymers namely 1a, 2-4b and the free ligand L1 are discussed in the context of the effect of conformation dependent ligating topology of the ligands, hydrogen bonding backbone, counter anions on the resultant supramolecular structures observed in these coordination polymers. It was revealed from the single crystal X-ray structure analysis that conformation dependent ligating topology of the bis-amide ligand L1, counter anion’s ligating strength dependent metal: ligand ratio, hydrogen bonding ability of the ligand as well as counter anions are responsible for the formation of 1D zigzag, 1D looped chain, 2D corrugated sheet in 1a, 2-3, 4a4b, respectively. By following in situ coordination polymer crystallization technique, anion binding and separation studies have also been performed; nitrate anion has been separated as neat coordination polymer crystals from a complex mixture of anions.  相似文献   

14.
The behavior in solution and in the solid state of 3(5)-phenyl-1H-pyrazole (7), 3(5)-phenyl-4-chloro-1H-pyrazole (6), 3(5)-phenyl-4-bromo-1H-pyrazole (1), and 3(5)-p-chlorophenyl-4-bromo-1H-pyrazole (8) is discussed in relation to their 3-phenyl (a)/5-phenyl (b) annular tautomerism. Two new X-ray structures are reported: a new polymorph of 1 and the structure of 6. The new polymorph is a 3-phenyl-1H-pyrazole 1a′ trimer while the new structure is a 5-phenyl-1H-pyrazole 6b trimer. The combined use of NMR at low temperature and DFT calculations allows to discuss the tautomerism of the first three pyrazoles and to predict that the fourth one should be a tetramer formed by both tautomers, 8a and 8b.  相似文献   

15.
A series of 2,6-bis(imino)pyridyl iron(III) complexes of the general formula [2,6-(ArNCMe)2C5H3N]FeCl3 (Ar = -C6H5, 3a; 2-MeC6H4, 3b; 2-EtC6H4, 3c; 2-iPrC6H4, 3d; cyclohexyl, 3e; 4-MeC6H4, 3f; 4-iPrC6H4, 3g; 4-FC6H4, 3h and 4-CF3C6H4, 3i), activated by alkylaluminum, MAO or MMAO, have been investigated in 1,3-butadiene polymerization. Iron(III) complex (3a), with the least steric hindrance around the metal center, gives polymer up to 99% in yield in 4 h (butadiene to iron ratio = 1000), and trans-1,4 selectivity about 94.7% at room temperature in toluene, while those (3b-3d) bearing alkyl substituents at the 2-position of each N-aryl ring exhibit much lower catalytic activity and tunable trans-1,4 selectivity. Introduction of an alkyl group at the 4-position (para-position, 3f and 3g) exerts a slightly beneficial effect on the trans-1,4 selectivity, while electronegative groups at the same position (3h and 3i) affect negatively on the activity. The effects of temperature, types of cocatalyst and Al/Fe molar ratio on the polymerization behavior are investigated. More importantly, a mechanism for forming trans-1,4 structure is also proposed.  相似文献   

16.
A series of novel ureas and thioureas of 3-decladinosyl-3-hydroxy 15-membered azalides, were discovered, structurally characterized and biologically evaluated. They have shown good antibacterial activity against selected Gram-positive and Gram-negative bacterial strains. These include N″ substituted 9a-(N′-carbamoyl-γ-aminopropyl)- (6a,c), 9a-(N′-thiocarbamoyl-γ-aminopropyl)- (7a,e), 9a-[N′-(β-cyanoethyl)-N′-(carbamoyl-γ-aminopropyl)]- (9a-c, 9g) 9a-[N′-(β-cyanoethyl)-N′-(thiocarbamoyl-γ-aminopropyl)]-derivatives (10d-f) of 5-O-desosaminyl-9-deoxo-9-dihydro-9a-aza-9a-homoerythronolide A (3).Among the synthesized compounds thiourea 7a and urea 9b have shown substantially improved activity comparable to azithromycin (1) and significantly better activity than the 3-decladinosyl-azithromycin (2) and the parent 3-cladinosyl analogues against efflux-mediated resistant S. pneumoniae.  相似文献   

17.
Reduction of RuQ3 (1a, Q = 8-quinolinolato) with Zn/Hg in the presence of various π-acceptor ligands in ethanol affords RuQ2L2 (L2 = (dimethylsulfoxide)2 (2); (4-picoline)2 (3); N,N′-dimethyl-1,4-diazabuta-1,3-diene, dab (4); cyclooctadiene, COD (5); norborna-2,5-diene, nbd (6)). Compound 6 is isolated as an equimolar mixture of cis,trans (6a) and trans,cis (6b) isomers, which can be separated by column chromatography. DFT calculations have been performed on 6a and 6b. Oxidation of 3 and 6b affords the corresponding ruthenium(III) species 7 and 8, respectively. The structures of 2, 3, 4 and 6 have been determined by X-ray crystallography.  相似文献   

18.
The synthesis, characterization, and application in asymmetric catalytic cyclopropanation of Rh(III) and Ir(III) complexes containing (Sa,RC,RC)-O,O′-[1,1′-binaphthyl-2,2′-diyl]-N,N′-bis[1-phenyl-ethyl]phosphoramidite (1) are reported. The X-ray structures of the half-sandwich complexes [MCl2(C5Me5)(1P)] (M = Rh, 2a; M = Ir, 2b) show that the metal-phosphoramidite bond is significantly shorter in the Ir(III) analog. Chloride abstraction from 2a (with CF3SO3SiMe3 or with CF3SO3Me) and from 2b (with AgSbF6) gives the cationic species [MCl(C5Me5)(1,2-η-1P)]+ (M = Rh, 3a; M = Ir, 3b), which display a secondary interaction between the metal and a dangling phenethyl group (NCH(CH3)Ph) of the phosphoramidite ligand, as indicated by NMR spectroscopic studies. Complexes 3a and 3b slowly decompose in solution. In the case of 3b, the binuclear species [Ir2Cl3(C5Me5)2]+ is slowly formed, as indicated by an X-ray study. Preliminary catalytic tests showed that 3a cyclopropanates styrene with moderate yield (35%) and diastereoselectivity (70:30 trans:cis ratio) and with 32% ee (for the trans isomer).  相似文献   

19.
Schiff bases obtained from (1R,2R)-(−)-cyclohexanediamine and 5-chloro- (1) or 5-bromosalicylaldehyde (2) are used as ligands for Zn(II) resulting in [(1R,2R)-cyclohexylenebis(5-chlorosalicylideneiminato)]zinc(II) (1a) and (1R,2R)-[cyclohexylenebis-(5-bromosalicylideneiminato)]zinc(II) (2a). In the presence of pyridine, 1a and 2a turned out into (1R,2R)-[cyclohexylenebis(5-chlorosalicylideneiminato)pyridine]zinc(II) (1b) and (1R,2R)-[cyclohexylenebis(5-bromosalicylideneiminato)pyridine]zinc(II) (2b). Coordination sphere of Zn(II) atoms in both pyridine adducts is a slightly distorted square pyramid, with N2O2 chromophore units and axially bonded pyridine as it is evident from single crystal X-ray analyzes of 1b and 2b. The asymmetric unit of 1b and 2b contains two molecules of complexes. The observed distances of Zn-O in both molecules indicate the rigidity of the tetradentate ligand as a main factor influencing the geometry of coordination sphere. Obtained complexes were characterized by 1H NMR in solution and 13C CP MAS NMR. NOE differential experiments revealed significant steric interactions between C(6)-H in the phenyl ring, cyclohexyl C(1)-H and imine hydrogen. Significant coordination shifts of carbons in the closest proximity to the coordination center were noted as well.  相似文献   

20.
Dimethyl platinum(II) complexes [PtMe2(NN)] {NN = bu2bpy (4,4′-di-tert-butyl-2,2′-bipyridine) (1a), bpy (2,2′-bipyridine) (1b), phen (1,10-phenanthroline) (1c)} reacted with commercial 3-bromo-1-propanol in the presence of 1,3-propylene oxide to afford cis, trans- [PtBrMe2{(CH2)3OH}(NN)] (NN = bu2bpy (2a), bpy (2b), phen (2c)). On the other hand, [PtMe2(NN)] (1a)-(1b) reacted with the trace of HBr in commercial 3-bromo-1-propanol to give [PtBr2(NN)] (NN = bu2bpy (3a), bpy (3b)). The reaction pathways were monitored by 1H NMR at various temperatures. Treatment of 1a-1b with a large excess of 3-bromo-1-propanol at −80 °C gave the corresponding methyl(hydrido)platinum(IV) complexes [PtBr(H)Me2(NN)] (NN = bu2bpy (4a), bpy (4b)) via the oxidative addition of dimethyl platinum(II) complexes with HBr. The complexes [PtBr(H)Me2(NN)] decomposed by reductive elimination of methane above −20 °C for bu2bpy and from −20 to 0 °C for bpy analogue to give methane and platinum(II) complexes [PtBrMe(NN)] (5a)-(5b) and then decomposed at about 0 °C to yield [PtBr2(NN)] and methane. When the reactions were performed at a molar ratio of Pt:RX/1:10, the corresponding complexes [PtBrMe(NN)] (5a)-(5b) were also obtained. The crystal structure of the complex 3b shows that platinum adopts square planar geometry with a twofold axis through the platinum atom. The Pt…Pt distance (5.164 Å) is considerably larger than the interplanar spacing (3.400 Å) and there is no platinum-platinum interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号