首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Production of nitric oxide (NO), an evolutionarily conserved, intercellular signaling molecule, appears to be required for the maintenance of the larval state in the gastropod mollusc Ilyanassa obsoleta. Pharmacological inactivation of endogenous nitric oxide synthase (NOS), the enzyme that generates NO, can trigger metamorphosis in physiologically competent larvae of this species. Neuropils in the brains of these competent larvae display histochemical reactivity for NADPH diaphorase (NADPHd), an indication of neuronal NOS activity. The intensity of NADPHd staining is greatest in the neuropil of the apical ganglion (AG), a region of the brain that contains the apical sensory organ and that innervates the bilobed ciliated velum, the larval swimming and feeding organ. Once metamorphosis is initiated, the intensity of NADPHd staining in the AG and presumably, concomitant NO production, decline. The AG is finally lost by the end of larval metamorphosis, some 4 days after induction. To determine if the neurons of the AG are a source of larval NO, we conducted immunocytochemical studies on larval Ilyanassa with commercially available antibodies to mammalian neuronal NOS. We localized NOS-like immunoreactivity (NOS-IR) to 3 populations of cells in competent larvae: somata of the AG and putative sensory neurons in the edge of the mantle and foot. Immunocytochemistry on pre-competent larvae demonstrated that numbers of NOS-IR cells in the AG increase throughout the planktonic larval stage.  相似文献   

2.
3.
Several neuroactive compounds have been implicated as playingroles in the circuitry that controls larval metamorphosis inmarine molluscs. For the caenogastropod Ilyanassa obsoleta,results of neuroanatomical studies suggest that the productionof nitric oxide (NO) increases throughout the planktonic stageand that NO production is necessary for the maintenance of thelarval state, especially as it becomes metamorphically competent.Bath application or injection of exogenous serotonin (5HT) caninitiate metamorphosis in competent larvae, and exogenous NOcan inhibit such serotonergically-induced metamorphosis. Inhibitionof endogenous nitric oxide synthase (NOS) can also trigger larvalmetamorphosis. The production of endogenous NO appears to decreaseconcurrently with the initiation of metamorphosis, but the specificinteractions between serotonergic and nitrergic neurons areunknown. Evidence in support of NO acting to up-regulate theenzyme guanylyl cyclase (GC) is still equivocal. Thus, we donot yet know if NO exerts its effects through the actions ofcyclic 3',5'-guanosine monophosphate (cGMP) or by a cGMP-independentmechanism. The ubiquity of nitrergic signalling and its significancefor developing molluscan embryos and larvae are still the subjectof speculation and require further investigation.  相似文献   

4.
The bryozoan Bugula neritina is a cosmopolitan marine fouling species that causes major fouling problems in sub-tropical waters. Settlement of B. neritina larvae can be triggered without an obvious external cue. Here, the negative regulatory role of nitric oxide (NO) during larval settlement of B. neritina was demonstrated to be mediated by cyclic guanosine monophosphate (cGMP). Although the regulatory role of the NO-p38 MAPK signaling axis in larval settlement was not evident, inhibition of nitric oxide synthase (NOS) led to the deactivation of p38 MAPK. Exclusive localization of NO and NO signaling components in sensory-related organs of the larvae is consistent with its signal transduction function in metamorphosis. Overall, this study provides new insights into the regulatory roles of the NO-p38MAPK/cGMP pathway in B. neritina settlement.  相似文献   

5.
Nitric oxide (NO) has been shown to play an important role in the plant response to biotic and abiotic stresses in Arabidopsis mutants with lower or higher levels of endogenous NO. The exogenous application of NO donors or scavengers has also suggested an important role for NO in plant defense against environmental stress. In this study, rice plants under drought and high salinity conditions showed increased nitric oxide synthase (NOS) activity and NO levels. Overexpression of rat neuronal NO synthase (nNOS) in rice increased both NOS activity and NO accumulation, resulting in improved tolerance of the transgenic plants to both drought and salt stresses. nNOS-overexpressing plants exhibited stronger water-holding capability, higher proline accumulation, less lipid peroxidation and reduced electrolyte leakage under drought and salt conditions than wild rice. Moreover, nNOS-overexpressing plants accumulated less H2O2, due to the observed up-regulation of OsCATA, OsCATB and OsPOX1. In agreement, the activities of CAT and POX were higher in transgenic rice than wild type. Additionally, the expression of six tested stress-responsive genes including OsDREB2A, OsDREB2B, OsSNAC1, OsSNAC2, OsLEA3 and OsRD29A, in nNOS-overexpressing plants was higher than that in the wild type under drought and high salinity conditions. Taken together, our results suggest that nNOS overexpression suppresses the stress-enhanced electrolyte leakage, lipid peroxidation and H2O2 accumulation, and promotes proline accumulation and the expression of stress-responsive genes under stress conditions, thereby promoting increased tolerance to drought and salt stresses.  相似文献   

6.
7.
SUMMARY The gas nitric oxide (NO), and in some cases its downstream second messenger, cyclic guanosine monophosphate (cGMP) function in different taxa to regulate the timing of life-history transitions. Increased taxonomic sampling is required to foster conclusions about the evolution and function of NO/cGMP signaling during life-history transitions. We report on the function and localization of NO and cGMP signaling during metamorphosis of the nudibranch Phestilla sibogae . Pharmacological manipulation of NO or cGMP production in larvae modulated responses to a natural settlement cue from the coral Porites compressa in a manner that suggest inhibitory function for NO/cGMP signaling. However, these treatments were not sufficient to induce metamorphosis in the absence of cue, a result unique to this animal. We show that induction of metamorphosis in response to the settlement cue is associated with a reduction in NO production. We documented the expression of putative NO synthase (NOS) and the production of cGMP during larval development and observed no larval cells in which NOS and cGMP were both detected. The production of cGMP in a bilaterally symmetrical group of cells fated to occupy the distal tip of rhinophores is correlated with competence to respond to the coral settlement cue. These results suggest that endogenous NO and cGMP are involved in modulating responses of P. sibogae to a natural settlement cue. We discuss these results with respect to habitat selection and larval ecology.  相似文献   

8.
Tail regression in tadpoles is one of the most spectacular events in anuran metamorphosis. Reactive oxygen species and oxidative stress play an important role during this process. Presently, the cell- and tissue-specific localization of antioxidant enzymes such as superoxide dismutase (SOD) and catalase as well as neuronal and inducible nitric oxide synthase isoforms (nNOS and iNOS) responsible for production of nitric oxide (NO) were carried out during different stages of metamorphosis in tail of tadpole Xenopus laevis. NO also has profound effect on the mitochondrial function having its own nitric oxide NOS enzyme. Hence, in situ staining for NO and mitochondria also was investigated. The distribution of nNOS and iNOS was found to be stage specific, and the gene expression of nNOS was up-regulated by thyroxin treatment. In situ staining for NO and mitochondria shows co-localization, suggesting mitochondria being one of the sources of NO. SOD and catalase showed significant co-localization during earlier stages of metamorphosis, but before the tail regression begins, there was a significant decrease in activity as well as co-localization suggesting increased ROS accumulation. These findings are discussed in terms of putative functional importance of ROS and cytoplasmic as well as mitochondrial derived NO in programmed cell death in tail tissue.  相似文献   

9.
This paper concerns the role of nitric oxide (NO) in controlling metamorphosis in the marine gastropod Crepidula fornicata. Metamorphosis was stimulated by the nitric oxide synthase (NOS) inhibitors AGH (aminoguanidine hemisulfate) and SMIS (S-methylisothiourea sulfate) at concentrations of about 100-1000 micromol l(-1) and 50-200 micromol l(-1), respectively. Metamorphosis was not, however, induced by the NOS inhibitor l-NAME (l-N(G)-nitroarginine methyl ester) at even the highest concentration tested, 500 micromol l(-1). Moreover, pre-incubation with l-NAME at 20 and 80 micromol l(-1) did not increase the sensitivity of competent larvae to excess K(+), a potent inducer of metamorphosis in this species; we suggest that either l-NAME is ineffective in suppressing NO production in larvae of C. fornicata, or that it works only on the constitutive isoform of the enzyme. In contrast, metamorphosis was potentiated by the guanylate cyclase inhibitor ODQ (1H-[1,2,4]oxadiazolo[4,3, -a]quinoxalin-1-one) in response to a natural metamorphic inducer derived from conspecific adults. Because NO typically stimulates cGMP production through the activation of soluble guanylate cyclase, this result supports the hypothesis that NO acts as an endogenous inhibitor of metamorphosis in C. fornicata. The expression of NOS, shown by immunohistochemical techniques, was detected in the apical ganglion of young larvae but not in older larvae, further supporting the hypothesis that metamorphosis in C. fornicata is made possible by declines in the endogenous concentration of NO during development.  相似文献   

10.
Summary Complex life cycles are ancient and widely distributed, particularly so in the marine environment. Generally, the marine biphasic life cycle consists of pre‐reproductive stages that exist in the plankton for various periods of time before settling and transforming into a benthic reproductive stage. Pre‐reproductive stages are frequently phenotypically distinct from the reproductive stage, and the life cycle transition (metamorphosis) linking the larval and juvenile stages varies in extent of change but is usually rapid. Selection of suitable adult sites apparently involves the capacity to retain the larval state after metamorphic competence is reached. Thus two perennial and related questions arise: How are environmentally dependent rapid transitions between two differentiated functional life history stages regulated (a physiological issue) and how does biphasy arise (a developmental issue)? Two species of solitary ascidian, a sea urchin and a gastropod, share a nitric oxide (NO)‐dependent signaling pathway as a repressive regulator of metamorphosis. NO also regulates life history transitions among several simple eukaryotes. We review the unique properties of inhibitory NO signaling and propose that (a) NO is an ancient and widely used regulator of biphasic life histories, (b) the evolution of biphasy in the metazoa involved repression of juvenile development, (c) functional reasons why NO‐based signaling is well suited as an inhibitory regulator of metamorphosis after competence is reached, and (d) signaling pathways that regulate metamorphosis of extant marine animals may have participated in the evolution of larvae.  相似文献   

11.
Many marine organisms spend the early part of their lives as larvae suspended in the water column before metamorphosing into benthic reproductive adults. Metamorphosis does not occur until a larva has become competent to respond to appropriate stimuli and after a suitable habitat for the young juvenile has been encountered. The gaseous neurotransmitter nitric oxide is thought to be important in the regulation of metamorphosis by holding the organism in the larval state. We have investigated expression of the neuronal nitric oxide synthase (nNOS) gene in larval and metamorphosing individuals of the marine mud snail Ilyanassa obsoleta. Our results indicate that nNOS is expressed at constant levels throughout larval development. In contrast, expression of nNOS decreases markedly during the first 24 h of metamorphosis. Our observations support previous findings that demonstrate that nitric oxide is present in larvae though competence. The decrease in nNOS gene expression that occurs during metamorphosis corresponds with a previously described reduction in nNOS activity.  相似文献   

12.
Nitric oxide (NO) is known for its role in the activation of plant defense responses. To examine the involvement and mode of action of NO in plant defense responses, we introduced calmodulin-dependent mammalian neuronal nitric oxide synthase (nNOS), which controls the CaMV35S promoter, into wild-type and NahG tobacco plants. Constitutive expression of nNOS led to NO production and triggered spontaneous induction of leaf lesions. Transgenic plants accumulated high amounts of H2O2, with catalase activity lower than that in the wild type. nNOS transgenic plants contained high levels of salicylic acid (SA), and they induced an array of SA-, jasmonic acid (JA)-, and/or ethylene (ET)-related genes. Consequently, NahG co-expression blocked the induction of systemic acquired resistance (SAR)-associated genes in transgenic plants, implying SA is involved in NO-mediated induction of SAR genes. The transgenic plants exhibited enhanced resistance to a spectrum of pathogens, including bacteria, fungi, and viruses. Our results suggest a highly ranked regulatory role for NO in SA-, JA-, and/or ET-dependent pathways that lead to disease resistance.  相似文献   

13.
In order to characterize Pecten maximus metamorphosis within a hatchery environment, the relationships existing among the various larval rearing parameters, the biochemical composition of the larvae and metamorphosis have been determined. Metamorphosis levels are correlated with the percentages of double ring larvae, as well as with the larval lipid content. A multiple regression incorporating the percentage of double ring larvae and larval lipid content shows that these two combined parameters explain 50 % of the total metamorphosis variance, with an equal relative importance for each of them. In an attempt to identify other possible endogenous markers, the kinetics of biogenic amines were also examined throughout larval and post-larval development. A steady increase in serotonin and dopamine levels was recorded during larval development while a sudden decrease in both molecules was noted during metamorphosis. It is suggested that these two amines may be used as indicators of larval competence for P. maximus metamorphosis.  相似文献   

14.
《Journal of Asia》2002,5(2):175-180
Diflubenzuron (DFB) has been known to prevent metamorphosis of silkworm, Bombyx mori, from larval to pupal stage at low dose exposure. To explain this inhibitory action of DFB, a hypothesis was raised that DFB acts like juvenile hormone (JH) or DFB inhibits JH esterase to increase endogenous JH titer. A JH bioassay using isolated abdomen clearly indicates that DFB does not act as JH analog because DFB did not induce vitellogenesis in the isolated female abdomen, while endogenous JHs did significantly. General esterase activities in hemolymph were lower in DFB-treated fifth instar larvae than in the control larvae, but there was no difference between fat body esterase activities in both groups. Two hemolymph esterases (‘E1’ and ‘E2’) of the fifth instar larvae were separated and visualized by α-and β-naphthyl acetate. From in vitro incubation experiment, the cathodal esterase (‘E1’) was sensitive to DFB at its nanomolar range. Considering the fact that early fifth instar larvae have high level of JH esterase in the hemolymph, these results suggest that DFB inhibit larval to pupal metamorphosis by blocking JH degradation, which increases endogenous JH titer especially at the critical period when the larvae determine metamorphic development at the following molt.  相似文献   

15.
16.
Microorganisms have been reported to induce settlement and metamorphosis in a wide range of marine invertebrate species. However, the primary cue reported for metamorphosis of coral larvae is calcareous coralline algae (CCA). Herein we report the community structure of developing coral reef biofilms and the potential role they play in triggering the metamorphosis of a scleractinian coral. Two-week-old biofilms induced metamorphosis in less than 10% of larvae, whereas metamorphosis increased significantly on older biofilms, with a maximum of 41% occurring on 8-week-old microbial films. There was a significant influence of depth in 4- and 8-week biofilms, with greater levels of metamorphosis occurring in response to shallow-water communities. Importantly, larvae were found to settle and metamorphose in response to microbial biofilms lacking CCA from both shallow and deep treatments, indicating that microorganisms not associated with CCA may play a significant role in coral metamorphosis. A polyphasic approach consisting of scanning electron microscopy, fluorescence in situ hybridization (FISH), and denaturing gradient gel electrophoresis (DGGE) revealed that coral reef biofilms were comprised of complex bacterial and microalgal communities which were distinct at each depth and time. Principal-component analysis of FISH data showed that the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Cytophaga-Flavobacterium of Bacteroidetes had the largest influence on overall community composition. A low abundance of Archaea was detected in almost all biofilms, providing the first report of Archaea associated with coral reef biofilms. No differences in the relative densities of each subdivision of Proteobacteria were observed between slides that induced larval metamorphosis and those that did not. Comparative cluster analysis of bacterial DGGE patterns also revealed that there were clear age and depth distinctions in biofilm community structure; however, no difference was detected in banding profiles between biofilms which induced larval metamorphosis and those where no metamorphosis occurred. This investigation demonstrates that complex microbial communities can induce coral metamorphosis in the absence of CCA.  相似文献   

17.
The relationship between rate of larval development and the potential to prolong larval life was examined for larvae of the marine prosobranch gastropod Crepidula plana Say. Larvae were maintained in clean glass dishes at constant temperatures ranging from 12–29°C and fed either Isochrysis galbana Parke (ISO) or a Tahitian strain of Isochrysis species (T-ISO). Under all conditions, larvae grew at constant rates, as determined by measurements of shell length and tissue biomass. Most larvae eventually underwent spontaneous metamorphosis. Regardless of temperature, faster growth was associated with a shorter planktonic stage prior to spontaneous metamorphosis. Within an experiment, higher temperatures generally accelerated growth rates and reduced the number of days from hatching to spontaneous metamorphosis. However, growth rates were independent of temperature for larvae fed ISO at 25 and 29°C and for larvae fed T-ISO at 20 and 25°C. Where growth rates were unaffected by temperature, time to spontaneous metamorphosis was similarly unaffected. Maximum durations of larval life at a given temperature were shorter for larvae of Crepidula plana than for those of the congener C. fornicata (L.), although both species grew at comparable rates. Interpretations of the ecological significance of these interspecific differences in delay capabilities will require additional data on adult distributions and larval dispersal patterns in the field.  相似文献   

18.
The marine mud snail, Tritia (=Ilyanassa) obsoleta, displays a biphasic life cycle. During the initial phase of early development, embryos hatch from benthic egg capsules to become weakly swimming veliger larvae. In the second phase, adult T. obsoleta are facultative carnivores and major agents of community disturbance. Metamorphosis is the irreversible developmental event that links these two life history stages. When physiologically competent, larvae can respond to appropriate environmental cues by settling onto their mudflat habitat and transforming themselves into miniature adult snails. Two neurotransmitters—serotonin and nitric oxide—have opposing effects on the metamorphic process in this species. In multiple other species of gastropod and bivalve molluscs, a third neurotransmitter, the classically inhibitory compound γ‐aminobutyric acid (GABA), can induce settlement or metamorphosis upon external application to competent larvae. In this situation, GABA is presumed to mimic the action of ligands from the juvenile environment that bind to larval chemosensory receptors and activate the metamorphic pathway. Results of our experiments contradict this commonly reported action of GABA on molluscan larvae. External application of GABA to competent larvae of T. obsoleta elicited no response, but instead attenuated the action of serotonin (5‐HT), a metamorphic inducer. Our investigations into the responses of larval T. obsoleta to multiple GABAergic reagents support our hypothesis that GABA functions internally as a neurotransmitter in the pathway that controls the initiation of metamorphosis. Our results also suggest that GABA acts directly on or downstream from serotonergic neurons to regulate the metamorphosis‐inducing effects of this neurotransmitter. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 78: 736–753, 2018  相似文献   

19.
The effects of starvation on larval growth, survival, and metamorphosis of Manila clam Ruditapes philippinarum at the temperature of 19.6–21.6 °C, the salinity of 34‰ and pH of 8.0 were investigated from May 18 to July 18, 2006. In this study, the early, middle and late umbo-veliger larvae with the shell lengths of 100, 140, and 190 μm were subject to temporary food deprivation for up to 4.5, 20, and 25d at 0.5, 4, 5d intervals, followed by refeeding for the remaining of a 24, 20, 25d period, respectively. The results suggested that the larvae should have shown considerable tolerance to starvation due to their endogenous and exterior nutrition material, for larvae and time to the point-of-no-return (PNR: the threshold point during starvation after which larvae could no longer metamorphose even if food is provided) were calculated to be 4.25, 17.54, and 22.17d. As the starvation period prolonged, the mean shell length of larvae starved got close to constants at 1.5, 4, and 15d after starvation, which were different for larvae at different stages when starvation began, survival of larvae decreased, and was lower in treatments starved earlier in development than those starved later, for the early, middle and late umbo-veliger larvae, after 4.5, 20 and 25d of starvation period, few larvaes were alive. After starvation period, the alive larvaes were able to metamorphose and had a capability of compensatory growth when refeeding was given. Starvation not only affected metamorphosis rate, but also caused the delay in the time to metamorphosis and the decrease in the metamorphosed sizes. For example, for the continuously-fed larvae, duration to metamorphosis was 20.7d, for larvae with a size of 100-μm starved for up to 4d, larvae with a size of 140-μm starved for up to 16d, larvae with a size of 190-μm starved for up to 20d, duration to metamorphosis were 29.7, 31.7, and 37.7d, the delay in duration to metamorphosis were 9, 11, and 17d, respectively. Furthermore, importance of nutrition material for maintaining larval survival during starvation and the compensatory growth on larvae at the same feeding time were discussed.  相似文献   

20.
The amount of energy available to larvae during swimming, location of a suitable recruitment site, and metamorphosis influences the length of time they can spend in the plankton. Energetic parameters such as swimming speed, oxygen consumption during swimming and metamorphosis, and elemental carbon and nitrogen content were measured for larvae of four species of bryozoans, Bugula neritina, B. simplex, B. stolonifera, and B. turrita. The larvae of these species are aplanktotrophic with a short free-swimming phase ranging from less than one hour to a maximum of about 36 hours. There is about a fivefold difference in larval volume among the four species, which scales linearly with elemental carbon content and, presumably, with the amount of endogenous reserves available for swimming and metamorphosis. Mean larval swimming speeds (in centimeters per second) were similar among species. Specific metabolic rate and larval size were inversely related. For larvae of a given species, respiration rates remained similar for swimming and metamorphosis; however, because metamorphosis lasts about twice as long as a maximal larval swimming phase, it was more energetically demanding. Larger larvae expended more energy to complete metamorphosis than did smaller larvae, but in terms of the percentage of larval energy reserves consumed, swimming and metamorphosis were more "expensive" for smaller larvae. A comparison of the energy expended during larval swimming calculated on the basis of oxygen consumption and on the basis of elemental carbon decrease suggests that larvae of Bugula spp. may not use significant amounts of dissolved organic material (DOM) to supplement their endogenous energy reserves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号