首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Kir gene family encodes inward rectifying K+ (Kir) channels that are widespread and critical regulators of excitability in eukaryotic cells. A related gene family (KirBac) has recently been identified in prokaryotes. While a crystal structure of one member, Kir-Bac1.1, has been solved, there has been no functional characterization of any KirBac gene products. Here we present functional characterization of KirBac1.1 reconstituted in liposomes. Utilizing a 86Rb+ uptake assay, we demonstrate that KirBac1.1 generates a K+ -selective permeation path that is inhibited by extraliposomal Ba2+ and Ca2+ ions. In contrast to KcsA (an acid-activated bacterial potassium channel), KirBac1.1 is inhibited by extraliposomal acid (pKa approximately 6). This characterization of KirBac1.1 activity now paves the way for further correlation of structure and function in this model Kir channel.  相似文献   

2.
Kir3 channels control heart rate and neuronal excitability through GTP-binding (G) protein and phosphoinositide signaling pathways. These channels were the first characterized effectors of the βγ subunits of G proteins. Because we currently lack structures of complexes between G proteins and Kir3 channels, their interactions leading to modulation of channel function are not well understood. The recent crystal structure of a chimera between the cytosolic domain of a mammalian Kir3.1 and the transmembrane region of a prokaryotic KirBac1.3 (Kir3.1 chimera) has provided invaluable structural insight. However, it was not known whether this chimera could form functional K(+) channels. Here, we achieved the functional reconstitution of purified Kir3.1 chimera in planar lipid bilayers. The chimera behaved like a bona fide Kir channel displaying an absolute requirement for PIP(2) and Mg(2+)-dependent inward rectification. The channel could also be blocked by external tertiapin Q. The three-dimensional reconstruction of the chimera by single particle electron microscopy revealed a structure consistent with the crystal structure. Channel activity could be stimulated by ethanol and activated G proteins. Remarkably, the presence of both activated Gα and Gβγ subunits was required for gating of the channel. These results confirm the Kir3.1 chimera as a valid structural and functional model of Kir3 channels.  相似文献   

3.
Protein quality control (PQC) is required to ensure cellular health. PQC is recognized for targeting the destruction of defective polypeptides, whereas regulated protein degradation mechanisms modulate the concentration of specific proteins in concert with physiological demands. For example, ion channel levels are physiologically regulated within tight limits, but a system-wide approach to define which degradative systems are involved is lacking. We focus on the Kir2.1 potassium channel because altered Kir2.1 levels lead to human disease and Kir2.1 restores growth on low-potassium medium in yeast mutated for endogenous potassium channels. Using this system, first we find that Kir2.1 is targeted for endoplasmic reticulum–associated degradation (ERAD). Next a synthetic gene array identifies nonessential genes that negatively regulate Kir2.1. The most prominent gene family that emerges from this effort encodes members of endosomal sorting complex required for transport (ESCRT). ERAD and ESCRT also mediate Kir2.1 degradation in human cells, with ESCRT playing a more prominent role. Thus multiple proteolytic pathways control Kir2.1 levels at the plasma membrane.  相似文献   

4.
Our earlier studies have shown that channel activity of Kir2 subfamily of inward rectifiers is strongly suppressed by the elevation of cellular cholesterol. The goal of this study is to determine whether cholesterol suppresses Kir channels directly. To achieve this goal, purified prokaryotic Kir (KirBac1.1) channels were incorporated into liposomes of defined lipid composition, and channel activity was assayed by 86Rb+ uptake. Our results show that 86Rb+ flux through KirBac1.1 is strongly inhibited by cholesterol. Incorporation of 5% (mass cholesterol/phospholipid) cholesterol into the liposome suppresses 86Rb+ flux by >50%, and activity is completely inhibited at 12–15%. However, epicholesterol, a stereoisomer of cholesterol with similar physical properties, has significantly less effect on KirBac-mediated 86Rb+ uptake than cholesterol. Furthermore, analysis of multiple sterols suggests that cholesterol-induced inhibition of KirBac1.1 channels is mediated by specific interactions rather than by changes in the physical properties of the lipid bilayer. In contrast to the inhibition of KirBac1.1 activity, cholesterol had no effect on the activity of reconstituted KscA channels (at up to 250 μg/mg of phospholipid). Taken together, these observations demonstrate that cholesterol suppresses Kir channels in a pure protein-lipid environment and suggest that the interaction is direct and specific.Inwardly rectifying potassium channels (Kir) are known to play critical roles in the regulation of multiple cellular functions including membrane excitability, heart rate, and vascular tone (13). Kir channels are classified into seven subfamilies (Kir1–7) identified by distinct biophysical properties and sensitivities to different regulators (2). Our earlier studies have shown that Kir2 channels, one of the major subfamilies of Kir that are responsible for maintaining membrane potential in a variety of cell types, are strongly suppressed by the elevation of membrane cholesterol (4, 5). Cholesterol-induced suppression of Kir2 was first observed in aortic endothelial cells (4), in which resting K+ conductance is dominated by Kir2.1 and Kir2.2 channels (6), and then when channels were heterologously expressed in Chinese hamster ovary cells (5, 7). Furthermore, the same effect was observed ex vivo in endothelial cells and bone marrow-derived progenitor cells isolated from hypercholesterolemic pigs (8, 9).In terms of the mechanism, the first insights came from comparing the effects of cholesterol and of its chiral analogue, epicholesterol. Although the two sterols are known to have almost identical effects on the biophysical properties of the lipid bilayer (10, 11), their impact on Kir activity is completely different; partial substitution of endogenous cholesterol with epicholesterol resulted in significant increase in Kir current in endothelial cells (4). These observations suggest that specific sterol-protein interactions may be involved in the cholesterol sensitivity of Kir2 channels. However, in the complex environment of the plasma membrane, cholesterol may interact not only with the channels themselves but also with other proteins, which in turn may regulate the activity of the channels. In the cellular environment, therefore, it is impossible to discriminate between direct channel-cholesterol interactions and indirect effects. Moreover, it is impossible to define the actual concentrations of cholesterol in any given membrane compartment. To quantitatively test direct cholesterol-protein interactions, it is necessary to examine sensitivity of pure Kir channels to membrane cholesterol in a membrane of defined lipid composition. To date, only the cytoplasmic domains of several mammalian Kir channels have been purified (Kir2.1, Kir3.1, and Kir3.2) (1215). We therefore concentrate in this study on the effect of cholesterol on two bacterial K+ channels that differ in the level of their homology to mammalian Kir channels, KirBac1.1 and KcsA. KirBac channels have high sequence homology with mammalian Kirs (e.g. 52% homology between KirBac1.1 and Kir2.1; see Fig. 7A) and have now been extensively used as structural models of mammalian Kir channels (3, 16, 17). The sequence similarity between KcsA and mammalian K channels lies mainly in the transmembrane domain (18). The overall sequence homology of KcsA to mammalian Kir channels is relatively low (e.g. 22% homology between KcsA and Kir2.1; see Fig. 7A), with an entirely different cytoplasmic domain structure.Open in a separate windowFIGURE 7.Cholesterol has no effect on KcsA-mediated 86Rb+ uptake. A, time courses of 86Rb+ uptake into liposomes reconstituted with 50 μg of cholesterol/mg of PL and as compared with liposomes containing no cholesterol (control). Both batches of liposomes contained 5 μg of KcsA/mg of PL. Blank liposomes contain no protein. The points represent averages of three independent experiments (means ± S.D.). B, normalized time courses of 86Rb+ uptake in liposomes incorporating 50, 150, and 250 μg of cholesterol/mg of PL. C, maximal uptake of 86Rb+ after 240 s in liposomes containing 10, 25, 50, 100, 150, 200, and 250 μg of cholesterol/mg of PL normalized to control (means ± S.D. of 3–5 independent experiments; *, p < 0.05). DPM, disintegrations per minute.Here we show that, similarly to Kir2 channels, prokaryotic Kir channels incorporated into liposomes are strongly suppressed by an increase in membrane cholesterol. Furthermore, the sensitivity of prokaryotic Kir to cholesterol is stereo-selective to cholesterol optical analogues. In contrast, KscA channels are insensitive to membrane cholesterol. These observations suggest that cholesterol directly suppresses Kir channels.  相似文献   

5.
ATP-sensitive K+ channels (K(ATP):SUR2A+Kir6.2) play a pivotal role in cardiac protection against ischemia and reperfusion injury. When expressed in COS cells, Kir6.2 was short-lived with a half-life time of 1.9 h. The half-life time of Kir6.2 was prolonged by proteasome inhibitors MG132, ALLN, proteasome inhibitor 1, and lactacystine, but not at all by a lysosomal inhibitor chloroquine. MG132 also increased the level of ubiquitinated Kir6.2 without affecting its localization in the endoplasmic reticulum and Golgi apparatus. In electrophysiological recordings, MG132 augmented nicorandil-activated K(ATP) currents in COS cells expressing SUR2A and Kir6.2 as well as the same currents in neonatal rat cardiomyocytes. Like MG132, a Na+ channel blocker aprindine prolonged the half-life time of Kir6.2 and augmented K(ATP). Finally, both aprindine and MG132 inhibited the 20S proteasome activity in vitro. These results suggest a novel activity of aprindine to enhance K(ATP) currents by inhibiting proteasomal degradation of Kir 6.2 channels, which may be beneficial in the setting of cardiac ischemia.  相似文献   

6.
We designed a technique that directly determines binding of cyclic nucleotides to the prokaryotic cyclic nucleotide modulated ion channel MloK1. The ability to purify large quantities of MloK1 facilitated equilibrium binding assays, which avoided the inherent problem of relatively low affinity binding which hindered the use of eukaryotic channels. We found that MloK1 specifically binds cAMP and cGMP with affinity values in the range of those observed for activity assays for eukaryotic channels. Notably, the concentration of ligand that elicited 50% of maximum response in (86)Rb flux assays (K1/2), also referred to as ligand sensitivity, was smaller than the corresponding value obtained from binding assays (Kd) potentially indicating significant channel activity in partially liganded states. To gain further insight into the mechanism of binding and activation of these channels, we mutated several amino acids in the ligand-binding pocket of MloK1, known from electrophysiological studies of homologous eukaryotic channels to affect ligand selectivity and binding efficacy. The S308V MloK1 mutant (a mutation which decreases cGMP selectivity in eukaryotic channels) decreased both the observed cGMP binding affinity and the sensitivity to cGMP relative to the wild-type (WT) channel, leaving those for cAMP unchanged. Conversely, the A352D MloK1 mutant (a mutation which increases cGMP selectivity in eukaryotic channels) increased both the affinity and the sensitivity for cGMP relative to the WT channel, again leaving those for cAMP unchanged. Mutations at R307 in MloK1, the most conserved residue in the binding pocket of cyclic nucleotide-binding proteins, were not tolerated as these mutants do not form functional channels. Furthermore, for each mutation, changes in binding affinities were mirrored by equivalent changes in ligand sensitivity. These data, together with the evidence that partially liganded channels open significantly, suggested strong coupling between cyclic nucleotide binding and MloK1 channel opening.  相似文献   

7.
Kir2.3 plays an important part in the maintenance of membrane potential in neurons and myocardium. Identification of intracellular signaling molecules controlling this channel thus may lead to an understanding of the regulation of membrane excitability. To determine whether Kir2.3 is modulated by direct phosphorylation of its channel protein and identify the phosphorylation site of protein kinase C (PKC), we performed experiments using several recombinant and mutant Kir2.3 channels. Whole-cell Kir2.3 currents were inhibited by phorbol 12-myristate 13-acetate (PMA) in Xenopus oocytes. When the N-terminal region of Kir2.3 was replaced with that of Kir2.1, another member in the Kir2 family that is insensitive to PMA, the chimerical channel lost its PMA sensitivity. However, substitution of the C terminus was ineffective. Four potential PKC phosphorylation sites in the N terminus were studied by comparing mutations of serine or threonine with their counterpart residues in Kir2.1. Whereas substitutions of serine residues at positions 5, 36, and 39 had no effect on the channel sensitivity to PMA, mutation of threonine 53 completely eliminated the channel response to PMA. Interestingly, creation of this threonine residue at the corresponding position (I79T) in Kir2.1 lent the mutant channel a PMA sensitivity almost identical to the wild-type Kir2.3. These results therefore indicate that Kir2.3 is directly modulated by PKC phosphorylation of its channel protein and threonine 53 is the PKC phosphorylation site in Kir2.3.  相似文献   

8.
Solute binding proteins (SBPs) are of central physiological relevance for prokaryotes. These proteins present substrates to transporters, but they also stimulate different signal transduction receptors. SBPs form a superfamily of at least 33 protein Pfam families. To assess possible links between SBP sequence and the ligand recognized, we have inspected manually all SBP three-dimensional structures deposited in the protein data bank and retrieved 748 prokaryotic structures that have been solved in complex with bound ligand. These structures were classified into 26 SBP Pfam families. The analysis of the ligands recognized revealed that most families possess a preference for a compound class. There were three families each that bind preferentially saccharides and amino acids. In addition, we identified families that bind preferentially purines, quaternary amines, iron and iron-chelating compounds, oxoanions, bivalent metal ions or phosphates. Phylogenetic analyses suggest convergent evolutionary events that lead to families that bind the same ligand. The functional link between chemotaxis and compound uptake is reflected in similarities in the ligands recognized by SBPs and chemoreceptors. Associating Pfam families with ligand profiles will be of help to design experimental strategies aimed at the identification of ligands for uncharacterized SBPs.  相似文献   

9.
Adenosine triphosphate (ATP)-sensitive K^* (KATP) channels regulate many cellular functions by coupling the metabolic state of the cell to the changes in membrane potential. Truncation of C-terminal 26 amino acid residues of Kir6.2 protein (Kir6.2ΔC26) deletes its endoplasmic reticulum retention signal, allowing functional expression of Kit6.2 in the absence of sulfonylurea receptor subunit, pEGFP-Kir6.2ΔC26 and pKir6.2ΔC26-IRES2-EGFP expression plasmids were constructed and transfected into HEK293 cells. We identified that Kir6.2ΔC26 was localized on the plasma membrane and trafficked to the plasmalemma by means of constitutive exocytosis of Kir6.2ΔC26 transport vesicles, using epi-fluorescence and total intemal reflection fluorescence microscopy. Our electrophysiological data showed that Kir6.2ΔC26 alone expressed KATP currents, whereas EGFP-Kir6.2ΔC26 fusion protein displayed no KATP channel activity.  相似文献   

10.
Annexin 2 is a member of the annexin family which has been implicated in calcium-regulated exocytosis. This contention is largely based on Ca2+-dependent binding of the protein to anionic phospholipids. However, annexin 2 was shown to be associated with chromaffin granules in the presence of EGTA. A fraction of this bound annexin 2 was released by methyl-β-cyclodextrin, a reagent which depletes cholesterol from membranes. Restoration of the cholesterol content of chromaffin granule membranes with cholesterol/methyl-β-cyclodextrin complexes restored the Ca2+-independent binding of annexin 2. The binding of both, monomeric and tetrameric forms of annexin 2 was also tested on liposomes of different composition. In the absence of Ca2+, annexin 2, especially in its tetrameric form, bound to liposomes containing phosphatidylserine, and the addition of cholesterol to these liposomes increased the binding. Consistent with this observation, liposomes containing phosphatidylserine and cholesterol were aggregated by the tetrameric form of annexin 2 at submicromolar Ca2+ concentrations. These results indicate that the lipid composition of membranes, and especially their cholesterol content, is important in the control of the subcellular localization of annexin 2 in resting cells, at low Ca2+ concentration. Annexin 2 might be associated with membrane domains enriched in phosphatidylserine and cholesterol.  相似文献   

11.
12.
Cysteine-rich protein 1 (CRP1) has a unique structure with two well separated LIM domains, each followed by a glycine-rich region. Although CRP1 has been shown to interact with actin-binding proteins and actin filaments, the mechanism regulating localization to the actin cytoskeleton in cells is not clear. Experiments using truncated forms showed that the first LIM domain and glycine-rich region are necessary for CRP1 bundling of actin filaments and localization to the actin cytoskeleton. Furthermore, domain swapping experiments replacing the first glycine-rich region with the second resulted in the loss of CRP1 bundling activity and localization to the actin cytoskeleton, identifying seven critical amino acid residues. These results highlight the importance of the first glycine-rich region for CRP1 bundling activity and localization to the actin cytoskeleton. In addition, this work identifies the first LIM domain and glycine-rich region as a distinct actin filament bundling module.  相似文献   

13.
Annexin 2 is a member of the annexin family which has been implicated in calcium-regulated exocytosis. This contention is largely based on Ca(2+)-dependent binding of the protein to anionic phospholipids. However, annexin 2 was shown to be associated with chromaffin granules in the presence of EGTA. A fraction of this bound annexin 2 was released by methyl-beta-cyclodextrin, a reagent which depletes cholesterol from membranes. Restoration of the cholesterol content of chromaffin granule membranes with cholesterol/methyl-beta-cyclodextrin complexes restored the Ca(2+)-independent binding of annexin 2. The binding of both, monomeric and tetrameric forms of annexin 2 was also tested on liposomes of different composition. In the absence of Ca(2+), annexin 2, especially in its tetrameric form, bound to liposomes containing phosphatidylserine, and the addition of cholesterol to these liposomes increased the binding. Consistent with this observation, liposomes containing phosphatidylserine and cholesterol were aggregated by the tetrameric form of annexin 2 at submicromolar Ca(2+) concentrations. These results indicate that the lipid composition of membranes, and especially their cholesterol content, is important in the control of the subcellular localization of annexin 2 in resting cells, at low Ca(2+) concentration. Annexin 2 might be associated with membrane domains enriched in phosphatidylserine and cholesterol.  相似文献   

14.
Sheldon AL  Zhang J  Fei H  Levitan IB 《PloS one》2011,6(8):e23343
There is ample evidence that ion channel modulation by accessory proteins within a macromolecular complex can regulate channel activity and thereby impact neuronal excitability. However, the downstream consequences of ion channel modulation remain largely undetermined. The Drosophila melanogaster large conductance calcium-activated potassium channel SLOWPOKE (SLO) undergoes modulation via its binding partner SLO-binding protein (SLOB). Regulation of SLO by SLOB influences the voltage dependence of SLO activation and modulates synaptic transmission. SLO and SLOB are expressed especially prominently in median neurosecretory cells (mNSCs) in the pars intercerebralis (PI) region of the brain; these cells also express and secrete Drosophila insulin like peptides (dILPs). Previously, we found that flies lacking SLOB exhibit increased resistance to starvation, and we reasoned that SLOB may regulate aspects of insulin signaling and metabolism. Here we investigate the role of SLOB in metabolism and find that slob null flies exhibit changes in energy storage and insulin pathway signaling. In addition, slob null flies have decreased levels of dilp3 and increased levels of takeout, a gene known to be involved in feeding and metabolism. Targeted expression of SLOB to mNSCs rescues these alterations in gene expression, as well as the metabolic phenotypes. Analysis of fly lines mutant for both slob and slo indicate that the effect of SLOB on metabolism and gene expression is via SLO. We propose that modulation of SLO by SLOB regulates neurotransmission in mNSCs, influencing downstream insulin pathway signaling and metabolism.  相似文献   

15.
The choroid plexus (CP) epithelium secretes cerebrospinal fluid and plays an important role in healthy homeostasis of the brain. CP function can be influenced by sex steroid hormones; however, the precise molecular mechanism of such regulation is not well understood. Here, using whole-cell patch-clamp recordings from male and female murine CP cells, we show that application of progesterone resulted in specific and strong potentiation of the inwardly rectifying potassium channel Kir7.1, an essential protein that is expressed in CP and is required for survival. The potentiation was progesterone specific and independent of other known progesterone receptors expressed in CP. This effect was recapitulated with recombinant Kir7.1, as well as with endogenous Kir7.1 expressed in the retinal pigment epithelium. Current-clamp studies further showed a progesterone-induced hyperpolarization of CP cells. Our results provide evidence of a progesterone-driven control of tissues in which Kir7.1 is present.  相似文献   

16.
K(ATP) channels are comprised of a pore-forming protein, Kir6.x, and the sulfonylurea receptor, SURx. Interaction of adenine nucleotides with Kir6.2 positively charged amino acids such as K185 and R201 on the C-terminus causes channel closure. Substitution of these amino acids with other positively charged residues had small effects on inhibition by adenine nucleotide, while substitution with neutral or negative residues had major effects, suggesting electrostatic interactions between Kir6.2 positive charges and adenine nucleotide negative phosphate groups. Furthermore, R201 mutation decreased channel sensitivity to ATP, ADP, and AMP to a similar extent, but K185 mutation decreased primarily ATP and ADP sensitivity, leaving the AMP sensitivity relatively unaffected. Thus, channel inhibition by ATP may involve interaction of the alpha-phosphate with R201 and interaction of the beta-phosphate with K185. In addition, decreased open probability due to rundown or sulfonylureas caused an increase in ATP sensitivity in the K185 mutant, but not in the R201 mutant. Thus, the beta-phosphate may bind in a state-independent fashion to K185 to destabilize channel openings, while R201 interacts with the alpha-phosphate to stabilize a channel closed configuration. Substitution of R192 on the C-terminus and R50 on the N-terminus with different charged residues also affected ATP sensitivity. Based on these results a structural scheme is proposed, which includes features of other recently published models.  相似文献   

17.
The important and diverse regulatory roles of Ca2+ in eukaryotes are conveyed by the EF-hand containing calmodulin superfamily. However, the calcium-regulatory proteins in prokaryotes are still poorly understood. In this study, we report the three-dimensional structure of the calcium-binding protein from Streptomyces coelicolor, named CabD, which shares low sequence homology with other known helix-loop-helix EF-hand proteins. The CabD structure should provide insights into the biological role of the prokaryotic calcium-binding proteins. The unusual structural features of CabD compared with prokaryotic EF-hand proteins and eukaryotic sarcoplasmic calcium-binding proteins, including the bending conformation of the first C-terminal α-helix, unpaired ligand-binding EF-hands and the lack of the extreme C-terminal loop region, suggest it may have a distinct and significant function in calcium-mediated bacterial physiological processes, and provide a structural basis for potential calcium-mediated regulatory roles in prokaryotes.  相似文献   

18.
We have previously demonstrated that Kir3.1 channels and Gβ1γ2 subunits initially interact in the endoplasmic reticulum (ER). To elucidate the role that anterograde protein trafficking pathways may play in the formation of these complexes, we used dominant negative (DN) mutants of the small G proteins Sar 1 and various compartment-specific Rabs which impede anterograde protein trafficking at different steps. Sar 1 H79G and Rab 1 S25N mutants efficiently blocked the plasma membrane trafficking of the Kir3.1/Kir3.4 complex however they did not block the Gβ1γ2/Kir3.1 interaction as measured using bioluminescence resonance energy transfer (BRET). This interaction was also insensitive to the presence of DN Rabs 2, 6, 8, and 11. These results confirm that Gβγ/Kir3 complexes form early during channel biosynthesis and trafficking. Using a combination of BRET, protein complementation assays and co-immunoprecipitation, we demonstrate that Gβ1-4 can interact with Kir3.1 in the absence of Kir3.4. Gβ5 does not directly interact with the channel but can still be co-immunoprecipated as part of a larger complex. The interaction between Gβ and Kir3.1 was selectively fostered by co-expression with different Gγ subunits. When Gγ1 or Gγ11 was co-expressed with eGFP-Gβ3 or eGFP-Gβ4, the interaction with the effector was lost. Kir3.2 was capable of interacting with Gβ1-3 and not Gβ4 or Gβ5. These interactions were again fostered by co-expression with Gγ and were also insensitive to DN Sar 1 or Rab 1. Taken together, our data show that these “precocious” channel/G protein interactions are specific and may have implications beyond their basic function in signalling events.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号