首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Piriformospora indica, an endophytic fungus of the Sebacinaceae family, colonises the roots of a wide variety of plant species and promotes their growth, in a manner similar to mycorrhizal fungi. We demonstrate that the fungus also interacts with the non-mycorrhizal host Arabidopsis thaliana. Promotion of root growth was detectable even before noticeable root colonization, and was accompanied by a massive transfer of phosphate from the media to the aerial parts of the seedlings. During the recognition period of both organisms, the message for a receptor kinase with leucine-rich repeats is transiently upregulated. The kinase is located in Triton X-100-insoluble plasma membrane microdomains. Thus, this is one of the earliest events of a plant root in response to a fungus reported to date.  相似文献   

2.
Piriformospora indica is a root-colonizing basidiomycete that confers a wide range of beneficial traits to its host. The fungus shows a biotrophic growth phase in Arabidopsis (Arabidopsis thaliana) roots followed by a cell death-associated colonization phase, a colonization strategy that, to our knowledge, has not yet been reported for this plant. P. indica has evolved an extraordinary capacity for plant root colonization. Its broad host spectrum encompasses gymnosperms and monocotyledonous as well as dicotyledonous angiosperms, which suggests that it has an effective mechanism(s) for bypassing or suppressing host immunity. The results of our work argue that P. indica is confronted with a functional root immune system. Moreover, the fungus does not evade detection but rather suppresses immunity triggered by various microbe-associated molecular patterns. This ability to suppress host immunity is compromised in the jasmonate mutants jasmonate insensitive1-1 and jasmonate resistant1-1. A quintuple-DELLA mutant displaying constitutive gibberellin (GA) responses and the GA biosynthesis mutant ga1-6 (for GA requiring 1) showed higher and lower degrees of colonization, respectively, in the cell death-associated stage, suggesting that P. indica recruits GA signaling to help establish proapoptotic root cell colonization. Our study demonstrates that mutualists, like pathogens, are confronted with an effective innate immune system in roots and that colonization success essentially depends on the evolution of strategies for immunosuppression.  相似文献   

3.
Piriformospora indica, a basidiomycete of the Sebacinaceae family, promotes the growth, development and seed production of a variety of plant species. Arabidopsis plants colonized with the fungus produce 22% more seeds than uncolonized plants. Deactivating the Arabidopsis single-copy gene DMI-1, which encodes an ion carrier required for mycorrihiza formation in legumes, does not affect the beneficial interaction between the two symbiotic partners. We used cellular and molecular responses initiated during the establishment of the interaction between P. indica and Arabidopsis roots to isolate mutants that fail to respond to the fungus. An ethylmethane sulfonate mutant (Piriformospora indica-insensitive-2; pii-2), and a corresponding insertion line, are impaired in a leucine-rich repeat protein (At1g13230). The protein pii-2, which contains a putative endoplasmic reticulum retention signal, is also found in Triton X-100-insoluble plasma membrane microdomains, suggesting that it is present in the endoplasmic reticulum/plasma membrane continuum in Arabidopsis roots. The microdomains also contain an atypical receptor protein (At5g16590) containing leucine-rich repeats, the message of which is transiently upregulated in Arabidopsis roots in response to P. indica. This response is not detectable in At1g13230 mutants, and the protein is not detectable in the At1g13230 mutant microdomains. Partial deactivation of a gene for a sphingosine kinase, which is required for the biosynthesis of sphingolipid found in plasma membrane microdomains, also affects the Arabidopsis/P. indica interaction. Thus, pii-2, and presumably also At5g16590, two proteins present in plasma membrane microdomains, appear to be involved in P. indica-induced growth promotion and enhanced seed production in Arabidopsis thaliana.  相似文献   

4.
5.
Piriformospora indica, an endophytic fungus of the order Sebacinales, interacts with the roots of a large variety of plant species. We compared the interaction of this fungus with Chinese cabbage (Brassica campestris subsp. chinensis) and Arabidopsis seedlings. The development of shoots and roots of Chinese cabbage seedlings was strongly promoted by P. indica and the fresh weight of the seedlings increased approximately twofold. The strong stimulation of root hair development resulted in a bushy root phenotype. The auxin level in the infected Chinese cabbage roots was twofold higher compared with the uncolonized controls. Three classes of auxin-related genes, which were upregulated by P. indica in Chinese cabbage roots, were isolated from a double-subtractive expressed sequence tag library: genes for proteins related to cell wall acidification, intercellular auxin transport carrier proteins such as AUX1, and auxin signal proteins. Overexpression of B. campestris BcAUX1 in Arabidopsis strongly promoted growth and biomass production of Arabidopsis seedlings and plants; the roots were highly branched but not bushy when compared with colonized Chinese cabbage roots. This suggests that BcAUX1 is a target of P. indica in Chinese cabbage. P. indica also promoted growth of Arabidopsis seedlings but the auxin levels were not higher and auxin genes were not upregulated, implying that auxin signaling is a more important target of P. indica in Chinese cabbage than in Arabidopsis. The fungus also stimulated growth of Arabidopsis aux1 and aux1/axr4 and rhd6 seedlings. Furthermore, a component in an exudate fraction from P. indica but not auxin stimulated growth of Chinese cabbage and Arabidopsis seedlings. We propose that activation of auxin biosynthesis and signaling in the roots might be the cause for the P. indica-mediated growth phenotype in Chinese cabbage.  相似文献   

6.
Microbial exopolysaccharides (EPSs) play key roles in plant–microbe interactions, such as biofilm formation on plant roots and legume nodulation by rhizobia. Here, we focused on the function of an EPS produced by Rhizobium sp. YAS34 in the colonization and biofilm formation on non-legume plant roots ( Arabidopsis thaliana and Brassica napus ). Using random transposon mutagenesis, we isolated an EPS-deficient mutant of strain YAS34 impaired in a glycosyltransferase gene ( gta ). Wild type and mutant strains were tagged with a plasmid-born GFP and, for the first time, the EPS produced by the wild-type strain was seen in the rhizosphere using selective carbohydrate probing with a fluorescent lectin and confocal laser-scanning microscopy. We show for the fist time that Rhizobium forms biofilms on roots of non-legumes, independently of the EPS synthesis. When produced by strain YAS34 wild type, EPS is targeted at specific parts of the plant root system. Nutrient fluctuations, root exudates and bacterial growth phase can account for such a production pattern. The EPS synthesis in Rhizobium sp. YAS34 is not essential for biofilm formation on roots, but is critical to colonization of the basal part of the root system and increasing the stability of root-adhering soil. Thus, in Rhizobium sp. YAS34 and non-legume interactions, microbial EPS is implicated in root–soil interface, root colonization, but not in biofilm formation.  相似文献   

7.
Piriformospora indica affects plant growth by auxin production   总被引:3,自引:0,他引:3  
Piriformospora indica has been shown to improve the growth of many plant species including Arabidopsis thaliana , but the mechanism by which this is achieved is still unclear. Arabidopsis root colonization by P. indica was examined in sterile culture on the medium of Murashige and Skoog. P. indica formed intracellular structures in Arabidopsis root epidermal cells and caused changes in root growth, leading to stunted and highly branched root systems. This effect was because of a diffusible factor and could be mimicked by IAA. In addition, P. indica was shown to produce IAA in liquid culture. We suggest that auxin production affecting root growth is responsible for, or at least contributes to, the beneficial effect of P. indica on its host plants.  相似文献   

8.
9.
The mutualistic basidiomycete Piriformospora indica colonizes roots of mono- and dicotyledonous plants, and thereby improves plant health and yield. Given the capability of P. indica to colonize a broad range of hosts, it must be anticipated that the fungus has evolved efficient strategies to overcome plant immunity and to establish a proper environment for nutrient acquisition and reproduction. Global gene expression studies in barley identified various ethylene synthesis and signaling components that were differentially regulated in P. indica-colonized roots. Based on these findings we examined the impact of ethylene in the symbiotic association. The data presented here suggest that P. indica induces ethylene synthesis in barley and Arabidopsis roots during colonization. Moreover, impaired ethylene signaling resulted in reduced root colonization, Arabidopsis mutants exhibiting constitutive ethylene signaling, -synthesis or ethylene-related defense were hyper-susceptible to P. indica. Our data suggest that ethylene signaling is required for symbiotic root colonization by P. indica.  相似文献   

10.
Piriformospora indica (Sebacinaceae, Basidiomycota) is an axenically cultivable, plant growth promoting root endophyte with a wide host range, including Populus. Rooting of Populus Esch5 explants started within 6 days after transfer to WPM medium. If such plantlets with roots were inoculated with P. indica, there was an increase in root biomass, and the number of 2nd order roots was increased significantly. A totally different observation was recorded when the explants were placed into WPM with pre-grown P. indica. The interaction led to complete blocking of root production and severely inhibited plant growth. Additionally, branched aerial roots appeared which did not penetrate the medium. On contact with the fungal colony or the medium, the ends of the aerial roots became inflated. Prolonged incubation stimulated the fungus to colonize aerial parts of the plant (stem and leaves). Mycelium not only spread on the surface of the aerial parts, but also invaded the cortical tissues inter- and intracellularly. Detached Populus leaves remained vital for 4 - 5 weeks on sterile agar media or on AspM medium with pre-grown P. indica. When the fungus was pre-grown on culture media such as WPM, containing ammonium as the main source of nitrogen, leaves in contact with the cultures turned brownish within 4 - 12 h. Thereafter, the leaves bleached, and about one day later had become whitish. Thus, cultural conditions could alter the behaviour of the fungus drastically: the outcome of the interaction between plant and fungus can be directed from mutualistic to antagonistic, characterized by fungal toxin formation and extension of the colonization to Populus shoots.  相似文献   

11.
12.
13.
In Arabidopsis thaliana roots, the mutualistic fungus Piriformospora indica initially colonizes living cells, which die as the colonization proceeds. We aimed to clarify the molecular basis of this colonization-associated cell death. Our cytological analyses revealed endoplasmic reticulum (ER) swelling and vacuolar collapse in invaded cells, indicative of ER stress and cell death during root colonization. Consistent with this, P. indica-colonized plants were hypersensitive to the ER stress inducer tunicamycin. By clear contrast, ER stress sensors bZIP60 and bZIP28 as well as canonical markers for the ER stress response pathway, termed the unfolded protein response (UPR), were suppressed at the same time. Arabidopsis mutants compromised in caspase 1-like activity, mediated by cell death-regulating vacuolar processing enzymes (VPEs), showed reduced colonization and decreased cell death incidence. We propose a previously unreported microbial invasion strategy during which P. indica induces ER stress but inhibits the adaptive UPR. This disturbance results in a VPE/caspase 1-like-mediated cell death, which is required for the establishment of the symbiosis. Our results suggest the presence of an at least partially conserved ER stress-induced caspase-dependent cell death pathway in plants as has been reported for metazoans.  相似文献   

14.
To deal with pathogens, plants have evolved sophisticated mechanisms including constitutive and induced defense mechanisms. Phytohormones play important roles in plant growth and development, as well as in the systemic response induced by beneficial and pathogen microorganisms. In this work, we identified an Aspergillus ustus isolate that promotes growth and induces developmental changes in Solanum tuberosum and Arabidopsis thaliana. A. ustus inoculation on A. thaliana and S. tuberosum roots induced an increase in shoot and root growth, and lateral root and root hair numbers. Assays performed on Arabidopsis lines to measure reporter gene expression of auxin-induced/ repressed or cell cycle controlled genes (DR5 and CycB1, respectively) showed enhanced GUS activity, when compared with mock-inoculated seedlings. To determine the contribution of phytohormone signaling pathways in the effect elicited by A. ustus, we evaluated the response of a collection of hormone mutants of Arabidopsis defective in auxin, ethylene, cytokinin, or abscisic acid signaling to the inoculation with this fungus. All mutant lines inoculated with A. ustus showed increased biomass production, suggesting that these genes are not required to respond to this fungus. Moreover, we demonstrated that A. ustus synthesizes auxins and gibberellins in liquid cultures. In addition, A. ustus induced systemic resistance against the necrotrophic fungus Botrytis cinerea and the hemibiotrophic bacterium Pseudomonas syringae DC3000, probably through the induction of the expression of salicylic acid, jasmonic acid/ethylene, and camalexin defense-related genes in Arabidopsis.  相似文献   

15.
Fusarium oxysporum, a major soil-borne fungal pathogen, causes vascular wilt, damping-off, and root rot diseases on over 100 cultivated plant species. Mechanisms of root colonization by F. oxysporum in Arabidopsis thaliana were studied through in planta 3-dimensional time-lapse documentation using confocal and multi-photon microscopy. Data from individual encounter sites were acquired repeatedly over a several day period without physical manipulation or retrieval from the growth chamber. In vivo observations were facilitated by transformation of F. oxysporum for constitutive cytoplasmic expression of the fluorescent protein ZsGreen, and host responses were monitored using autofluorescence or GFP-tagged endoplasmic reticulum. Penetration into the vascular system occurred primarily in the meristematic region of primary and lateral roots. Fungal hyphae may release phytotoxin(s) that compromise host cells not directly in contact with hyphae. This novel approach was essential for visualizing the dynamic interactions between F. oxysporum and A. thaliana from both the host and pathogen sides.  相似文献   

16.
The basidiomycete Piriformospora indica interacts with Arabidopsis roots and mimics an arbuscular mycorrhiza. A MATH [meprin and TRAF (tumour necrosis factor receptor-associated factor) homology] domain-containing (MATH) protein at the plasma membrane of Arabidopsis roots is one of the first components to respond to the presence of this fungus. MATH proteins are involved in nodule formation in Medicago and protein degradation in the Arabidopsis cytosol. They exhibit sequence similarities to meprins, extracellular peptidases which cleave (signal) peptides, and to TRAFs, intracellular proteins which interact with receptor kinases at the plasma membrane. Fifty-nine genes for MATH proteins are present in the Arabidopsis genome. Members of this protein family are predicted to be found in the ER–plasma membrane–extracellular space continuum, in the nucleus–cytosol compartment and in organelles. In this article, we describe this novel class of plant genes. We also use MS-MS analyses to identify the subcellular localization of individual members of the MATH protein family in Arabidopsis thaliana .  相似文献   

17.
Arabidopsis growth and reproduction are stimulated by the endophytic fungus Piriformospora indica. The fungus produces low amounts of auxins, but the auxin levels and the expression of auxin-regulated genes are not altered in colonized roots. Also, mutants with reduced auxin levels (ilr1-1, nit1-3, tfl2, cyp79 b2b3) respond to P. indica. However, the fungus rescues the dwarf phenotype of the auxin overproducer sur1-1 by converting free auxin into conjugates, which also results in the downregulation of the auxin-induced IAA6 and the upregulation of the P. indica-induced LRR1 gene. The fungus produces relatively high levels of cytokinins, and the cytokinin levels are higher in colonized roots compared with the uncolonized controls. trans-Zeatin cytokinin biosynthesis and the CRE1/AHK2 receptor combination are crucial for P. indica-mediated growth stimulation, while mutants lacking cis-zeatin, impaired in other cytokinin receptor combinations, or containing reduced cytokinin levels respond to the fungus. Since root colonization is not affected in the cytokinin mutants, we propose that cytokinins are required for P. indica-induced growth promotion. Finally, a comparative analysis of the phytohormone mutants allows the conclusion that the response to P. indica is independent of the architecture and size of the roots.  相似文献   

18.
The mutualistic interaction between the endophytic and root-colonizing fungus Piriformospora indica and Arabidopsis thaliana is a nice model system to study beneficial and non-benefical traits in a symbiosis. Colonized Arabidopsis plants are taller, produce more seeds and are more resistant against biotic and abiotic stress. Based on genetic, molecular and cellular analyses, Arabidopsis mutants were identified which are impaired in their beneficial response to the fungus. Several mutants are smaller rather than bigger in the presence of the fungus and are defective in defense responses. This includes mutants with defects in defense-signaling components, defense proteins and enzymes, and defense metabolites. The mutants cannot control root colonization and are often over-colonized by P. indica. As a consequence, the benefits for the plants are lost and they try to restrict root colonization by activating unspecific defense responses against P. indica. These observations raise the question as to how the plants balance defense gene activation or development and what signaling molecules are involved. P. indica promotes the synthesis of phosphatidic acid (PA), which binds to the 3-PHOSPHOINOSITIDE-DEPENDENT-KINASE1 (PDK1). This activates a kinase pathway which might be crucial for balancing defense and growth responses. The review describes plant defense compounds which are necessary for the mutualistic interaction between the two symbionts. Furthermore, it is proposed that the PA/PDK1 pathway may be crucial for balancing defense responses and growth stimulation during the interaction with P. indica.  相似文献   

19.
The growth-promoting and root-colonizing endophyte Piriformospora indica induces camalexin and the expression of CYP79B2, CYP79B3, CYP71A13, PAD3, and WRKY33 required for the synthesis of indole-3-acetaldoxime (IAOx)-derived compounds in the roots of Arabidopsis seedlings. Upregulation of the mRNA levels by P. indica requires cytoplasmic calcium elevation and mitogen-activated protein kinase 3 but not root-hair-deficient 2, radical oxygen production, or the 3-phosphoinositide-dependent kinase 1/oxidative signal-inducible 1 pathway. Because P. indica-mediated growth promotion is impaired in cyp79B2 cyp79B3 seedlings, while pad3 seedlings-which do not accumulate camalexin-still respond to the fungus, IAOx-derived compounds other than camalexin (e.g., indole glucosinolates) are required during early phases of the beneficial interaction. The roots of cyp79B2 cyp79B3 seedlings are more colonized than wild-type roots, and upregulation of the defense genes pathogenesis-related (PR)-1, PR-3, PDF1.2, phenylalanine ammonia lyase, and germin indicates that the mutant responds to the lack of IAOx-derived compounds by activating other defense processes. After 6 weeks on soil, defense genes are no longer upregulated in wild-type, cyp79B2 cyp79B3, and pad3 roots. This results in uncontrolled fungal growth in the mutant roots and reduced performance of the mutants. We propose that a long-term harmony between the two symbionts requires restriction of root colonization by IAOx-derived compounds.  相似文献   

20.
The plant parasitic nematode Meloidogyne incognita is as an obligate parasite entirely dependent on the plants solute supply. Therefore, the nematodes induce the formation of several giant cells which are embedded into root galls. At present only little information is available about the solute transfer mechanisms of the plants to supply the induced galls and giant cells and consequently the nematodes. In the present work we could show by phloem-loading experiments that giant cells in the roots of Arabidopsis thaliana are not symplasmically connected to the phloem elements, thus differing considerably form the comparable plant–nematode interaction of Arabidopsis and Heterodera schachtii . Consequently the gene expression of the sucrose transporter AtSUC4 ( AtSUT4 ) was studied during nematode development, and its functionality was shown using RNAi gene silencing lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号