首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
We have measured the dependencies of both the dissociation rate of specifically bound EcoRI endonuclease and the ratio of non-specific and specific association constants on water activity, salt concentration, and pH in order to distinguish the contributions of these solution components to specific and non-specific binding. For proteins such as EcoRI that locate their specific recognition site efficiently by diffusing along non-specific DNA, the specific site dissociation rate can be separated into two steps: an equilibrium between non-specific and specific binding of the enzyme to DNA, and the dissociation of non-specifically bound protein. We demonstrated previously that the osmotic dependence of the dissociation rate is dominated by the equilibrium between specific and non-specific binding that is independent of the osmolyte nature. The remaining osmotic sensitivity linked to the dissociation of non-specifically bound protein depends significantly on the particular osmolyte used, indicating a change in solute-accessible surface area. In contrast, the dissociation of non-specifically bound enzyme accounts for almost all the pH and salt-dependencies. We observed virtually no pH-dependence of the equilibrium between specific and non-specific binding measured by the competition assay. The observed weak salt-sensitivity of the ratio of specific and non-specific association constants is consistent with an osmotic, rather than electrostatic, action. The seeming lack of a dependence on viscosity suggests the rate-limiting step in dissociation of non-specifically bound protein is a discrete conformational change rather than a general diffusion of the protein away from the DNA.  相似文献   

5.
Site-specific DNA binding of architectural protein integration host factor (IHF) is involved in formation of functional multiprotein-DNA assemblies in Escherichia coli, while non-specific binding of IHF and other histone-like proteins serves to structure the nucleoid. Here, we report an isothermal titration calorimetry study of the thermodynamics of binding IHF to a 34 bp fragment composed entirely of the specific H' site from lambda-phage DNA. At low to moderate [K(+)] (60-100 mM), strong competition is observed between specific and non-specific binding as a result of a low specificity ratio (approximately 10(2)) and a very small non-specific site size. In this [K(+)] range, both specific and non-specific binding are enthalpy-driven, with large negative enthalpy, entropy and heat capacity changes and binding constants that are insensitive to [K(+)]. Above 100 mM K(+), only specific binding is observed, and both the binding constant and the magnitudes of enthalpy, entropy and heat capacity changes all decrease strongly with increasing [K(+)]. When interpreted in the context of the structure of the specific complex, the thermodynamics provide compelling evidence for a previously unrecognized design principle by which proteins that form extensive binding interfaces with nucleic acids control binding constants, binding site sizes and effects of temperature and ion concentrations on stability and specificity. We propose that up to 22 of the 23 IHF cationic side-chains that are located within 6 A of DNA phosphate oxygen atoms in the complex, are masked in the absence of DNA by pairing with anionic carboxylate groups in intramolecular salt-bridges (dehydrated ion-pairs). These salt-bridges increase in stability with increasing temperature and decreasing [K(+)]. To explain the unusual thermodynamics of IHF-DNA interactions, we propose that both specific and non-specific binding at low [K(+)] require disruption of salt-bridges (as many as 18 for specific binding) whereupon many of the unmasked charged groups hydrate and the cationic groups interact with DNA. From structural or thermodynamic parallels with IHF, we propose that large-scale coupling of disruption of protein salt-bridges to DNA binding is significant for other large-interface DNA wrapping proteins including the nucleosome, lac repressor core tetramer, RNA polymerase core protein, HU and SSB.  相似文献   

6.
The in vitro binding of total ribosomal proteins with rough endoplasmic membranes, from which 70% of ribosomes are eliminated by EDTA (ME) is studied. It is found that in conditions of specific interaction of ribosomes with membranes about 75% of total ribosomal proteins are bound with ME. Membranes, heterogenous in their content (different protein/lipid ratio), became homogenous in their buyoant density after the binding with proteins. The ability of membrane-ribosomal protein complex to bind ribosomes is not decreased, as it can be expected, but is considerablly increased, thus indicating on a non-specific character of ribosome binding. Ribosomal subunits lacking about half of structural protein are capable to bind with ribosome-binding membrane receptors and with some additional sites. This binding is also non-specific, because the binding efficiency of large and small subunits is the same.  相似文献   

7.
Although bacteriophage 434 repressor binds to its specific DNA sites only as a dimer, formation of the dimers in solution occurs at concentrations three orders of magnitude higher than those needed to bind the 434 operator DNA. Our results suggest that both specific and non-specific DNA induce conformational changes in repressor that lead to formation of repressor dimers. The repressor conformational changes induced by DNA occur at concentrations much lower than those needed for binding of repressor, suggesting that the alternative conformations of repressor persist even if the protein is not in direct contact with DNA. Hence, DNA acts in a "catalytic" fashion to induce a steady-state amount of an alternative repressor conformation that has an enhanced affinity for its specific binding site. These findings suggest that the repressor conformer induced by non-specific DNA is the form of the repressor that is optimized for searching for DNA binding sites along non-specific DNA. Upon finding a binding site, the repressor protein undergoes an additional conformational change that allows it to "lock-on" to its specific site.  相似文献   

8.
CAP binding to B and Z forms of DNA.   总被引:3,自引:1,他引:2       下载免费PDF全文
We have examined the interaction between the cyclic AMP receptor protein (CAP) and a small DNA fragment containing its specific recognition sequence by circular dichroism spectroscopy. The binding of CAP to this fragment induces a B to "C-like" change in the CD spectrum, which is different from that observed for non-specific binding. A one-to-one (CAP dimer to DNA) binding stoichiometry was deduced from spectroscopic titration data, as was a non-specific binding site size of 17 bp/dimer. In addition, we have compared the non-specific binding affinity of CAP for the B and Z forms of synthetic DNA copolymers. A slight preference for the B form was found. These results do not support the recent specific suggestion that CAP binds to a left-handed form of DNA (1), but indicate more generally that an optically detectable conformational change takes place in DNA on binding CAP.  相似文献   

9.
Protein–nucleic acid interactions exhibit varying degrees of specificity. Relatively high affinity, sequence-specific interactions, can be studied with structure determination, but lower affinity, non-specific interactions are also of biological importance. We report simulations that predict the population of nucleic acid paths around protein surfaces, and give binding constant differences for changes in the protein scaffold. The method is applied to the non-specific component of interactions between eIF4Es and messenger RNAs that are bound tightly at the cap site. Adding a fragment of eIF4G to the system changes both the population of mRNA paths and the protein–mRNA binding affinity, suggesting a potential role for non-specific interactions in modulating translational properties. Generally, the free energy simulation technique could work in harness with characterized tethering points to extend analysis of nucleic acid conformation, and its modulation by protein scaffolds.  相似文献   

10.
Like most cellular RNA enzymes, the bI5 group I intron requires binding by a protein cofactor to fold correctly. Here, we use single-molecule approaches to monitor the structural dynamics of the bI5 RNA in real time as it assembles with its CBP2 protein cofactor. These experiments show that CBP2 binds to the target RNA in two distinct modes with apparently opposite effects: a "non-specific" mode that forms rapidly and induces large conformational fluctuations in the RNA, and a "specific" mode that forms slowly and stabilizes the native RNA structure. The bI5 RNA folds though multiple pathways toward the native state, typically traversing dynamic intermediate states induced by non-specific binding of CBP2. These results suggest that the protein cofactor-assisted RNA folding involves sequential non-specific and specific protein-RNA interactions. The non-specific interaction potentially increases the local concentration of CBP2 and the number of conformational states accessible to the RNA, which may promote the formation of specific RNA-protein interactions.  相似文献   

11.
X Nan  R R Meehan    A Bird 《Nucleic acids research》1993,21(21):4886-4892
MeCP2 is a chromosomal protein which binds to DNA that is methylated at CpG. In situ immunofluorescence in mouse cells has shown that the protein is most concentrated in pericentromeric heterochromatin, suggesting that MeCP2 may play a role in the formation of inert chromatin. Here we have isolated a minimal methyl-CpG binding domain (MBD) from MeCP2. MBD is 85 amino acids in length, and binds exclusively to DNA that contains one or more symmetrically methylated CpGs. MBD has negligable non-specific affinity for DNA, confirming that non-specific and methyl-CpG specific binding domains of MeCP2 are distinct. In vitro footprinting indicates that MBD binding can protect a 12 nucleotide region surrounding a methyl-CpG pair, with an approximate dissociation constant of 10(-9) M.  相似文献   

12.
The present study evaluated whether a specific androstenone-binding protein is present in porcine and human serum, and in the cytosolic fraction of porcine testis. The binding of [(3)H]-androstenone to serum and testicular cytosol was measured in the absence (total binding) and presence (non-specific binding) of unlabelled androstenone. The optimization of the assay is described. As a part of the assay validation, the binding of [(3)H]-dihydrotestosterone ([(3)H]-DHT) to porcine and human serum was also examined. As expected, specific binding of [(3)H]-DHT was detected in human serum, but not in porcine serum. No specific androstenone-binding protein was detected, either in porcine or human serum, or in the cytosolic fraction of porcine testis. The amount of non-specific binding of [(3)H]-androstenone was slightly lower in porcine serum compared to human serum. Between-animal variations in [(3)H]-androstenone binding were studied in plasma samples from 15 animals with androstenone concentrations ranging from 1.1 to 23.1 ng/mL. Mean values+/-standard deviations of binding in these samples were 15.2+/-0.9% for total binding and 15.9+/-0.8% for non-specific bindings. Low between-animal variations indicate that androstenone binding does not affect androstenone accumulation in fat.  相似文献   

13.
We have previously shown that a protein derived from the p7 nucleocapsid (NC) protein of HIV type-1 increases kcat/Km and kcat for cleavage of a cognate substrate by a hammerhead ribozyme. Here we show directly that the increase in kcat/Km arises from catalysis of the annealing of the RNA substrate to the ribozyme and the increase in kcat arises from catalysis of dissociation of the RNA products from the ribozyme. A peptide polymer derived from the consensus sequence of the C-terminal domain of the hnRNP A1 protein (A1 CTD) provides similar enhancements. Although these effects apparently arise from non-specific interactions, not all non-specific binding interactions led to these enhancements. NC and A1 CTD exert their effects by accelerating attainment of the thermodynamically most stable species throughout the ribozyme catalytic cycle. In addition, NC protein is shown to resolve a misfolded ribozyme-RNA complex that is otherwise long lived. These in vitro results suggest that non-specific RNA binding proteins such as NC and hnRNP proteins may have a biological role as RNA chaperones that prevent misfolding of RNAs and resolve RNAs that have misfolded, thereby ensuring that RNA is accessible for its biological functions.  相似文献   

14.
S W Yang  H A Nash 《The EMBO journal》1995,14(24):6292-6300
We have quantitatively evaluated the affinity of a set of target sites for the integration host factor (IHF) protein of Escherichia coli by their performance as competitors in an electrophoretic mobility shift assay. We also determined how well each of these sites is filled by IHF in vivo. The data show that several natural sites have an affinity not much greater than that required for intracellular occupancy. The data also indicate that very little of the IHF in a cell is present as free protein available for binding, suggesting that binding to non-specific targets dominates the operation of this system. The correlation between in vitro affinity and in vivo occupancy provides a ready means to assess the likely physiological significance of putative IHF sites. It also provides a general method to assess the importance of non-specific interactions by DNA binding proteins inside a cell.  相似文献   

15.
Radioiodinated human serum transferrin has been found to interact with polypropylene culture tubes in a manner that mimics the specific binding of a protein to a cellular receptor. The magnitude of this transferrin-culture tube interaction is such that any true binding of the protein to cells present is masked. Characteristics of this non-specific “binding” process as well as kinetic and thermodynamic parameters are compared with previously reported values for the interaction of transferrin with both reticulocytes and chinese hamster fibroblasts.  相似文献   

16.
17.
The binding of the cyclic adenosine 3',5' monophosphate receptor protein (CRP or CAP) of Escherichia coli to non-specific DNA and to a specific lac recognition sequence has been investigated by circular dichroism (c.d.) spectroscopy. The effect of cAMP and cGMP on the co-operative non-specific binding was also studied. For the non-specific binding in the absence of cAMP a c.d. change (decrease of the intensity of the positive band with a shift of its maximum to longer wavelength) indicates that the DNA undergoes a conformational change upon CRP binding. This change might reflect the formation of the solenoidal coil previously observed by electron microscopy. The amplitude of the c.d. change increases linearly with the degree of saturation of the DNA and does not depend on the size of the clusters of CRP bound. From the variation of the c.d. effect as a function of the ionic strength, the product K omega (K, the intrinsic binding constant and omega, the co-operativity parameter) could be determined. The number of ion pairs involved in complex formation between CRP and DNA was found to be six to seven. Experiments performed with several DNAs, including the alternating polymers poly[d(A-T)] and poly[d(G-C)], demonstrated that the conformational change does not depend on the DNA sequence. However, in the presence of cAMP the c.d. spectrum of the DNA shows only a small variation upon binding CRP. In contrast, in the presence of cGMP the conformational change of the DNA is similar to that observed when non-liganded CRP binds. For the specific lac operon binding, the c.d. change is different from those observed for non-specific binding in the presence or absence of cAMP. These results emphasize the high variability of the DNA structure upon binding the same protein.  相似文献   

18.
This paper describes a generally applicable method for quantitative investigation of ligand-dependent binding of a regulatory protein to its target DNA at equilibrium. It is used here to analyse the coupled binding equilibria of cAMP receptor protein from Escherichia coli K12 (CRP) with DNA and the physiological effector cAMP. In principle, the DNA binding parameters of CRP dimers with either one or two ligands bound are determinable in such an approach. The change of protein fluorescence was used to measure CRP binding to its recognition sequence in the lac control region and to non-specific DNA. Furthermore, the binding of cAMP to preformed CRP-DNA complexes was independently studied by equilibrium dialysis. The data were analysed using a simple interactive model for two intrinsically identical sites and site-site interactions. The intrinsic binding constant K and the co-operativity factor alpha for binding of cAMP to free CRP depend only slightly on salt concentration between 0.01 M and 0.2 M. In contrast, the affinity of cAMP for CRP pre-bound to non-specific DNA increases with the salt concentration and the co-operativity changes from positive to negative. This results from cation rebinding to the DNA lattice upon forming the cAMP-CRP-DNA complex from cAMP and the pre-formed CRP-DNA complex. The CRP-cAMP1 complex shows almost the same affinity for specific and non-specific DNA as the CRP-cAMP2 complex, and both displace the same number of cations. It is concluded that the allosteric activation of CRP is induced upon binding of the first cAMP. These results are used to estimate the occupation of the CRP site in the lac control region in relation to the cAMP concentration in vivo. Under physiological conditions the lac promoter is activated by the CRP dimer complexed with only one cAMP. Furthermore, a model for the differential activation of various genes expressed under catabolite repression is presented and discussed.  相似文献   

19.
Sulfatide (cerebroside sulfate) activated protein kinase C to the same extent as phosphatidylserine did with the tumor promoters, 12-O-tetradecanoylphorbol-13-acetate (TPA), teleocidin and debromoaplysiatoxin. Sulfatide and phosphatidylserine both induced specific binding of [3H]TPA to protein kinase C, although the ratios of specific to non-specific [3H]TPA binding to protein kinase C with the two were not the same. It is concluded that sulfatide is involved in activation of protein kinase C by tumor promoters in a slightly different way from phosphatidylserine.  相似文献   

20.
A phospholipid transfer protein from rat lung has been characterized in terms of the amino-terminal sequence. The sequence is Val-Leu-Leu-Lys-Glu-Tyr-Arg-Val-Ile-Leu-Pro-(Val)-His-Val-Asp-Glu-Tyr-Gln-Val- Gly. Comparison of the amino-terminal sequence of the protein from lung with sequences from phosphatidylcholine transfer protein and non-specific phospholipid transfer protein from bovine liver revealed no apparent sequence homology. The sequence showed no homology with fatty acid binding proteins or cellular retinoid binding proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号