首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Eggs attract sperm by chemical factors, a process called chemotaxis. Sperm from marine invertebrates use cGMP signalling to transduce incident chemoattractants into changes in the Ca2+ concentration in the flagellum, which control the swimming behaviour during chemotaxis. The signalling pathway downstream of the synthesis of cGMP by a guanylyl cyclase is ill-defined. In particular, the ion channels that are involved in Ca2+ influx and their mechanisms of gating are not known. Using rapid voltage-sensitive dyes and kinetic techniques, we record the voltage response that is evoked by the chemoattractant in sperm from the sea urchin Arbacia punctulata. We show that the chemoattractant evokes a brief hyperpolarization followed by a sustained depolarization. The hyperpolarization is caused by the opening of K+-selective cyclic-nucleotide-gated (CNG) channels in the flagellum. Ca2+ influx commences at the onset of recovery from hyperpolarization. The voltage threshold of Ca2+ entry indicates the involvement of low-voltage-activated Ca(v) channels. These results establish a model of chemosensory transduction in sperm whereby a cGMP-induced hyperpolarization opens Ca(v) channels by a 'recovery-from-inactivation' mechanism and unveil an evolutionary kinship between transduction mechanisms in sperm and photoreceptors.  相似文献   

3.
The ability of an ion channel to open in response to a defined stimulus is central to its function. In ligand-gated channels, pore opening is conferred through transduction of a conformational change in a gating domain to the helices of the pore. Here, we present the construction of a designed cyclic nucleotide-gated (CNG) channel, named KcsA-CNG, by addition of a prokaryotic cyclic nucleotide-binding domain to a KcsA-derived K+ channel. This channel is functional in lipid bilayers at physiological pH and has the combined properties of both of its parent-derived components. It conducts K+ and is blocked by the K+ channel inhibitors Na+ and agitoxin-2. Channel open times are increased by about two orders of magnitude compared to wild-type KcsA. The average number of open channels increases by approximately 50% upon addition of cAMP. Although the absolute open probabilities are somewhat variable from one channel to the next, the property of cyclic nucleotide sensitivity is very reproducible. An apparent Kd value of approximately 90 nM was estimated. The successful construction of a cyclic nucleotide-gated KcsA K+ channel suggests that it should be possible to produce channels that will respond to novel ligands.  相似文献   

4.
Furini S  Beckstein O  Domene C 《Proteins》2009,74(2):437-448
Previous studies have reported that the KcsA potassium channel has an osmotic permeability coefficient of 4.8 x 10(-12) cm3/s, giving it a significantly higher osmotic permeability coefficient than that of some membrane channels specialized in water transport. This high osmotic permeability is proposed to occur when the channel is depleted of potassium ions, the presence of which slow down the water permeation process. The atomic structure of the potassium-depleted KcsA channel and the mechanisms of water permeation have not been well characterized so far. Here, all-atom molecular dynamics simulations, in conjunction with an umbrella sampling strategy and a nonequilibrium approach to simulate pressure gradients are employed to illustrate the permeation of water in the absence of ions through the KcsA K+ channel. Equilibrium molecular dynamics simulations (95 ns combined total length) identified a possible structure of the potassium-depleted KcsA channel, and umbrella sampling calculations (160 ns combined total length) revealed that this structure is not permeable by water molecules moving along the channel axis. The simulation of a pressure gradient across the channel (30 ns combined total length) identified an alternative permeation pathway with a computed osmotic permeability of approximately (2.7 +/- 0.9) x 10(-13) cm3/s. Water fluxes along this pathway did not proceed through collective water motions or transitions to vapor state. All of the major results of this study were robust against variations in a wide set of simulation parameters (force field, water model, membrane model, and channel conformation).  相似文献   

5.
Streaming potentials arising across a K+-selective channel from fragmented sarcoplasmic reticulum were measured by incorporating the channel into planar bilayer membranes and imposing osmotic gradients across the membranes by addition of sorbitol or urea to only one side. Single-channel zero-current potentials were determined, and dilution artifacts were corrected for by addition of valinomycin to the bilayer. The streaming potentials were found to be unusually small, 1.1 mV per osmolal. The potentials were linearly related to the osmotic gradient across the bilayer, and were identical for sorbitol and urea. The results imply that the channel cannot be envisioned as a long tube, like gramicidin, but rather as a short constriction of less than 10 A in length opening out into wider mouths on either side of the membrane.  相似文献   

6.
Valiyaveetil FI  Zhou Y  MacKinnon R 《Biochemistry》2002,41(35):10771-10777
Lipid molecules surround an ion channel in its native environment of cellular membranes. The importance of the lipid bilayer and the role of lipid protein interactions in ion channel structure and function are not well understood. Here we demonstrate that the bacterial potassium channel KcsA binds a negatively charged lipid molecule. We have defined the potential binding site of the lipid molecule on KcsA by X-ray crystallographic analysis of a complex of KcsA with a monoclonal antibody Fab fragment. We also demonstrate that lipids are required for the in vitro refolding of the KcsA tetramer from the unfolded monomeric state. The correct refolding of the KcsA tetramer requires lipids, but it is not dependent on negatively charged lipids as refolding takes place in the absence of such lipids. We confirm that the presence of negatively charged lipids is required for ion conduction through the KcsA potassium channel, suggesting that the lipid bound to KcsA is important for ion channel function.  相似文献   

7.
Sequence similarity among and electrophysiological studies of known potassium channels, along with the three-dimensional structure of the Streptomyces lividans K(+) channel (KcsA), support the tenet that voltage-gated K(+) channels (Kv channels) consist of two distinct modules: the "voltage sensor" module comprising the N-terminal portion of the channel up to and including the S4 transmembrane segment and the "pore" module encompassing the C-terminal portion from the S5 transmembrane segment onward. To substantiate this modular design, we investigated whether the pore module of Kv channels may be replaced with the pore module of the prokaryotic KcsA channel. Biochemical and immunocytochemical studies showed that chimeric channels were expressed on the cell surface of Xenopus oocytes, demonstrating that they were properly synthesized, glycosylated, folded, assembled, and delivered to the plasma membrane. Unexpectedly, surface-expressed homomeric chimeras did not exhibit detectable voltage-dependent channel activity upon both hyperpolarization and depolarization regardless of the expression system used. Chimeras were, however, strongly dominant-negative when coexpressed with wild-type Kv channels, as evidenced by the complete suppression of wild-type channel activity. Notably, the dominant-negative phenotype correlated well with the formation of stable, glycosylated, nonfunctional, heteromeric channels. Collectively, these findings imply a structural compatibility between the prokaryotic pore module and the eukaryotic voltage sensor domain that leads to the biogenesis of non-responsive channels. Our results lend support to the notion that voltage-dependent channel gating depends on the precise coupling between both protein domains, probably through a localized interaction surface.  相似文献   

8.
Burykin A  Schutz CN  Villá J  Warshel A 《Proteins》2002,47(3):265-280
Realistic studies of ion current in biologic channels present a major challenge for computer simulation approaches. All-atom molecular dynamics simulations involve serious time limitations that prevent their use in direct evaluation of ion current in channels with significant barriers. The alternative use of Brownian dynamics (BD) simulations can provide the current for simplified macroscopic models. However, the time needed for accurate calculations of electrostatic energies can make BD simulations of ion current expensive. The present work develops an approach that overcomes some of the above challenges and allows one to simulate ion currents in models of biologic channels. Our method provides a fast and reliable estimate of the energetics of the system by combining semimacroscopic calculations of the self-energy of each ion and an implicit treatment of the interactions between the ions, as well as the interactions between the ions and the protein-ionizable groups. This treatment involves the use of the semimacroscopic version of the protein dipole Langevin dipole (PDLD/S) model in its linear response approximation (LRA) implementation, which reduces the uncertainties about the value of the protein "dielectric constant." The resulting free energy surface is used to generate the forces for on-the-fly BD simulations of the corresponding ion currents. Our model is examined in a preliminary simulation of the ion current in the KcsA potassium channel. The complete free energy profile for a single ion transport reflects reasonable energetics and captures the effect of the protein-ionized groups. This calculated profile indicates that we are dealing with the channel in its closed state. Reducing the barrier at the gate region allows us to simulate the ion current in a reasonable computational time. Several limiting cases are examined, including those that reproduce the observed current, and the nature of the productive trajectories is considered. The ability to simulate the current in realistic models of ion channels should provide a powerful tool for studies of the biologic function of such systems, including the analysis of the effect of mutations, pH, and electric potentials.  相似文献   

9.
K(+) channels play essential roles in regulating membrane excitability of many diverse cell types by selectively conducting K(+) ions through their pores. Many diverse molecules can plug the pore and modulate the K(+) current. Quaternary ammonium (QA) ions are a class of pore blockers that have been used for decades by biophysicists to probe the pore, leading to important insights into the structure-function relation of K(+) channels. However, many key aspects of the QA-blocking mechanisms remain unclear to date, and understanding these questions requires high resolution structural information. Here, we address the question of whether intracellular QA blockade causes conformational changes of the K(+) channel selectivity filter. We have solved the structures of the KcsA K(+) channel in complex with tetrabutylammonium (TBA) and tetrabutylantimony (TBSb) under various ionic conditions. Our results demonstrate that binding of TBA or TBSb causes no significant change in the KcsA structure at high concentrations of permeant ions. We did observe the expected conformational change of the filter at low concentration of K(+), but this change appears to be independent of TBA or TBSb blockade.  相似文献   

10.
Crystal structures of the tetrameric KcsA K+ channel reveal seven distinct binding sites for K+ ions within the central pore formed at the fourfold rotational symmetry axis. Coordination of an individual K+ ion by eight protein oxygen atoms within the selectivity filter suggests that ion-subunit bridging by cation-oxygen interactions contributes to structural stability of the tetramer. To test this hypothesis, we examined the effect of inorganic cations on the temperature dependence of the KcsA tetramer as monitored by SDS-PAGE. Inorganic cations known to permeate or strongly block K+ channels (K+, Rb+, Cs+, Tl+, NH4+, Ba2+, and Sr2+) confer tetramer stability at higher temperatures (T0.5 range = 87 degrees C to >99 degrees C) than impermeant cations and weak blockers (Li+, Na+, Tris+, choline+; T0.5 range = 59 degrees C to 77 degrees C). Titration of K+, Ba2+, and other stabilizing cations protects against rapid loss of KcsA tetramer observed in 100 mM choline Cl at 90 degrees C. Tetramer protection titrations of K+, Rb+, Cs+, Tl+, and NH4+ at 85 degrees C or 90 degrees C exhibit apparent Hill coefficients (N) ranging from 1.7 to 3.3 and affinity constants (K0.5) ranging from 1.1 to 9.6 mM. Ba2+ and Sr2+ titrations exhibit apparent one-site behavior (N congruent with 1) with K0.5 values of 210 nM and 11 microM, respectively. At 95 degrees C in the presence of 5 mM K+, titration of Li+ or Na+ destabilizes the tetramer with K0.5 values of 57 mM and 109 mM, respectively. We conclude that specific binding interactions of inorganic cations with the selectivity filter are an important determinant of tetramer stability of KscA.  相似文献   

11.
The E71 residue is buried near the selectivity filter in the KcsA K+ channel and forms a carboxyl-carboxylate bridge with D80. We have investigated the importance of E71 by examining neutralization mutants at this position using biochemical and electrophysiological methods. E71 mutations differentially destabilize the detergent-solubilized tetramer; among them, the E71V neutralization mutant has a relatively subtle effect. The E71V channel displays electrical activity when reconstituted into planar lipid bilayers. In single channel recordings, the mutant retains K+/Na+ selectivity, and its conductance in the outward direction is unaltered. Some conduction properties are changed: inward conductance is increased. Our results show that that the E71 side chain is not a primary determinant of ion selectivity or conduction in the wild-type channel, either directly or through the E71:D80 carboxyl-carboxylate bridge.  相似文献   

12.
The x-ray structure of the KcsA channel at different [K(+)] and [Rb(+)] provided insight into how K(+) channels might achieve high selectivity and high K(+) transit rates and showed marked differences between the occupancies of the two ions within the ion channel pore. In this study, the binding of kappa-conotoxin PVIIA (kappa-PVIIA) to Shaker K(+) channel in the presence of K(+) and Rb(+) was investigated. It is demonstrated that the complex results obtained were largely rationalized by differences in selectivity filter occupancy of this 6TM channels as predicted from the structural work on KcsA. kappa-PVIIA inhibition of the Shaker K(+) channel differs in the closed and open state. When K(+) is the only permeant ion, increasing extracellular [K(+)] decreases kappa-PVIIA affinity for closed channels by decreasing the "on" binding rate, but has no effect on the block of open channels, which is influenced only by the intracellular [K(+)]. In contrast, extracellular [Rb(+)] affects both closed- and open-channel binding. As extracellular [Rb(+)] increases, (a) binding to the closed channel is slightly destabilized and acquires faster kinetics, and (b) open channel block is also destabilized and the lowest block seems to occur when the pore is likely filled only by Rb(+). These results suggest that the nature of the permeant ions determines both the occupancy and the location of the pore site from which they interact with kappa-PVIIA binding. Thus, our results suggest that the permeant ion(s) within a channel pore can determine its functional and pharmacological properties.  相似文献   

13.
Potassium channels, which control the passage of K+ across cell membranes, have two transmembrane segments, M1 and M2, separated by a hydrophobic P region containing a highly conserved signature sequence. Here we analyzed the membrane topogenesis characteristics of the M1, M2, and P regions in two animal and bacterial two-transmembrane segment-type K+ channels, Kir 2.1 and KcsA, using an in vitro translation and translocation system. In contrast to the equivalent transmembrane segment, S5, in the voltage-dependent K+ channel, KAT1, the M1 segment in KcsA, was found to have a strong type II signal-anchor function, which favors the Ncyt/Cexo topology. The N-terminal cytoplasmic region was required for efficient, correctly orientated integration of M1 in Kir 2.1. Analysis of N-terminal modification by in vitro metabolic labeling showed that the N terminus in Kir 2.1 was acetylated. The hydrophobic P region showed no topogenic function, allowing it to form a loop, but not a transmembrane structure in the membrane; this region was transiently exposed in the endoplasmic reticulum lumen during the membrane integration process. M2 was found to possess a stop-transfer function and a type I signal-anchor function, enabling it to span the membrane. The C-terminal cytoplasmic region in KcsA was found to affect the efficiency with which the M2 achieved their final structure. Comparative topogenesis studies of Kir 2.1 and KcsA allowed quantification of the relative contributions of each segment and the cytoplasmic regions to the membrane topology of these two proteins. The membrane topogenesis of the pore-forming structure is discussed using results for Kir 2.1, KcsA, and KAT1.  相似文献   

14.
15.
The properties of the KcsA channel were investigated using a combination of tryptophan scanning of the two transmembrane helices followed by random mutagenesis at targeted residues. The tryptophan mutants were subjected to two screens: oligomeric stability and ability to complement the K+ uptake deficiency of the TK2420 Escherichia coli strain. Oligomeric stability is affected primarily by mutations at sites that border on and interact with the selectivity filter, while the complementation assays identified residues at the crossing point of the inner helices. Sites identified by the complementation assay in the tryptophan screen were subjected to random mutagenesis and selection by complementation. We have found two mutants, A108S and A108T, which have dramatically increased open probability while retaining the basic property of oligomeric stability.  相似文献   

16.
Voltage-gated K+ (Kv) channels play a central role in generating action potentials and rhythmic patterns, as well as in dendritic signal processing in neurons. Recently, the first structure of a member of the K+ channel family was solved. Although this channel is from bacteria and has a streamlined body plan with no voltage gating, it establishes the architecture of the functional core of the voltage-gated (K+) channels and their relatives. This architecture explains the crucial features of ion permeation and blockade, and gives some strong hints about gating. The bacterial K+ channel structure is the central piece in a puzzle; it remains to be seen how it will fit together with other domains of the Kv channels, with auxiliary subunits, and with other signal transduction molecules.  相似文献   

17.
18.
The selectivity filter of K(+) channels is comprised of a linear queue of four equal-spaced ion-binding sites spanning a distance of 12A. Each site is formed of eight oxygen atoms from the protein. The first three sites, numbered 1-3 from the extracellular side, are made of exclusively main-chain carbonyl oxygen atoms. The fourth site, closest to the intracellular side, is made of four main-chain carbonyl oxygen atoms and four threonine side-chain hydroxyl oxygen atoms. Here we characterize the effects of mutating the threonine to cysteine on the distribution of ions in the selectivity filter and on the conduction of ions through the filter. The mutation influences the occupancy of K(+) at sites 2 and 4 and it reduces the maximum rate of conduction in the limit of high K(+) concentration. The mutation does not affect the conduction of Rb(+). These results can be understood in the context of a conduction mechanism in which a pair of K ions switch between energetically balanced 1,3 and 2,4 configurations.  相似文献   

19.
The patch clamp technique has been used to study channels in a membrane inside a cell. A single muscle fiber is skinned in relaxing saline (high K+, low Ca2+ with EGTA and ATP), leaving the native sarcoplasmic reticulum (SR) membrane exposed for patching. Fibers are dissected from the second antenna remotor muscles of the American lobster, Homarus americanus. Transmission and scanning electron microscopy confirm the large volume fraction of SR (approximately 70%) and absence of sarcolemma in this unusual skinned preparation. The resting potential of the SR was measured after the resistance of the patch of membrane was broken down. It is near 0 mV (-0.4 +/- 0.6 mV). The average input resistance of the SR is 842 +/- 295 M omega. Some 25% of patches contain a K+-selective channel with a mean open time of seconds and the channel displays at least two conducting states. The open probability is weakly voltage dependent, large at zero and positive potentials (cytoplasm minus SR lumen), and decreasing at negative potentials. The maximal conductance of this channel is 200 +/- 1 pS and the substate conductance is 170 +/- 3 pS in symmetrical 480 mM K+ solution. The current-voltage relation of the open channel is linear over a range of +/- 100 mV. The selectivity is similar to the SR K+ channel of vertebrates: PK/PNa is 3.77 +/- 0.03, determined from reversal potential measurements, whereas gamma K/gamma Na is 3.28 +/- 0.06, determined from open-channel conductance measurements in symmetrical 480 mM solutions. Voltage-dependent block in the lobster SR K+ channel is similar to, but distinct from, that reported for the vertebrate channels. It occurs asymmetrically when hexamethonium is added to both sides of the membrane. The block is more effective from the cytoplasmic side of the channel.  相似文献   

20.
Luzhkov VB  Aqvist J 《FEBS letters》2001,495(3):191-196
We report results from automated docking and microscopic molecular dynamics simulations of the tetraethylammonium (TEA) complexes with KcsA. Binding modes and energies for TEA binding at the external and internal sides of the channel pore are examined utilising the linear interaction energy method. Effects of the channel ion occupancy (based on our previous results for the ion permeation mechanisms) on the binding energies are considered. Calculations show that TEA forms stable complexes at both the external and internal entrances of the selectivity filter. Furthermore, the effects of the Y82V mutation are evaluated and the results show, in agreement with experimental data, that the mutant has a significantly reduced binding affinity for TEA at the external binding site, which is attributed to stabilising hydrophobic interactions between the ligand and the tyrosines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号