首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lister R  Chew O  Rudhe C  Lee MN  Whelan J 《FEBS letters》2001,506(3):291-295
Using in vitro import assays into purified mitochondria and chloroplasts we found that Arabidopsis ferrochelatase-I and ferrochelatase-II were not imported into mitochondria purified from Arabidopsis (or several other plants) but were imported into pea leaf chloroplasts. Other dual targeted proteins could be imported into purified mitochondria from Arabidopsis. As only two ferrochelatase genes are present in the completed Arabidopsis genome, the presence of ferrochelatase activity in plant mitochondria needs to be re-evaluated. Previous reports of Arabidopsis ferrochelatase-I import into pea mitochondria are due to the fact that pea leaf (and root) mitochondria appear to import a variety, but not all chloroplast proteins. Thus pea mitochondria are not a suitable system to either study dual targeting, or to distinguish between isozymes present in mitochondria and chloroplasts.  相似文献   

2.
Most chloroplast and mitochondrial precursor proteins are targeted specifically to either chloroplasts or mitochondria. However, there is a group of proteins that are dual targeted to both organelles. We have developed a novel in vitro system for simultaneous import of precursor proteins into mitochondria and chloroplasts (dual import system). The mitochondrial precursor of alternative oxidase, AOX was specifically targeted only to mitochondria. The chloroplastic precursor of small subunit of pea ribulose bisphosphate carboxylase/oxygenase, Rubisco, was mistargeted to pea mitochondria in a single import system, but was imported only into chloroplasts in the dual import system. The dual targeted glutathione reductase GR precursor was targeted to both mitochondria and chloroplasts in both systems. The GR pre-sequence could support import of the mature Rubisco protein into mitochondria and chloroplasts in the single import system but only into chloroplasts in the dual import system. Although the GR pre-sequence could support import of the mature portion of the mitochondrial FAd subunit of the ATP synthase into mitochondria and chloroplasts, mature AOX protein was only imported into mitochondria under the control of the GR pre-sequence in both systems. These results show that the novel dual import system is superior to the single import system as it abolishes mistargeting of chloroplast precursors into pea mitochondria observed in a single organelle import system. The results clearly show that although the GR pre-sequence has dual targeting ability, this ability is dependent on the nature of the mature protein.  相似文献   

3.
Many chloroplast proteins are synthesized in the cytoplasm as precursors which contain an amino terminal transit peptide. These precursors are subsequently imported into chloroplast and targeted to one of several organellar locations. This import is mediated by the transit peptide, which is cleaved off during import. We have used the transit peptides of ferredoxin (chloroplast stroma) and plastocyanin (thylakoid lumen) to study chloroplast protein import and intra-organellar routing toward different compartments. Chimeric genes were constructed that encode precursor proteins in which the transit peptides are linked to yeast mitochondrial manganese superoxide dismutase. Chloroplast protein import and localization experiments show that both chimeric proteins are imported into the chloroplast stroma and processed. The plastocyanin transit sequence did not direct superoxide dismutase to the thylakoids; this protein was found in the stroma as an intermediate that still contains part of the plastocyanin transit peptide. The organelle specificity of these chimeric precursors reflected the transit peptide parts of the molecules, because neither the ferredoxin and plastocyanin precursors nor the chimeric proteins were imported into isolated yeast mitochondria.  相似文献   

4.
Protein targeting to plant mitochondria and chloroplasts is usually very specific and involves targeting sequences located at the amino terminus of the precursor. We challenged the system by using combinations of mitochondrial and chloroplast targeting sequences attached to reporter genes. The sequences coding for the presequence of the mitochondrial F1-ATPase -subunit and the transit peptide of the chloroplast chlorophyll a/b-binding protein, both from Nicotiana plumbaginifolia, were fused together in both combinations, then linked to the reporter genes, chloramphenicol acetyl transferase (CAT) and -glucuronidase (GUS), and introduced into tobacco. Analysis of CAT and GUS activities and proteins in the subcellular fractions revealed that the chloroplast transit peptide alone was not sufficient to target the reporter proteins to chloroplasts. However, when the mitochondrial -presequence was inserted downstream of the chloroplast sequence, import of CAT and GUS into chloroplasts was observed. Using the reciprocal system, the mitochondrial presequence alone was able to direct transport of CAT and, to a lesser extent, GUS to mitochondria; the GUS targeting to mitochondria was increased when the chloroplast targeting sequence was linked downstream of the mitochondrial presequence. Immuno-detection experiments using subcellular fractions confirmed the results observed by enzymatic assays. These results indicate the importance of the amino-terminal position of the targeting sequence in determining protein import specificity and are considered within the hypothesis of a co-translational protein import.  相似文献   

5.
The nucleus-encoded mitochondria-targeted proteins, multiple organellar RNA editing factors (MORF3, MORF5, and MORF6), interact with Arabidopsis (Arabidopsis thaliana) PURPLE ACID PHOSPHATASE2 (AtPAP2) located on the chloroplast and mitochondrial outer membranes in a presequence-dependent manner. Phosphorylation of the presequence of the precursor MORF3 (pMORF3) by endogenous kinases in wheat germ translation lysate, leaf extracts, or STY kinases, but not in rabbit reticulocyte translation lysate, resulted in the inhibition of protein import into mitochondria. This inhibition of import could be overcome by altering threonine/serine residues to alanine on the presequence, thus preventing phosphorylation. Phosphorylated pMORF3, but not the phosphorylation-deficient pMORF3, can form a complex with 14-3-3 proteins and HEAT SHOCK PROTEIN70. The phosphorylation-deficient mutant of pMORF3 also displayed faster rates of import when translated in wheat germ lysates. Mitochondria isolated from plants with altered amounts of AtPAP2 displayed altered protein import kinetics. The import rate of pMORF3 synthesized in wheat germ translation lysate into pap2 mitochondria was slower than that into wild-type mitochondria, and this rate disparity was not seen for pMORF3 synthesized in rabbit reticulocyte translation lysate, the latter translation lysate largely deficient in kinase activity. Taken together, these results support a role for the phosphorylation and dephosphorylation of pMORF3 during the import into plant mitochondria. These results suggest that kinases, possibly STY kinases, and AtPAP2 are involved in the import of protein into both mitochondria and chloroplasts and provide a mechanism by which the import of proteins into both organelles may be coordinated.Chloroplasts and mitochondria are endosymbiotic organelles that are intimately involved in energy metabolism in plants (Araújo et al., 2014). The majority of proteins located in chloroplasts and mitochondria are encoded in the nucleus, translated in the cytosol, and imported into the organelles (Murcha et al., 2014). For both chloroplasts and mitochondria, over 1,000 different proteins are required to be specifically imported into each organelle. Furthermore, while most proteins are imported specifically into one organelle, a significant number of proteins are dually targeted to both via ambiguous targeting signals (Carrie et al., 2009a; Ye et al., 2012, 2015). The sorting of proteins to chloroplast and mitochondria is achieved through the inclusion of targeting signals in newly synthesized proteins that act in combination with receptor domains present in outer membrane multisubunit protein complexes to specifically direct proteins to their destination compartments (Jarvis, 2008; Shi and Theg, 2013; Murcha et al., 2014). Chloroplast targeting signals (transit peptides) and mitochondrial targeting signals (presequences) are recognized by receptors on the translocase of the outer chloroplast envelope (TOC) and the translocase of the outer mitochondria membrane (TOM), respectively (Ye et al., 2015). In addition to the targeting signals and protein receptors, it has been proposed that cytosolic chaperone proteins may also play a role in maintaining precursor proteins in an import-competent state and may play a role in determining targeting specificity. However, in plants, the role of cytosolic chaperones has only been characterized to some extent for protein import into chloroplasts (Jarvis, 2008; Fellerer et al., 2011; Flores-Pérez and Jarvis, 2013; Lee et al., 2013; Schweiger et al., 2013) but not into mitochondria.In addition to cytosolic chaperone factors, three STY kinases are also involved in phosphorylating the transit peptides of several chloroplast precursor proteins, such as the precursor for the small subunit of Rubisco (pSSU) and the precursor for HIGH CHLOROPHYLL FLUORESCENCE136 (pHCF136), but not the presequence of the tobacco (Nicotiana tabacum) precursor for the β-subunit of the mitochondria ATP synthase (pF1β; Martin et al., 2006; Lamberti et al., 2011a, 2011b). In addition, a pea (Pisum sativum) 14-3-3 protein has also been reported to bind to the phosphorylated Ser on the transit peptide of pSSU but not to an S→A mutant. The formation of the pSSU/14-3-3/HEAT SHOCK PROTEIN70 (HSP70) complex enhances the kinetics of the import of pSSU into chloroplasts, as free pSSU is imported relatively slowly (May and Soll, 2000). Phosphatase inhibitors, NaF and NaMoO4, inhibit pSSU import into plastids in a reversible manner, suggesting that the dephosphorylation of the phosphorylated transit peptide of pSSU is required for import (Flügge and Hinz, 1986; Waegemann and Soll, 1996). A model for pSSU recognition and TOC translocation has been proposed in which the transit peptide of pSSU is phosphorylated at Ser-34 and the transit peptide binds to Toc33 and Toc159 to form a trimeric complex (Becker et al., 2004; Oreb et al., 2011). Hydrolysis of GTP at Toc33 dissociates it from the complex, and an as yet unknown phosphatase dephosphorylates pSer-34 on pSSU, allowing import to proceed through the combined action of Toc159 and Toc75 (Becker et al., 2004; Oreb et al., 2011). Phosphorylation seems to affect import, as phosphomimicking transit peptides of pSSU and pHCF136 reduced their import rates into chloroplasts (Lamberti et al., 2011a; Nickel et al., 2015).Unlike chloroplast import, there is no evidence that the phosphorylation and dephosphorylation of plant mitochondrial presequences are required for efficient protein import. In yeast (Saccharomyces cerevisiae), Tom22 functions as a cytosolic facing receptor and transfers precursor proteins to the Tom40 channel. It can be phosphorylated by Casein Kinase2 (CK2) and the mitochondria-bound CK1 to stimulate the activity and assembly of the TOM complex (Harbauer et al., 2014). Protein Kinase A (PKA) can phosphorylate Tom22, impairing its import rate. Thus, PKA, CK1, and CK2 act antagonistically. It has also been demonstrated that the cyclin-dependent kinase CDK1 stimulated assembly of the TOM complex by the phosphorylation of Tom6, an accessory subunit of the TOM complex, enhancing its import into mitochondria (Gerbeth et al., 2013). Thus, in yeast mitochondria, the phosphorylation of the protein import machinery itself appears to play a role in import.While the overall theme of mitochondrial protein targeting, machinery, and pathways utilized is conserved between different systems, significant variations have been observed in plants. First, the plant outer mitochondrial protein receptor Tom20 is not an ortholog to the yeast or mammalian receptors (Perry et al., 2006). Structural studies on the plant Tom20 import receptor suggest a discontinuous bidentate hydrophobic binding mechanism, somewhat different from that observed in other systems (Rimmer et al., 2011). Furthermore, plant mitochondria are required to distinguish between chloroplast and mitochondrial proteins. Transit peptides and presequences display some similarities in that both are enriched in positively charged residues. However, while mitochondrial presequences are proposed to form α-amphiphilic structures, chloroplast transit peptides do not and, instead, are predicted to form β-sheet secondary structures (Zhang and Glaser, 2002). The identification of a plant-specific outer membrane receptor, Toc64, involved in the import of specific precursor proteins (Chew et al., 2004) highlights the possibility of additional and varied mechanisms between plant mitochondrial protein targeting and other systems.Previously, we identified an outer mitochondrial membrane protein, called PURPLE ACID PHOSPHATASE2 (AtPAP2), that is also dually targeted to the outer envelope in chloroplasts (Sun et al., 2012a, 2012b). Similar to Toc33/34 and Tom20, AtPAP2 is anchored on the outer membranes by a C-terminal transmembrane motif. Overexpression of AtPAP2 resulted in an altered growth phenotype with elevated ATP levels (Sun et al., 2012b); thus, the function of this protein was investigated. Here, we show that the phosphorylation and dephosphorylation of the presequence of the precursor MULTIPLE ORGANELLAR RNA EDITING FACTOR3 (pMORF3) alter the kinetics of its import in Arabidopsis (Arabidopsis thaliana). Furthermore, it was shown that the phosphorylation of pMORF3, when translated in wheat germ lysate (WGL), resulted in relatively slow import kinetics, and the inhibition of phosphorylation by site-directed mutagenesis resulted in faster import kinetics. Together, these results show that the phosphorylation and dephosphorylation of a mitochondrial precursor protein play a role in its rate of import. The roles of the outer membrane AtPAP2 protein and STY kinases were also investigated, supporting a role for phosphorylation and dephosphorylation in the import of some precursor proteins into plant mitochondria.  相似文献   

6.
Most chloroplast and mitochondrial proteins are synthesized with N-terminal presequences that direct their import into the appropriate organelle. In this report we have analyzed the specificity of standard in vitro assays for import into isolated pea chloroplasts and mitochondria. We find that chloroplast protein import is highly specific because mitochondrial proteins are not imported to any detectable levels. Surprisingly, however, pea mitochondria import a range of chloroplast protein precursors with the same efficiency as chloroplasts, including those of plastocyanin, the 33-kDa photosystem II protein, Hcf136, and coproporphyrinogen III oxidase. These import reactions are dependent on the Deltaphi across the inner mitochondrial membrane, and furthermore, marker enzyme assays and Western blotting studies exclude any import by contaminating chloroplasts in the preparation. The pea mitochondria specifically recognize information in the chloroplast-targeting presequences, because they also import a fusion comprising the presequence of coproporphyrinogen III oxidase linked to green fluorescent protein. However, the same construct is targeted exclusively into chloroplasts in vivo indicating that the in vitro mitochondrial import reactions are unphysiological, possibly because essential specificity factors are absent in these assays. Finally, we show that disruption of potential amphipathic helices in one presequence does not block import into pea mitochondria, indicating that other features are recognized.  相似文献   

7.
We have established a homologous system for studying mitochondrial protein import in Chlamydomonas reinhardtii, using C. reinhardtii precursor proteins and mitochondria isolated from C. reinhardtii. The precursors of the F1 ATP synthase subunit and the Rieske FeS protein were imported into mitochondria with high efficiency, while the F1 subunit precursor was imported with much lower efficiency. The import of heterologous precursor proteins from higher plants was also less efficient. The precursor of the C. reinhardtii PsaF chloroplast protein was converted into a protease-protected form upon incubation with mitochondria. In vitro processing studies revealed that in contrast to the situation in higher plants, the processing of the precursors was catalysed by a soluble, matrix-located peptidase.  相似文献   

8.
Mitochondrial import of the human chaperonin (HSP60) protein   总被引:5,自引:0,他引:5  
The mitochondrial import of a member of the "chaperonin" group of proteins which play an essential role in the import of protein into organelles and their subsequent proper folding has been examined. The cDNA for human hsp60 (synonyms: GroEL homolog, P1) was transcribed and translated in vitro and its import into isolated rat heart mitochondria examined. The protein was converted into a mature form of lower molecular mass (= 58 kDa) which was resistant to trypsin treatment. The import of human hsp60 into mitochondria was inhibited in the presence of an uncoupler and also no import occurred when the N-terminal presequence was lacking. These results indicate that the chaperonin protein(s) are transported into mitochondria by a process similar to other imported mitochondrial proteins. Our results also indicate that although the P1 protein precursor was efficiently imported into mitochondria, in comparison to precursors of other mitochondrial proteins (viz. ornithine carbamoyltransferase and uncoupling protein) much less binding of pre P1 to mitochondria was observed. The significance of this latter observation at present is unclear.  相似文献   

9.
Photosynthesis and the biosynthesis of many important metabolites occur in chloroplasts. In these semi-autonomous organelles, the chloroplast genome encodes approximately 100 proteins. The remaining chloroplast proteins, close to 3,000, are encoded by nuclear genes whose products are translated in the cytosol and imported into chloroplasts. However, there is still no consensus on the composition of the protein import machinery including its motor proteins and on how newly imported chloroplast proteins are refolded. In this study, we have examined the function of orf2971, the largest chloroplast gene of Chlamydomonas reinhardtii. The depletion of Orf2971 causes the accumulation of protein precursors, partial proteolysis and aggregation of proteins, increased expression of chaperones and proteases, and autophagy. Orf2971 interacts with the TIC (translocon at the inner chloroplast envelope) complex, catalyzes ATP (adenosine triphosphate) hydrolysis, and associates with chaperones and chaperonins. We propose that Orf2971 is intimately connected to the protein import machinery and plays an important role in chloroplast protein quality control.

Repression of Orf2971 induces accumulation of chloroplast precursor proteins and impaired chloroplast quality indicating that Orf2971 is required for protein import and chloroplast quality control.

IN A NUTSHELL Background: The chloroplast is an important bioreactor as well as a photosynthetic site. Approximately 3,000 plastid proteins encoded in the nucleus are translocated into the chloroplast envelope via the TOC (translocon at the outer chloroplast envelope) and TIC machineries. Most nucleus-encoded preproteins that enter the plastid are unfolded as they traverse the TOC–TIC import complexes. To prevent these unfolded or misfolded proteins from causing chloroplast damage, a quality control mechanism comprising molecular chaperones and proteases ensures that all polypeptides entering chloroplasts are either correctly folded or degraded. However, there is still no consensus on the TIC complex’s components, motor proteins, or mechanism for refolding proteins entering the chloroplast. Question: What is the precise function of each of the proteins in the TIC complex? What is the composition of the chloroplast protein import machinery motor? How are the newly imported chloroplast proteins refolded and assembled into functional complexes? Findings: We found that Orf2971, encoded by the largest gene in the Chlamydomonas reinhardtii chloroplast genome and proposed to be an ortholog of Ycf2, is directly associated with the protein import machinery and plays a crucial role in ensuring the quality of proteins targeted to the chloroplast. Orf2971 deficiency induces protein precursor accumulation, partial proteolysis and protein aggregation, increased expression of chaperones and proteases, and autophagy. We hypothesize that Orf2971 is intimately linked to the protein import machinery and plays a critical role in chloroplast protein quality control. Next steps: The next challenge is to identify the sorting components associated with this complex on the stromal side. Furthermore, additional experimental evidence is required to investigate the relationship between different import machineries, including the analysis of the accumulation of precursor proteins in the various import mutants.  相似文献   

10.
In recent decades, it has become evident that the condition for normal functioning of mitochondria in higher eukaryotes is the presence of membrane transport systems of macromolecules (proteins and nucleic acids). Natural competence of the mitochondria in plants, animals, and yeasts to actively uptake DNA may be directly related to horizontal gene transfer into these organelles occurring at much higher rate compared to the nuclear and chloroplast genomes. However, in contrast with import of proteins and tRNAs, little is known about the biological role and molecular mechanism underlying import of DNA into eukaryotic mitochondria. In this review, we discuss current state of investigations in this area, particularly specificity of DNA import into mitochondria and its features in plants, animals, and yeasts; a tentative mechanism of DNA import across the mitochondrial outer and inner membranes; experimental data evidencing several existing, but not yet fully understood mechanisms of DNA transfer into mitochondria. Currently available data regarding transport of informational macromolecules (DNA, RNA, and proteins) into the mitochondria do not rule out that the mechanism of protein and tRNA import as well as tRNA and DNA import into the mitochondria may partially overlap.  相似文献   

11.
The novel genetic method of "sheltered RIP" (repeat induced point mutation) was used to generate a Neurospora crassa mutant in which MOM19, a component of the protein import machinery of the mitochondrial outer membrane, can be depleted. Deficiency in MOM19 resulted in a severe growth defect, but the cells remained viable. The number of mitochondrial profiles was not grossly changed, but mutant mitochondria were highly deficient in cristae membranes, cytochromes, and protein synthesis activity. Protein import into isolated mutant mitochondria was decreased by factors of 6 to 30 for most proteins from all suborganellar compartments. Proteins like the ADP/ATP carrier, MOM19, and cytochrome c, whose import into wild-type mitochondria occurs independently of MOM19 became imported normally showing that the reduced import activities are solely caused by a lack of MOM19. Depletion of MOM19 reveals a close functional relationship between MOM19 and MOM22, since loss of MOM19 led to decreased levels of MOM22 and reduced protein import through MOM22. Furthermore, MOM72 does not function as a general backup receptor for MOM19 suggesting that these two proteins have distinct precursor specificities. These findings demonstrate that the import receptor MOM19 fulfills an important role in the biogenesis of mitochondria and that it is essential for the formation of mitochondria competent in respiration and phosphorylation.  相似文献   

12.
AtToc159 is a GTP-binding chloroplast protein import receptor. In vivo, atToc159 is required for massive accumulation of photosynthetic proteins during chloroplast biogenesis. Yet, in mutants lacking atToc159 photosynthetic proteins still accumulate, but at strongly reduced levels whereas non-photosynthetic proteins are imported normally: This suggests a role for the homologues of atToc159 (atToc132, -120 and -90). Here, we show that atToc90 supports accumulation of photosynthetic proteins in plastids, but is not required for import of several constitutive proteins. Part of atToc90 associates with the chloroplast surface in vivo and with the Toc-complex core components (atToc75 and atToc33) in vitro suggesting a function in chloroplast protein import similar to that of atToc159. As both proteins specifically contribute to the accumulation of photosynthetic proteins in chloroplasts they may be components of the same import pathway.  相似文献   

13.
Proteolytic degradation of receptor sites on the mitochondrial surface strongly reduces the efficiency of mitochondrial protein import. The remaining residual import still involves basic mechanisms of protein import, including: insertion of precursors into the outer membrane, requirement for ATP and a membrane potential, and translocation through contact sites between both membranes. The import of a chloroplast protein into isolated mitochondria which occurs with a low rate is not inhibited by a protease-pretreatment of mitochondria, indicating that this precursor only follows the bypass pathway. The low efficiency of bypass import suggests that this unspecific import does not disturb the uniqueness of mitochondrial protein composition. We conclude that mitochondrial protein import involves a series of steps in which receptor sites appear to be responsible for the specificity of protein uptake.  相似文献   

14.
Membrane-embedded β-barrel proteins are found in the outer membranes (OM) of Gram-negative bacteria, mitochondria and chloroplasts. In eukaryotic cells, precursors of these proteins are synthesized in the cytosol and have to be sorted to their corresponding organelle. Currently, the signal that ensures their specific targeting to either mitochondria or chloroplasts is ill-defined. To address this issue, we studied targeting of the chloroplast β-barrel proteins Oep37 and Oep24. We found that both proteins can be integrated in vitro into isolated plant mitochondria. Furthermore, upon their expression in yeast cells Oep37 and Oep24 were exclusively located in the mitochondrial OM. Oep37 partially complemented the growth phenotype of yeast cells lacking Porin, the general metabolite transporter of this membrane. Similarly to mitochondrial β-barrel proteins, Oep37 and Oep24 expressed in yeast cells were assembled into the mitochondrial OM in a pathway dependent on the TOM and TOB complexes. Taken together, this study demonstrates that the central mitochondrial components that mediate the import of yeast β-barrel proteins can deal with precursors of chloroplast β-barrel proteins. This implies that the mitochondrial import machinery does not recognize signals that are unique to mitochondrial β-barrel proteins. Our results further suggest that dedicated targeting factors had to evolve in plant cells to prevent mis-sorting of chloroplast β-barrel proteins to mitochondria.  相似文献   

15.
The role of plant mitochondrial outer membrane proteins in the process of preprotein import was investigated, as some of the principal components characterized in yeast have been shown to be absent or evolutionarily distinct in plants. Three outer membrane proteins of Arabidopsis thaliana mitochondria were studied: TOM20 (translocase of the outer mitochondrial membrane), METAXIN, and mtOM64 (outer mitochondrial membrane protein of 64 kD). A single functional Arabidopsis TOM20 gene is sufficient to produce a normal multisubunit translocase of the outer membrane complex. Simultaneous inactivation of two of the three TOM20 genes changed the rate of import for some precursor proteins, revealing limited isoform subfunctionalization. Inactivation of all three TOM20 genes resulted in severely reduced rates of import for some but not all precursor proteins. The outer membrane protein METAXIN was characterized to play a role in the import of mitochondrial precursor proteins and likely plays a role in the assembly of beta-barrel proteins into the outer membrane. An outer mitochondrial membrane protein of 64 kD (mtOM64) with high sequence similarity to a chloroplast import receptor was shown to interact with a variety of precursor proteins. All three proteins have domains exposed to the cytosol and interacted with a variety of precursor proteins, as determined by pull-down and yeast two-hybrid interaction assays. Furthermore, inactivation of one resulted in protein abundance changes in the others, suggesting functional redundancy. Thus, it is proposed that all three components directly interact with precursor proteins to participate in early stages of mitochondrial protein import.  相似文献   

16.
The study aims to gain insight into the mode of ligand recognition by tetratricopeptide repeat (TPR) domains of chloroplast translocon at the outer envelope of chloroplast (Toc64) and mitochondrial Om64, two paralogous proteins that mediate import of proteins into chloroplast and mitochondria, respectively. Chaperone proteins associate with precursor proteins in the cytosol to maintain them in a translocation competent conformation and are recognized by Toc64 and Om64 that are located on the outer membrane of the target organelle. Heat shock proteins (Hsp70) and Hsp90 are two chaperones, which are known to play import roles in protein import. The C‐termini of these chaperones are known to interact with the TPR domain of chloroplast Toc64 and mitochondrial Om64 in Arabidopsis thaliana (At). Using a molecular dynamics approach and binding energy calculations, we identify important residues involved in the interactions. Our findings suggest that the TPR domain from AtToc64 has higher affinity towards C‐terminal residues of Hsp70. The interaction occurs as the terminal helices move towards each other enclosing the cradle on interaction of AtHsp70 with the TPR domain. In contrast, the TPR domain from AtOm64 does not discriminate between the C‐termini of Hsp70 and Hsp90. These binding affinities are discussed with respect to our knowledge of protein targeting and specificity of protein import into endosymbiotic organelles in plant cells. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
Chloroplast envelope quinone oxidoreductase (ceQORH) is an inner plastid envelope protein that is synthesized without cleavable chloroplast transit sequence for import. In the present work, we studied the in vitro-import characteristics of Arabidopsis ceQORH. We demonstrate that ceQORH import requires ATP and is dependent on proteinaceous receptor components exposed at the outer plastid surface. Competition experiments using small subunit precursor of ribulose-bisphosphate carboxylase/oxygenase and precursor of ferredoxin, as well as antibody blocking experiments, revealed that ceQORH import does not involve the main receptor and translocation channel proteins Toc159 and Toc75, respectively, which operate in import of proteins into the chloroplast. Molecular dissection of the ceQORH amino acid sequence by site-directed mutagenesis and subsequent import experiments in planta and in vitro highlighted that ceQORH consists of different domains that act concertedly in regulating import. Collectively, our results provide unprecedented evidence for the existence of a specific import pathway for transit sequence-less inner plastid envelope membrane proteins into chloroplasts.  相似文献   

18.
The transit peptide of the lumenal 33-kDa oxygen-evolving polypeptide (OEE1) is capable of directing the import and targeting of the foreign protein dihydrofolate reductase (DHFR) to the thylakoid lumen. The import results from the first part of this study indicate that methotrexate cannot block the import or intraorganellar targeting of OEE1-DHFR in chloroplasts in contrast to that reported for the import of cytochrome oxidase subunit IV (COXIV)-DHFR in mitochondria. These results suggest that the fusion of the OEE1 transit sequence to DHFR affected the protein's methotrexate binding properties. We further examined and compared the transport characteristics of a number of carboxyl-terminal truncated native chloroplast precursors to determine whether carboxyl domains contribute to the import and intraorganellar targeting mechanism of these proteins. The plastid precursors chosen for this study are targeted to one of the following chloroplast compartments: the stroma, the thylakoid membrane, and the lumen. In most cases, removal of carboxyl domains had a dramatic effect on one or more stages of the translocation pathway, such as import, processing, and intraorganellar targeting. The effects of carboxyl deletions varied from precursor to precursor and were dependent on the extent of the deletion. These combined results suggest that carboxyl domains in the mature part of the proteins can influence the function of the transit peptide, and as a result play an important role in determining the import and targeting competence of chloroplast precursors.  相似文献   

19.
Murcha MW  Huang T  Whelan J 《FEBS letters》1999,464(1-2):53-59
Characterisation of the amount of protein import of the alternative oxidase (AOX) and the F(A)d precursor proteins (previously shown to use different import pathways) into mitochondria from developing soybean tissues indicated that they displayed different patterns. Import of the AOX declined in both cotyledon and root mitochondria with increasing age, whereas the import of the F(A)d into cotyledon mitochondria remained high throughout the same period. Using primary leaf mitochondria, it was evident that import of AOX remained high while it declined in cotyledon and root mitochondria. The amount of import of the AOX into mitochondria from different tissues closely matched the amount of the Tom 20 receptor.  相似文献   

20.
Plant cells have two endosymbiotic organelles, chloroplasts, and mitochondria. These organelles perform specific functions that depend on organelle-specific proteins. The majority of chloroplast and mitochondrial proteins are specifically imported by the transit peptide and presequence, respectively. However, a significant number of proteins are also dually targeted to these two organelles. Currently, it is not fully understood how proteins are dually targeted to both chloroplasts and mitochondria. In this study, the mechanism underlying mitochondrial targeting of dual targeting AtSufE1 in Arabidopsis was elucidated. The N-terminal fragment containing 80 residues of AtSufE1 (AtSufE1N80) was sufficient to confer dual targeting of reporter protein, AtSufE1N80:GFP, in protoplasts. Two sequence motifs, two arginine residues at 15th and 21st positions, and amino acid (aa) sequence motif AKTLLLRPLK from the 31st to 40th aa position, were responsible for targeting to mitochondria a portion of reporter proteins amid the chloroplast targeting. The sequence motif PSEVPFRRT from the 41st to 50th aa position constitutes a common motif for targeting to both chloroplasts and mitochondria. For mitochondrial import of AtSufE1:N80, Metaxin played a critical role. In addition, BiFC and protein pull-down experiments showed that AtSufE1N80 specifically interacts with import receptors, Metaxin and Tom20. The interaction of AtSufE1N80 with Metaxin was required for the interaction with Tom20. Based on these results, we propose that mitochondrial targeting of dual-targeting AtSufE1 is mediated by both mitochondria-specific and common sequence motifs in the signal sequence through the interaction with import receptors, Metaxin and Tom20, in a successive manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号