首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Amino acid infusion induces a rise in glomerular filtration rate (GFR) in normal subjects, but the mechanism is as yet unknown. Glomerulopressin infused into the renal arteries of rats and dogs increases GFR. The aim of this study was to ascertain whether amino acid infusion raised glomerulopressin production and GFR. Accordingly, before renal arteriovenography, in 11 potential kidney donors, the caval catheter was introduced into the right hepatic vein and 60-ml blood samples were collected at the beginning and end of each experiment; six patients received amino acid infusion and five a saline infusion. Glomerulopressin in ultrafiltrates from hepatic vein plasma was measured by toad bioassay and GFR determined with diethylenetriamine pentaacetic acid-Tc99. The amino acid-infused group showed significant glomerulopressin activity in ultrafiltrates, as well as a significant GFR increase, whereas in the control group no glomerulopressin activity was observed, and there was no change in GFR. These findings suggest that intravenous amino acid infusion stimulates glomerulopressin production, which may in turn induce an increase in GFR.  相似文献   

2.
Glucagon (21.5 +/- 0.23 ng/min/kg) was infused through the portal vein of normal or pancreatectomized dogs. It was observed that a dose of glucagon that produces no significant change in the glycemia of normal dogs has a very small activity in the production of glomerulopressin and does not alter glomerular filtration rate (GRF). In pancreatectomized dogs this same dose of glucagon also does not alter glycemia but it induces a large increase in the production of glomerulopressin and GFR. Our results suggest that in pancreatectomized dogs glomerulopressin production is more sensitive to glucagon infusion than in normal dogs.  相似文献   

3.
Glucagon was infused through the porta or through the left renal artery in dogs. Another group of dogs were infused with glomerulopressin through the left renal artery. It was observed that glucagon when infused through the portal vein enhanced the glomerulopressin production and the glomerular filtration rate (GFR). When glucagon was infused intrarenally it did not alter GRF but it had a direct tubular action decreasing sodium reabsorption in the proximal tubule. Glomerulopressin infused intrarenally increased GRF and potassium excretion. The results suggest that the increase in GFR was due to increase in glomerulopressin activity. There are three reasons for this statement: a) GRF increased when glomerulopressin activity was high, but not when there was a low activity, 5) intrarenally infused glomerulopressin produced a very significant change in the GFR of the infused kidney, while the GRF of the contralateral kidney remained unchanged and c) intrarenally administered glucagon had no effect on GFR.  相似文献   

4.
Liver cirrhosis is characterized by low plasma levels of branched chain amino acids (BCAA) and high concentrations of aromatic amino acids (AAA), and this imbalance has been implicated in the pathogenesis of hepatic encephalopathy by the synthesis of altered neurotransmitters. Contrasting results on intravenous or oral BCAA efficacy and metabolic impact have already been reported, but studies reported in the literature were never longer than a few weeks. After oral administration of BCAA and a standard diet to 28 cirrhotic patients for 1 year, no modifications in plasma concentrations of BCAA could be observed up to 3 months of therapy. Our data and an accurate analysis of the current literature lead us to propose the hypothesis that in the impaired nitrogen metabolism following cirrhosis there are neither single metabolic presentations nor many perturbations, but numerous 'subpopulations' of patients who present a homogeneous pattern of alterations that may distinguish them in terms of therapeutic approach.  相似文献   

5.
The metabolic fluxes through the central carbon pathways in the bioprocess for serine alkaline protease (SAP) production by Bacillus licheniformis were calculated by the metabolic flux-based stoichiometric model based on the proposed metabolic network that contains 102 metabolites and 133 reaction fluxes using the time profiles of citrate, dry cell, organic acids, amino acids, and SAP as the constraints. The model was solved by minimizing the SAP accumulation rate in the cell. The effects of the oxygen-transfer rate (OTR) on the metabolic fluxes were investigated in a defined medium where citrate was used as the sole carbon source. The central pathways were active for the growth and the SAP synthesis in all the periods of the bioprocess at low (LOT), medium (MOT), and high (HOT) oxygen-transfer conditions. The flux partitioning in the TCA cycle at alpha-ketoglutarate towards glutamate group and at oxalacetate (OA) toward aspartic acid group amino acids were dependent on the OTR. The flux of the anaplerotic reaction that connects the TCA cycle either from malate or OA to the gluconeogenesis pathway via the main branch point pyruvate (Pyr) was also influenced by the OTR. With the decrease in the OTR, the intracellular flux values after glycerate 3-phosphate (PG3) in the gluconeogenesis pathway and the specific growth rate decreased. The total ATP-generation rate increased with the increase in OTR. The pathway towards the aspartic acid family amino acids which is important for sporulation that precedes the SAP synthesis were all active throughout the bioprocess. Metabolic flux analysis results at LOT, MOT, and HOT conditions encourage the design of an oxygen-transfer strategy in the bioreactor; moreover, asparagine synthetase or aspartate kinase could be the potential metabolic engineering sites due to the low value of the flux from the branch point aspartate toward asparagine.  相似文献   

6.
BCAAs (branched-chain amino acids) are indispensable (essential) amino acids that are required for body protein synthesis. Indispensable amino acids cannot be synthesized by the body and must be acquired from the diet. The BCAA leucine provides hormone-like signals to tissues such as skeletal muscle, indicating overall nutrient sufficiency. BCAA metabolism provides an important transport system to move nitrogen throughout the body for the synthesis of dispensable (non-essential) amino acids, including the neurotransmitter glutamate in the central nervous system. BCAA metabolism is tightly regulated to maintain levels high enough to support these important functions, but at the same time excesses are prevented via stimulation of irreversible disposal pathways. It is well known from inborn errors of BCAA metabolism that dysregulation of the BCAA catabolic pathways that leads to excess BCAAs and their alpha-keto acid metabolites results in neural dysfunction. In this issue of Biochemical Journal, Joshi and colleagues have disrupted the murine BDK (branched-chain alpha-keto acid dehydrogenase kinase) gene. This enzyme serves as the brake on BCAA catabolism. The impaired growth and neurological abnormalities observed in this animal show conclusively the importance of tight regulation of indispensable amino acid metabolism.  相似文献   

7.
Amino acids can serve as regulatory molecules that modulate numerous cellular functions. Branched chain amino acids (BCAAs) are known to exert influences on cellular metabolism, amino acid transport, protein turn over, and gene expression. However, the mechanisms involved in the specific effect of BCAAs have not been clarified. BCAA supplementation therapy is a current treatment for patients with liver cirrhosis, therefore, specific BCAA activities should be examined. Hepatocyte growth factor (HGF) is considered to be a pleiotropic factor, and is reported to modulate gene expression and to stimulate the proliferation and functions of many cell types, including hepatocytes. A potential application of HGF for several types of diseases has been postulated. Here, we describe the potential of BCAAs as a therapeutic agent that acts through the induction of HGF production in the liver.  相似文献   

8.
Skin collagen metabolism abnormalities induced by ultraviolet (UV) radiation are the major causes of skin photoaging. It has been shown that the one-time exposure of UV irradiation decreases procollagen mRNA expression in dermis and that chronic UV irradiation decreases collagen amounts and induces wrinkle formation. Amino acids are generally known to regulate protein metabolism. Therefore, we investigated the effects of UV irradiation and various orally administered amino acids on skin collagen synthesis rates. Groups of 4-5 male, 8-week-old HR-1 hairless mice were irradiated with UVB (66 mJ/cm2) twice every other day, then fasted for 16 h. The fractional synthesis rate (FSR; %/h) of skin tropocollagen was evaluated by incorporating L-[ring-2H5]-phenylalanine. We confirmed that the FSR of dermal tropocollagen decreased after UVB irradiation. The FSR of dermal tropocollagen was measured 30 min after a single oral administration of amino acids (1 g/kg) to groups of 5-16 UVB-irradiated mice. Branched-chain amino acids (BCAA, 1.34±0.32), arginine (Arg, 1.66±0.39), glutamine (Gln, 1.75±0.60), and proline (Pro, 1.48±0.26) did not increase the FSR of skin tropocollagen compared with distilled water, which was used as a control (1.56±0.30). However, essential amino acids mixtures (BCAA+Arg+Gln, BCAA+Gln, and BCAA+Pro) significantly increased the FSR (2.07±0.58, 2.04±0.54, 2.01±0.50 and 2.07±0.59, respectively). This result suggests that combinations of BCAA and glutamine or proline are important for restoring dermal collagen protein synthesis impaired by UV irradiation.  相似文献   

9.
Bed rest is associated with a loss of protein from the weight-bearing muscle. The objectives of this study are to determine whether increasing dietary branched-chain amino acids (BCAAs) during bed rest improves the anabolic response after bed rest. The study consisted of a 1-day ambulatory period, 14 days of bed rest, and a 4-day recovery period. During bed rest, dietary intake was supplemented with either 30 mmol/day each of glycine, serine, and alanine (group 1) or with 30 mmol/day each of the three BCAAs (group 2). Whole body protein synthesis was determined with U-(15)N-labeled amino acids, muscle, and selected plasma protein synthesis with l-[(2)H(5)]phenylalanine. Total glucose production and gluconeogenesis from alanine were determined with l-[U-(13)C(3)]alanine and [6,6-(2)H(2)]glucose. During bed rest, nitrogen (N) retention was greater with BCAA feeding (56 +/- 6 vs. 26 +/- 12 mg N. kg(-1). day(-1), P < 0.05). There was no effect of BCAA supplementation on either whole body, muscle, or plasma protein synthesis or the rate of 3-MeH excretion. Muscle tissue free amino acid concentrations were increased during bed rest with BCAA (0.214 +/- 0.066 vs. 0.088 +/- 0.12 nmol/mg protein, P < 0.05). Total glucose production and gluconeogenesis from alanine were unchanged with bed rest but were significantly reduced (P < 0.05) with the BCAA group in the recovery phase. In conclusion, the improved N retention during bed rest is due, at least in part, to accretion of amino acids in the tissue free amino acid pools. The amount accreted is not enough to impact protein kinetics in the recovery phase but does improve N retention by providing additional essential amino acids in the early recovery phase.  相似文献   

10.
The branched chain amino acids (BCAA) valine, leucine and isoleucine have been implicated in a number of diseases including obesity, insulin resistance, and type 2 diabetes mellitus, although the mechanisms are still poorly understood. Adipose tissue plays an important role in BCAA homeostasis by actively metabolizing circulating BCAA. In this work, we have investigated the link between BCAA catabolism and fatty acid synthesis in 3T3-L1 adipocytes using parallel 13C-labeling experiments, mass spectrometry and model-based isotopomer data analysis. Specifically, we performed parallel labeling experiments with four fully 13C-labeled tracers, [U-13C]valine, [U-13C]leucine, [U-13C]isoleucine and [U-13C]glutamine. We measured mass isotopomer distributions of fatty acids and intracellular metabolites by GC-MS and analyzed the data using the isotopomer spectral analysis (ISA) framework. We demonstrate that 3T3-L1 adipocytes accumulate significant amounts of even chain length (C14:0, C16:0 and C18:0) and odd chain length (C15:0 and C17:0) fatty acids under standard cell culture conditions. Using a novel GC-MS method, we demonstrate that propionyl-CoA acts as the primer on fatty acid synthase for the production of odd chain fatty acids. BCAA contributed significantly to the production of all fatty acids. Leucine and isoleucine contributed at least 25% to lipogenic acetyl-CoA pool, and valine and isoleucine contributed 100% to lipogenic propionyl-CoA pool. Our results further suggest that low activity of methylmalonyl-CoA mutase and mass action kinetics of propionyl-CoA on fatty acid synthase result in high rates of odd chain fatty acid synthesis in 3T3-L1 cells. Overall, this work provides important new insights into the connection between BCAA catabolism and fatty acid synthesis in adipocytes and underscores the high capacity of adipocytes for metabolizing BCAA.  相似文献   

11.
Long-term supplementation with branched-chain amino acids (BCAA) is associated with prolonged survival and decreased frequency of development of hepatocellular carcinoma (HCC) in patients with liver cirrhosis. However, the pharmaceutical mechanism underlying this association is still unclear. We investigated whether continuous BCAA supplementation increases survival rate of rats exposed to a fibrogenic agent and influences the iron accumulation, oxidative stress, fibrosis, and gluconeogenesis in the liver. Further, the effects of BCAA on gluconeogenesis in cultured cells were also investigated. A significant improvement in cumulative survival was observed in BCAA-supplemented rats with advanced cirrhosis compared to untreated rats with cirrhosis (P<0.05). The prolonged survival due to BCAA supplementation was associated with reduction of iron contents, reactive oxygen species production and attenuated fibrosis in the liver. In addition, BCAA ameliorated glucose metabolism by forkhead box protein O1 pathway in the liver. BCAA prolongs survival in cirrhotic rats and this was likely the consequences of reduced iron accumulation, oxidative stress and fibrosis and improved glucose metabolism in the liver.  相似文献   

12.
1. Maple syrup urine disease (MSUD) is an inherited metabolic disorder predominantly characterized by neurological dysfunction and cerebral atrophy whose patophysiology is poorly known. 2. We investigated here whether the branched-chain amino acids (BCAA) leucine (Leu), isoleucine (Ile) and valine (Val), which are the biochemical hallmark of this disorder, could alter astrocyte morphology and cytoskeleton reorganization by exposing cultured astrocytes from cerebral cortex of neonatal rats to various concentrations of the amino acids. A change of cell morphology from the usual polygonal to the appearance of fusiform or process-bearing cells was caused by the BCAA. Cell death was also observed when astrocytes were incubated in the presence of BCAA for longer periods. 3. Val-treated astrocytes presented the most dramatic morphological alterations. Immunocytochemistry with anti-actin and anti-GFAP antibodies revealed that all BCAA induced reorganization of actin and GFAP cytoskeleton. In addition, lysophosphatidic acid, an activator of RhoA GTPase pathway, was able to totally prevent the morphological alterations and cytoskeletal reorganization induced by Val, indicating that the RhoA signaling pathway was involved in these effects. 4. Furthermore, creatine attenuated the morphological alterations provoked by the BCAA, the protection being more pronounced for Val, suggesting that impairment of energy homeostasis is partially involved in BCAA cytotoxic action. The data indicate that the BCAA accumulating in MSUD are toxic to astrocyte cells, a fact that may be related to the pathogenesis of the neurological dysfunction of MSUD patients.  相似文献   

13.
Poor utilization of amino acids contributes to losses of milk protein yield in dairy cows exposed to heat stress (HS). Our objective was to test the effect of essential amino acids on milk production in lactating dairy cows exposed to short-term HS conditions. To achieve this objective, 12 multiparous, lactating Holstein cows were assigned to two environments (thermoneutral (THN) or HS) from days 1 to 14 in a split-plot type cross-over design. All cows received 0 g/day of essential amino acids from days 1 to 7 (negative control (NC)) followed by an intravenous infusion of l-methionine (12 g/day), l-lysine (21 g/day), l-leucine (35 g/day), l-isoleucine (15 g/day) and l-valine (15 g/day, methionine, lysine and branched-chain amino acids (ML+BCAA)) from days 8 to 14. The basal diet was composed of ryegrass silage and hay, and a concentrate mix. This diet supplied 44 g of methionine, 125 g of lysine, 167 g of leucine, 98 g of isoleucine and 109 g of valine per day to the small intestine of THN cows. Temperature–humidity index was maintained below 66 for the THN environment, whereas the index was maintained above 68, peaking at 76, for 14 continuous h/day for the HS environment. Heat stress conditioning increased the udder temperature from 37.0°C to 39.6°C. Cows that received the ML+BCAA treatment had greater p.m. rectal and vaginal temperatures (0.50°C and 0.40°C, respectively), and respiration rate (8 breaths/min) compared with those on the NC treatment and exposed to a HS environment. However, neither NC nor ML+BCAA affected rectal or vaginal temperatures and respiration rates in the THN environment. Compared with THN, the HS environment reduced dry matter intake (1.48 kg/day), milk yield (2.82 kg/day) and milk protein yield (0.11 kg/day). However, compared with NC, the ML+BCAA treatment increased milk protein percent by 0.07 points. For the THN environment, the ML+BCAA treatment increased concentrations of milk urea nitrogen. For the HS environment, the ML+BCAA treatment decreased plasma concentrations of arginine, ornithine and citrulline; however, differences were not observed for the THN environment. In summary, HS elicited expected changes in production; however, infusions of ML+BCAA failed to increase milk protein yield. Lower dry matter intake and greater heat load in response to ML+BCAA contributed to the lack of response in milk production in HS cows. The ML+BCAA treatment may have reduced the breakdown of muscle protein in heat-stressed cows.  相似文献   

14.
Determinations of renal clearance of fluorescein isothiocyanate (FITC)-inulin were used for assessing the glomerular filtration rate (GFR) in rats and to characterize factors influencing the glomerular filtration capacity. In anesthetized rats, GFR develops after birth up to day 30. Thereafter, GFR remains relatively constant for up to 3 months of age and drops continuously until the 8th month. GFR can be determined in utero, already one day before birth, however, only at a very low level. It increases significantly on the first day of life. Even at this time the effect of furosemide on GFR can be proven. After reduction of renal mass, GFR is decreased in dependence on the extent of kidney tissue removal. However, within 2 days after unilateral nephrectomy (NX) or one week after 5/6 NX, GFR reaches values about 3/4 of the controls with two intact kidneys. Furthermore, the compensation of GFR after renal ischemia reaches 80% of baseline values after one week. On the other hand, GFR is enhanced after bile duct ligation as a model of hepato-renal failure. It has been shown in previous experiments that pretreatment with hormones can stimulate renal tubular transport processes. Pretreatment with dexamethasone or triiodothyronine after 5/6 NX improves glomerular filtration capacity whereas in animals with ligated bile ducts dexamethasone seems to prevent the increase in GFR. After subchronic treatment with epidermal growth factor (EGF) GFR is significantly reduced. A continuous infusion of amino acids does not change GFR in the controls but enhances the filtration capacity in EGF-treated rats. But immediately after bolus injection of amino acids GFR also increases significantly in the controls. Diuretics such as furosemide, most nephrotoxic agents (cyclosporine A [CsA], heavy metals) and imidazole reduce the GFR significantly. Diltiazem reported to act nephroprotectively in CsA nephrotoxicity in human beings was without beneficial effect in rats. This could be due to species differences in GFR because the rat is one of the species with the highest glomerular filtration capacity.  相似文献   

15.
支链氨基酸对运动大鼠氨基酸代谢和运动能力的影响   总被引:4,自引:1,他引:3  
观察了支链氨基酸(BCAA)对大鼠运动能力和血清游离氨基酸代谢的影响。实验用21只雄性wistar大鼠,随机分为3组:正常组、游泳对照组和游泳补充BCAA组。2个运动组每天游泳训练1h,10天后游泳6h,观察补充BCAA对大鼠游泳运动能力和血清游离氨基酸水平的影响。实验结果表明,补充BCAA可明显提高大鼠游泳存活率,抑制血清中必需氨基酸、非必需氨基酸和总氨基酸水平升高,游泳运动后大鼠的血清中乳酸和LDH的升高幅度有所降低,抑制骨骼肌LDH活力的下降。说明补充BCAA可明显提高大鼠的运动能力,减少运动造成的蛋白质分解  相似文献   

16.
Amino acids and central fatigue   总被引:21,自引:0,他引:21  
Summary. There is an increasing interest in the mechanisms behind central fatigue, particularly in relation to changes in brain monoamine metabolism and the influence of specific amino acids on fatigue. Several studies in experimental animals have shown that physical exercise increases the synthesis and metabolism of brain 5-hydroxytryptamine (5-HT). Support for the involvement of 5-HT in fatigue can be found in studies where the brain concentration of 5-HT has been altered by means of pharmacological agents. When the 5-HT level was elevated in this way the performance was impaired in both rats and human subjects, and in accordance with this a decrease in the 5-HT level caused an improvement in running performance in rats. The precursor of 5-HT is the amino acid tryptophan and the synthesis of 5-HT in the brain is thought to be regulated by the blood supply of free tryptophan in relation to other large neutral amino acids (including the branched-chain amino acids, BCAA) since these compete with tryptophan for transport into the brain. Studies in human subjects have shown that the plasma ratio of free tryptophan/BCAA increases during and, particularly, after sustained exercise. This would favour the transport of tryptophan into the brain and also the synthesis and release of 5-HT which may lead to central fatigue. Attempts have been made to influence the 5-HT level by giving BCAA to human subjects during different types of sustained heavy exercise. The results indicate that ingestion of BCAA reduces the perceived exertion and mental fatigue during exercise and improves cognitive performance after the exercise. In addition, in some situations ingestion of BCAA might also improve physical performance; during exercise in the heat or in a competitive race when the central component of fatigue is assumed to be more pronounced than in a laboratory experiment. However, more experiments are needed to further clarify the effect of BCAA and also of tryptophan ingestion on physical performance and mental fatigue. Received January 3, 2000 / Accepted February 1, 2000  相似文献   

17.
A method for isolation of a potent nephritogenic antigen from bovine glomerular basement membrane has been established; the glomerular basement membrane was solubilized by trypsin digestion and fractionated successively by gel filtration on Ultrogel AcA-34, concanavalin A affinity chromatography and affinity chromatography on immobilized antibodies. The antigen thus prepared was found to be highly nephritogenic; it causes glomerulonephritis in rats by a single injection of 0.1 mg per individual. Amino acid and carbohydrate analyses revealed that the antigen is a glycoprotein which contains amino acids and sugars characteristic of collagen, namely, hydroxyproline, hydroxylysine, glycine, glucose and galactose, although the relative amounts of these amino acids and sugars are less than those found in Type IV collagen of glomerular basement membrane.  相似文献   

18.
The effects of oxygen transfer on the production and product distribution in serine alkaline protease (SAP) fermentation by Bacillus licheniformis and oxygen-transfer strategy in relation to the physiology of the bacilli were investigated on a defined medium with citric acid as sole carbon source in 3.5-dm(3) batch bioreactor systems. By forming a 3 x 3 matrix with the parameters air-inlet rates of Q(O)/V(R) = 0.2, 0.5, 1.0 vvm, and agitation rates of N = 150, 500, 750 min(-1), the effects of oxygen transfer were investigated at nine different conditions. The concentrations of the product SAP and by-products, i.e., neutral protease, alpha-amylase, amino acids, and organic acids, and SAP activities were determined throughout the bioprocess. Among the constant air-flow and agitation-rate fermentations, Q(O)/V(R) = 0.5 vvm, N = 750 min(-1) oxygen-transfer conditions produced maximum SAP activity that was 500 U cm(-3), at t = 37 h. With the increase in Q(O)/V(R) and/or N, Damk?hler number that is the oxygen-transfer limitation decreases; and the process passes from oxygen-transfer limited conditions to biochemical-reaction limited conditions. Further increase in SAP activity, A = 680 U cm(-3) was achieved by applying an oxygen-transfer strategy based on the analysis of the data obtained with the constant oxygen-transfer condition experiments, with a step increase in air-inlet rate, from Q(O)/V(R) = 0.2 to Q(O)/V(R) = 0.5 vvm at N = 750 min(-1) constant agitation rate at t = 24 h. Organic acids and amino acids that were excreted to the fermentation medium varied depending on the oxygen-transfer conditions. With the increase in oxygen-transfer rate acetic acid concentration increased; contrarily, with the decrease in the oxygen-transfer rate the TCA-cycle organic acids alpha-ketoglutaric and succinic acids, and gluconic acid were excreted to the fermentation broth; nevertheless, the application of the oxygen-transfer strategy prevented the increase in acetic acid concentration between t = 35-38 h. Under all the oxygen-transfer conditions, the amino acid having the highest concentration and the amino acid that was not excreted to the fermentation broth were lysine and asparagine, respectively; both of which belong to the aspartic acid-group amino acids. Further, this result indicates the requirement of the genetic regulation directed to the aspartic acid-group enzymes for the progress in SAP production in B. licheniformis.  相似文献   

19.
Branched-chain amino acid (BCAA: Leu, Ile, and Val) mixture has been used for treatment of hypoalbuminemia in patients with decompensated liver cirrhosis in Japan. It has been known that BCAA, especially leucine, activates mTOR signals and inhibition of protein degradation results in promoting protein synthesis in vitro. Furthermore, leucine activates glycogen synthase via mTOR signals in L6 cell, but not hepatocyte, and it has been shown that leucine improved glucose metabolism in normal and cirrhosis model rats. In this review, it will be proposed about the pharmacological activity of branched-chain amino acids, mainly leucine, on tissue specificity of cirrhotic disease.  相似文献   

20.
Isolated rat livers were perfused with gassed Krebs-Ringer-Bicarbonate and different doses of theophylline and dibutyryl cyclic AMP were added to the perfusing solution. The perfusates were ultrafiltrated through Diaflo UM-05 membranes. The glomerulopressin activity of the ultrafiltrates were assayed in the tonic tension contraction (TTC) of isolated stomach fundus from rats. As glomerulopressin is known to be a glucuronide, it was inactivated with beta-glucuronidase to confirm that the effect on the stomach fundus was due to the glomerulopressin and not to another substance. It was observed that doses of theophylline between 2 x 10(-3) M and 2 x 10(-5) M enhanced glomerulopressin production. However, there was no relationship between dose of theophylline and the response, and a dose of theophylline 2 x 10(-6) M has no activity. The perfusion with dibutyryl cyclic AMP at 5 x 10(-8) M increased the amount of glomerulopressin produced by the liver. This was a log-dose response of glomerulopressin production to dibutyryl cyclic AMP between 5 x 10(-8) M and 5 x 10(-4) M. Theophylline (2 x 10(-6) M) potentiated the activity of cyclic AMP (5 x 10(-8) M). These results support the view that cyclic AMP is intracellular mediator of the hepatic production of glomerulopressin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号