首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hepatic microsomal glucose-6-phosphatase activity was rendered extremely unstable by a variety of techniques: (a) incubation at pH 5.0; (b) extraction of the microsomal fraction in the presence of 1% Lubrol; (c) various purification procedures. These techniques all result in the removal of a 21 kDa polypeptide from the fraction containing glucose-6-phosphatase activity. The 21 kDa protein was purified to apparent homogeneity by solubilization in the detergent Lubrol 12A-9 and chromatography on Fractogel TSK DEAE-650(S) and centrifugation at 105 000 g. The 21 kDa protein stabilizes glucose-6-phosphatase activity, whereas other purified hepatic microsomal proteins do not. The 21 kDa protein appears to be a potential regulator of glucose-6-phosphatase activity.  相似文献   

2.
Membrane effects on hepatic microsomal glucose-6-phosphatase.   总被引:1,自引:0,他引:1  
1) Rat liver microsomes exhibit only a weak hydrolyzing activity towards galactose 6-phosphate. Disruption of the microsomal vesicles does not change the apparent Michaelis constant for this substrate but enhances the apparent maximum velocity. 2) The inhibition of microsomal glucose-6-phosphatase (EC 3.1.3.9) by galactose 6-phosphate is of the competitive type in intact and disrupted microsomal vesicles, suggesting that both substrates are hydrolyzed by the same enzyme. 3) The high degree of latency found for the hydrolysis of galactose 6-phosphate compared to glucose 6-phosphate indicates the presence of a carrier for glucose 6-phosphate in the microsomal membrane. 4) Since glucose as a product is not trapped inside the microsomal vesicles, this sugar probably is able to penetrate the microsomal membrane.  相似文献   

3.
The mechanisms responsible for the glycemic changes associated with endotoxic shock are not fully understood, but are known to involve the ability of the liver to produce glucose. The purpose of the present study was to determine whether endotoxin (LPS) influences the expression and activity of glucose-6-phosphatase (Glu-6-Pase) during the early hyperglycemic phase and the later hypoglycemic phase. Rats were injected with a relatively large dose of LPS (20 mg/kg) or saline (control), and sacrificed at 1 or 5 h post-injection. Both the plasma glucose concentration and glucose production were elevated 1 h post-LPS (2-fold) and both decreased at 5 h postinjection (50%). Compared to time-matched control values, hepatic glucose-6-phosphate and fructose-6-phosphate levels were significantly decreased at both 1 and 5 h. Hepatic Glu-6-Pase activity and mRNA levels were moderately increased, 1 h after injection of LPS. At 5 h, an 88% decrease in mRNA abundance for Glu-6-Pase was associated with a 30% decrease in activity of this enzyme. Plasma insulin concentrations were not different 1 h after LPS and were elevated 2-fold from control values at 5 h. Circulating levels of glucagon and corticosterone were elevated at both time points following LPS. Our data indicate that the LPS-induced hypoglycemia and reduction in hepatic glucose production were accompanied by a depression in Glu-6-Pase activity and gene expression.  相似文献   

4.
Carbamyl-P:glucose and PPi:glucose phosphotransferase, but not inorganic pyrophosphatase, activities of the hepatic microsomal glucose-6-phosphatase system demonstrate a time-dependent lag in product production with 1 mM phosphate substrate. Glucose-6-P phosphohydrolase shows a similar behavior with [glucose-6-P] less than or equal to 0.10 mM, but inorganic pyrophosphatase activity does not even at the 0.05 or 0.02 mM level. The hysteretic behavior is abolished when the structural integrity of the microsomes is destroyed by detergent treatment. Calculations indicate that an intramicrosomal glucose-6-P concentration of between 20 and 40 microM must be achieved, whether in response to exogenously added glucose-6-P or via intramicrosomal synthesis by carbamyl-P:glucose or PPi:glucose phosphotransferase activity, before the maximally active form of the enzyme system is achieved. It is suggested that translocase T1, the transport component of the glucose-6-phosphatase system specific for glucose-6-P, is the target for activation by these critical intramicrosomal concentrations of glucose-6-P.  相似文献   

5.
The mechanism of activation of hepatic microsomal glucose-6-phosphatase (EC 3.1.3.9) by histone 2A has been investigated in both intact and disrupted microsomes. Histone 2A increased the Vmax and decreased the Km of glucose-6-phosphatase in intact microsomes but had no effect on glucose-6-phosphatase activity in disrupted microsomes. Histone 2A was shown to activate glucose-6-phosphatase in intact microsomes by disrupting the membrane vesicles and thereby allowing the direct measurement of the activity of the latent glucose-6-phosphatase enzyme. The study demonstrated that disrupting microsomes with histone 2A is an excellent method for directly assaying glucose-6-phosphatase activity as it poses none of the problems encountered with all of the previously used methods.  相似文献   

6.
7.
8.
The temperature dependence of glucose-6-phosphatase (D-glucose-6-phosphate phosphohydrolase EC 3.1.3.9) was studied in rat liver and kidney microsomal fractions. Arrhenius plots were non-linear and showed four distinct discontinuities in enzyme activity over the temperature range 2-41 degrees C. The discontinuities occurred at approx. 39, 30, 20 and 12 degrees C in the liver and were similar to this in the kidney. Changes in the energy of activation for the enzyme were noted at approx. 20 degrees C in both tissues. The multiple discontinuities in glucose-6-phosphatase activity are viewed as a reflection of complex reorganization and/or change in physical state of the membrane components, primarily lipid.  相似文献   

9.
10.
Identification of the human hepatic microsomal glucose-6-phosphatase enzyme   总被引:2,自引:0,他引:2  
The glucose-6-phosphatase enzyme protein of the human hepatic microsomal glucose-6-phosphatase system was identified as a 36.5 kDa polypeptide. The 36.5 kDa glucose-6-phosphatase enzyme protein was shown to be absent in the microsomes isolated from a patient previously diagnosed as having a type 1a glycogen storage disease.  相似文献   

11.
The effects of Ca2+ on the microsomal glucose-6-phosphatase activity were investigated. Evidence is provided that increases by Ca2+ in both the pyrophosphatase and the glucose-6-phosphate-hydrolysing activities are due to an increase in microsomal transport capacity of T2, the phosphate/pyrophosphate-transport protein.  相似文献   

12.
Evidence is presented that incubation of intact microsomal vesicles with ATP and the catalytic subunit of cAMP-dependent protein kinase does not stimulate glucose-6-phosphatase. Our analyses show that commercial preparations of ATP, phosphoenol pyruvate, pyruvate kinase and protein kinase contain free phosphate that complicates interpretation of experimental data obtained using colorimetric assays of enzymic activity. The marked inhibition of enzymic activity by dithiothreitol, present in reconstituted preparations of protein kinase, also is a confounding factor. We recommend the use of glucose-6-phosphatase assays employing32P-labelled substrate in future studies of this mechanism.  相似文献   

13.
14.
The influence of exogenous thyroxine was studied on the hepatic glycogen content and glucose-6-phosphatase activity of rats of different age groups. The glycogen content and glucose-6-phosphatase activity were found to be decreased in the livers of 5, 15, 30 and 60-day-old rats after thyroxine treatment. In normal rats of 5, 15, 30 and 60-day-old, a gradual rise in both the hepatic glycogen content and glucose-6-phosphatase activity was noted as the age advanced from immature to adult.  相似文献   

15.
16.
17.
18.
2-Deoxy[14C]glucose-6-phosphate (2-[14C]DG-6-P) dephosphorylation and glucose-6-phosphatase (G-6-Pase) activity were examined in cultured rat astrocytes under conditions similar to those generally used in assays of glucose utilization. Astrocytes were loaded with 2-[14C]DG-6-P by preincubation for 15 min in medium containing 2 mM glucose and 50 microM 2-deoxy[14C]glucose (2-[14C]DG). The medium was then replaced with identical medium including 2 mM glucose but lacking 2-[14C]DG, and incubation was resumed for 5 min to diminish residual free 2-[14C]DG levels in the cells by either efflux or phosphorylation. The medium was again replaced with fresh 2-[14C]DG-free medium, and the incubation was continued for 5, 15, or 30 min. Intracellular and extracellular 14C contents were measured at each time point, and the distribution of 14C between 2-[14C]DG and 2-[14C]DG-6-P was characterized by paper chromatography. The results showed little if any hydrolysis of 2-[14C]DG-6-P or export of free 2-[14C]DG from cells to medium; there were slightly increasing losses of 2-[14C]DG and 2-[14C]DG-6-P into the medium with increasing incubation time, but they were in the same proportions found in the cells, suggesting they were derived from nonadherent or broken cells. Experiments carried out with medium lacking glucose during the assay for 2-deoxyglucose-6-phosphatase activity yielded similar results. Evidence for G-6-Pase activity was also sought by following the selective detritiation of glucose from the 2-C position when astrocytes were incubated with [2-3H]glucose and [U-14C]glucose in the medium. No change in the 3H/14C ratio was found in incubations for as long as 15 min. These results indicate negligible G-6-Pase activity in cultured astrocytes.  相似文献   

19.
H F Teutsch 《Histochemistry》1978,57(2):107-117
Methodological studies on the histochemical technique for the demonstration of G6Pase activity showed that the occurrence of common artifacts: morphological destruction, extracellular precipitation of reaction product and nuclear staining are dependent on the concentration of lead nitrate, buffer and substrate. By studying the effects of systematic variation of the incubation media on the histochemical reaction optimal concentrations of either of these components were determined. An improved medium containing 3.6 mM lead nitrate, 40 mM tris-maleate buffer, pH 6.5, 10 mM G6P and 300 mM sucrose was used for the study of G6Pase distribution patterns in liver acini of juvenile and adult rats of both sexes and in those of starved adult female rats. The results obtained indicate sex dependent differences in the functional organization of the liver acinus and furthermore demonstrate the rapid functional adaptability of liver parenchyma to changes of the nutritional situation.  相似文献   

20.
A simple, rapid, and reproducible method of determining glucose-6-phosphatase activity is described. The glucose 6-phosphate hydrolysis is accompanied by the disappearance of the protons from the medium owing to a phosphate species pK change from 6.1 (in glucose 6-phosphate) to 6.9 (in inorganic phosphate). Alkalization is registered by a pH meter with a recorder. The method described in this paper may be used in routine determinations of glucose-6-phosphatase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号