首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The role of protein kinases in the inhibition of TNF-alpha associated apoptosis of human neutrophils by crystals of calcium pyrophosphate dihydrate (CPPD) (25 mg/ml) was investigated. We monitored the activities of the p44 extracellular signal-regulated kinase 1 (ERK1) and p42 ERK2 mitogen-activated protein (MAP) kinases and phosphatidylinositol 3-kinase (PI3-K)-regulated protein kinase B (Akt) in neutrophils incubated with TNF-alpha and CPPD crystals, separately and in combination, in parallel with the endogenous caspase 3 activity and DNA fragmentation. CPPD crystals were observed to induce a robust and transient activation of ERK1, ERK2, and Akt, whereas TNF-alpha produced only a modest and delayed activation of Akt. In the presence of TNF-alpha, Akt activity was enhanced, and CPPD crystal-induced activation of ERK1 and ERK2 was more sustained than with CPPD crystals alone, but TNF-alpha itself reduced the basal phosphotransferase activities of these MAP kinases. Preincubation with the MAP kinase kinase (MEK1) inhibitors PD98059 (20 ng/ml) and U0126 (250 nM), or the PI3-K inhibitors wortmannin (100 nM) and LY294002 (50 microM) repressed the activation of ERK1, ERK2, and Akt in association with CPPD crystal incubation, in the absence or presence of TNF-alpha. Furthermore, the inhibition of the Mek1/Mek2-->ERK1/ERK2 or PI3-K/Akt pathways reversed CPPD crystal-associated suppression of TNF-alpha-induced caspase 3 activation and neutrophil apoptosis. Together, these results indicate that CPPD crystals function to induce acute inflammatory responses through ERK1/ERK2 and PI3-K/Akt-mediated stimulation of neutrophil activation and repression of apoptosis.  相似文献   

2.
Neurotrophins promote multiple actions on neuronal cells including cell survival and differentiation. The best-studied neurotrophin, nerve growth factor (NGF), is a major survival factor in sympathetic and sensory neurons and promotes differentiation in a well-studied model system, PC12 cells. To mediate these actions, NGF binds to the TrkA receptor to trigger intracellular signaling cascades. Two kinases whose activities mediate these processes include the mitogen-activated protein (MAP) kinase (or extracellular signal-regulated kinase [ERK]) and phosphoinositide 3-kinase (PI3-K). To examine potential interactions between the ERK and PI3-K pathways, we studied the requirement of PI3-K for NGF activation of the ERK signaling cascade in dorsal root ganglion cells and PC12 cells. We show that PI3-K is required for TrkA internalization and participates in NGF signaling to ERKs via distinct actions on the small G proteins Ras and Rap1. In PC12 cells, NGF activates Ras and Rap1 to elicit the rapid and sustained activation of ERKs respectively. We show here that Rap1 activation requires both TrkA internalization and PI3-K, whereas Ras activation requires neither TrkA internalization nor PI3-K. Both inhibitors of PI3-K and inhibitors of endocytosis prevent GTP loading of Rap1 and block sustained ERK activation by NGF. PI3-K and endocytosis may also regulate ERK signaling at a second site downstream of Ras, since both rapid ERK activation and the Ras-dependent activation of the MAP kinase kinase kinase B-Raf are blocked by inhibition of either PI3-K or endocytosis. The results of this study suggest that PI3-K may be required for the signals initiated by TrkA internalization and demonstrate that specific endocytic events may distinguish ERK signaling via Rap1 and Ras.  相似文献   

3.
To investigate the mechanisms responsible for survival and apoptosis/anoikis in normal human intestinal epithelial crypt cells, we analyzed the roles of various signaling pathways and cell adhesion on the expression of six Bcl-2 homologs (Bcl-2, Bcl-XL, Mcl-1, Bax, Bak, Bad) in the well established HIEC-6 cell model. Pharmacological inhibitors and/or dominant-negative constructs were used to inhibit focal adhesion kinase (Fak) and p38 isoforms, as well as the phosphatidylinositol 3'-kinase (PI3-K)/Akt-1 and mitogen-activated protein kinase [MAPK] kinase (MEK)/extracellular regulated kinases (Erk) pathways. Cell adhesion was disrupted by antibody-inhibition of integrin binding or forced cell suspension. The activation levels of studied kinase pathways were also analyzed. Herein, we report that beta1 integrins, Fak, and the PI3-K/Akt-1 pathway, but not beta4 integrins or the MEK/Erk pathway, are crucial for the survival of HIEC-6 cells. Conversely, p38beta, but not p38alpha or gamma, is required for the induction of apoptosis/anoikis in HIEC-6 cells. However, each of the signaling molecules/pathways analyzed were found to affect distinctively the individual expression of the Bcl-2 homologs studied. For example, the inhibition of the PI3-K/Akt-1 pathway down-regulated Bcl-XL, Mcl-1, and Bad, while at the same time up-regulating Bax, whereas the inhibition of Fak up-regulated both Bax and Bak, down-regulated Bad, and did not affect the other Bcl-2 homologs analyzed. These results indicate that integrins, Fak, PI3-K/Akt-1, MEK/Erk, and p38 isoforms perform distinct roles in the regulation of HIEC-6 cell survival and/or death. In addition, our data show that the functions performed by these molecules/pathways in promoting cell survival or apoptosis/anoikis translate into complex, differential modulations of individual Bcl-2 homologs.  相似文献   

4.
We have recently reported that Trypanosoma cruzi infection protects cardiomyocytes against apoptosis induced by growth factor deprivation. Cruzipain, a major parasite antigen, reproduced this survival effect by a Bcl-2-dependent mechanism. In this study, we have investigated the molecular mechanisms of cruzipain-induced cardiomyocyte protection. Neonatal BALB/c mouse cardiac myocytes were cultured under minimum serum conditions in the presence of cruzipain or T. cruzi (Tulahuen strain). Some cultures were pretreated with the phosphatidylinositol 3-kinase (PI3K) inhibitor Ly294002 or specific inhibitors of the mitogen-activated protein kinase (MAPK) family members such as the mitogen-activated protein kinase kinase (MEK1) inhibitor PD098059, Jun N-terminal kinase (JNK) inhibitor SP600125, p38 MAPK inhibitor SB203580. Inhibition of PI3K and MEK1 but not JNK or p38 MAPK increased the apoptotic rate of cardiomyocytes treated with cruzipain. Phosphorylation of Akt, a major target of PI3K, and ERK1/2, MEK1-targets, was achieved at 15 min and 5 min, respectively. In parallel, these kinases were strongly phosphorylated by T. cruzi infection. In cultures treated with cruzipain, cleavage of caspase 3 was considerably diminished after serum starvation; Bcl-2 overexpression was inhibited by PD098059 but not by Ly294002, whereas Bad phosphorylation and Bcl-xL expression were increased and differentially modulated by both inhibitors. The results suggest that cruzipain exerts its anti-apoptotic property in cardiac myocytes at least by PI3K/Akt and MEK1/ERK1/2 signaling pathways. We further identified a differential modulation of Bcl-2 family members by these two signaling pathways.  相似文献   

5.
Phospholipase D (PLD) activity is elevated in response to mitogenic and oncogenic signals. PLD also cooperates with overexpressed tyrosine kinases to transform rat fibroblasts. 3Y1 rat fibroblasts overexpressing the tyrosine kinase c-Src undergo apoptosis in response to serum withdrawal. We report here that elevated expression of either PLD1 or PLD2 in these cells prevents apoptosis induced by serum withdrawal. 3Y1 cells transformed by the activated tyrosine kinase v-Src have elevated PLD activity and are resistant to apoptosis induced by serum withdrawal. However, if PLD activity is blocked, the v-Src-transformed cells underwent apoptosis. MDA-MB-231 cells are a human breast cancer cell line with substantially elevated levels of PLD activity. Inhibiting PLD activity in these cells similarly rendered them sensitive to the apoptotic insult of serum withdrawal. These data indicate that elevated PLD activity generates a survival signal(s) allowing cells to overcome default apoptosis programs.  相似文献   

6.
Cancer cells depend on chemotaxis for invasion and frequently overexpress and/or activate Src. We previously reported that v-Src accelerates motility by promoting phosphoinositide 3-kinase (PI3-K) signalling but abrogates chemotaxis. We here addressed the mechanism of the loss of chemotactic response to platelet-derived growth factor (PDGF) gradients in fibroblasts harbouring a thermosensitive v-Src kinase. At non-permissive temperature, PDGF receptor (PDGFR) signalling, assessed by phosphoY(751)-specific antibodies (a docking site for PI3-K), was not detected without PDGF and showed a concentration-dependent PDGF response. Both immunolabeling of PI3-K (p110) and live cell imaging of its product (phosphatidylinositol 3,4,5 tris-phosphate) showed PI3-K recruitment and activation at lamellipodia polarized towards a PDGF gradient. Centrosomes and PDGFR- and Src-bearing endosomes were also oriented towards this gradient. Upon v-Src thermoactivation, (i) Y(751) phosphorylation was moderately induced without PDGF and synergistically increased with PDGF; (ii) PI3-K was recruited and activated all along the plasma membrane without PDGF and did not polarize in response to a PDGF gradient; and (iii) polarization of centrosomes and of PDGFR-bearing endosomes were also abrogated. Thus, PDGF can further increase PDGFR auto-phosphorylation despite strong Src kinase activity, but diffuse downstream activation of PI3-K by Src abrogates cell polarization and chemotaxis: "signalling requires silence".  相似文献   

7.
In addition to inhibiting matrix metalloproteinases, tissue inhibitor of metalloproteinase-1 (TIMP-1) is involved in the regulation of cell growth and survival. To determine its mechanism of action, we investigated effects of TIMP-1 on cell proliferation and survival and signaling pathways induced by TIMP-1 in the human breast carcinoma T-47D cell line. Treatment of T-47D cells with TIMP-1 strongly inhibited apoptosis induced by serum deprivation, but did not affect cell proliferation. TIMP-1 induced phosphorylation of Akt and extracellular signal-regulated protein kinases (ERKs), but pertussis toxin and specific inhibitors of Src family tyrosine kinases, protein tyrosine kinases, and phosphatidylinositol-3 kinase (PI3 kinase) blocked the ability of TIMP-1 to activate Akt and ERKs as well as the anti-apoptotic effect of TIMP-1. We found that TIMP-1 enhanced the kinase activities of c-Src and PI3 kinase and that this enhancement was inhibited by pertussis toxin. Inhibition of ERK activation, however, resulted in a slight decrease of the TIMP-1-induced anti-apoptotic effect. These findings demonstrate that the ability of TIMP-1 to inhibit apoptosis in T-47D cells is mediated by the sequential activation of pertussis toxin-sensitive G protein, c-Src, PI3 kinase, and Akt.  相似文献   

8.
9.
Stimulation of osteoblast survival signals may be an important mechanism of regulating bone anabolism. Protein kinase B (PKB/Akt), a serine-threonine protein kinase, is a critical regulator of normal cell growth, cell cycle progression, and cell survival. In this study we have investigated the signaling pathways activated by growth factors PDGF-BB, EGF, and FGF-2 and determined whether PDGF-BB, EGF, and FGF-2 activated Akt in human or mouse osteoblastic cells. The results demonstrated that both ERK1 and ERK2 were activated by FGF-2 and PDGF-BB. Activation of ERK1 and ERK2 by PDGF-BB and FGF-2 was inhibited by PD 098059 (100 microM), a specific inhibitor of MEK. Wortmannin (500 nM), a specific inhibitor of phosphatidylinositol 3-kinase ( PI 3-K), inhibited the activation of ERK1 and ERK2 by PDGF-BB but not by FGF-2 suggesting that PI 3-K mediated the activation of ERK MAPK pathway by PDGF-BB but not by FGF-2. Rapamycin, an inhibitor of p70 S6 protein kinase and a downstream target of ERK1/2 and PI 3-K, did not affect the activation of ERK1 and ERK2 by the growth factors. Furthermore, our results demonstrated that Akt, a downstream target of PI 3-K, was activated by PDGF-BB but not by FGF-2. Akt activation by PDGF-BB was inhibited by PI 3-kinase inhibitor LY294002. Rapamycin had no effect on Akt activation. Epidermal growth factor (EGF) also activated Akt in osteoblastic cells which was inhibited by LY294002 but not by rapamycin. Taken together, our data for the first time revealed that the activation of ERK1/2 by PDGF-BB is mediated by PI 3-K, and secondly, Akt is activated by PDGF-BB and EGF but not by FGF-2 in human and mouse osteoblastic cells. These results are of critical importance in understanding the role of these growth factors in apoptosis and cell survival. PDGF-BB and EGF but not FGF-2 may stimulate osteoblast cell survival.  相似文献   

10.
Insulin-like growth factor I (IGF-I) is a well-established mitogen in human breast cancer cells. We show here that human breast cancer MCF-7 cells, which were prevented from attaching to the substratum and were floating in medium, responded to IGF-I and initiated DNA synthesis. The addition of IGF-I to floating cells induced activation of protein kinase B (PKB)/Akt, as to cells attached to the substratum. In addition, mitogen-activated protein kinase (MAPK)/extracellular response kinase (ERK) and its upstream kinases, ERK kinase (MEK) and Raf-1, were activated by IGF-I in floating cells. While the IGF-I-induced activation of PKB/Akt was inhibited by PI3-K inhibitor LY294002 but not by MEK inhibitor PD98059, the activation of both MEK and ERK by IGF-I was inhibited by both. These findings suggest that the IGF-I signal that leads to stimulation of DNA synthesis of MCF-7 cells is transduced to ERK through PI3-K, only when they are anchorage-deficient.  相似文献   

11.
12.
Evasion of apoptosis appears to be a necessary event in tumor progression. Some oncogenes, such as c-myc and E1A, induce apoptosis in the absence of survival factors. However, others, such as bcl-2 and v-src, activate antiapoptotic pathways. For v-Src, these antiapoptotic pathways are dependent on the function of Ras, phosphatidylinositol (PI) 3-kinase, and Stat3. Here we asked whether v-Src can activate a proapoptotic signal when survival signaling is inhibited. We show that when the functions of Ras and PI 3-kinase are inhibited, v-src-transformed Rat-2 fibroblasts undergo apoptosis, evidenced by loss of adherence, nuclear fragmentation, and chromosomal DNA degradation. The apoptotic response is dependent on activation of caspase 3. Under similar conditions nontransformed Rat-2 cells undergo considerably lower levels of apoptosis. Apoptosis induced by v-Src is accompanied by a loss of mitochondrial membrane potential and release of cytochrome c and is blocked by overexpression of bcl-2, indicating that it is mediated by the mitochondrial pathway. However apoptosis induced by v-Src is not accompanied by an increase in the level of p53 and is not dependent on p53 function. Thus v-Src generates a p53-independent proapoptotic signal.  相似文献   

13.
The v-Src SH3 domain binds phosphatidylinositol 3''-kinase.   总被引:27,自引:9,他引:18       下载免费PDF全文
Fibroblasts transformed by v-src or by related oncogenes encoding activated tyrosine kinases contain elevated levels of polyphosphoinositides with phosphate at the D-3 position of the inositol ring, as a result of the activation of phosphatidylinositol (PI) 3'-kinase. v-src-transformed cells also contain increased levels of PI 3'-kinase activity immunoprecipitable with anti-phosphotyrosine antibodies; furthermore, PI 3'-kinase can be detected in association with the v-Src tyrosine kinase. To identify regions of v-Src that can interact with PI 3'-kinase, the v-Src SH2 and SH3 domains were expressed in bacteria and incubated with lysates of normal chicken embryo fibroblasts. In vitro, the v-Src SH3 domain, but not the SH2 domain, bound PI 3'-kinase in lysates of uninfected chicken embryo fibroblasts. Substitutions of two highly conserved SH3 residues implicated in ligand binding abolished the ability of the v-Src SH3 domain to associate with PI 3'-kinase. Furthermore, the v-Src SH3 domain bound in vitro to the amino-terminal region of the p85 alpha subunit of PI 3'-kinase. These results suggest that the v-Src SH3 domain may mediate an interaction between the v-Src tyrosine kinase and PI 3'-kinase, by direct binding to p85.  相似文献   

14.
Apoptosis of vascular smooth muscle cells (VSMCs) plays an important role in regulating vascular remodeling during cardiovascular diseases. Apelin is the endogenous ligand for the G-protein-coupled receptor APJ and plays an important role in the cardiovascular system. However, the mechanisms of apelin on apoptosis of VSMCs have not been elucidated. Using a culture of human VSMCs as a model for the study of apoptosis, the relationship between apelin and apoptosis of human VSMCs and the signal pathway involved were investigated. Using western blotting, we confirmed that VSMCs could express APJ. To evaluate the possible role of apelin in VSMC apoptosis, we assessed its effect on apoptosis of human VSMCs. The results showed that apelin inhibited human VSMCs apoptosis induced by serum deprivation. Suppression of APJ with small-interfering RNA (siRNA) abolished the anti-apoptotic activity of apelin. Apelin increased Bcl-2 protein expression, but decreased Bax protein expression. An increase in activation of extracellular signal-regulated protein kinase (ERK) and Akt (a downstream effector of phosphatidylinositol 3-kinase) was shown after apelin stimulation. Suppression of APJ with siRNA abolished the apelin-induced activation of ERK and Akt. LY294002 (a PI3-K inhibitor) blocked apelin-induced activation of Akt and abolished the apelin-induced antiapoptotic activity. Our study suggests that apelin suppresses serum deprivation-induced apoptosis of human VSMCs, and that the anti-apoptotic action is mediated through the APJ/PI3-K/Akt signaling pathways.  相似文献   

15.
Activation of extracellular-regulated kinases 1/2 (ERK) is involved in lipopolysaccharide (LPS)-induced cellular responses such as the increased production of proinflammatory cytokines. However, mitogen-activated protein kinases (MAPKs) such as p38 are also activated by LPS and have been postulated to be important in the control of these end points. Therefore, establishing the relative contribution of MAPKs in each cell type is important, as is elucidating the molecular mechanisms by which these MAPKs are activated in LPS-induced signaling cascades. We demonstrated in DC2.4 dendritic cells that ERK regulates tyrosine phosphorylation of phosphatidyl-inositol-3-kinase (PI3-K) and the production of TNF-alpha. We also demonstrated that Raf1 is phosphorylated and involved in the production of TNF-alpha and tyrosine phosphorylation of PI3-K via ERK. Raf1 also regulates the activation of NF-kappaB. We propose that Raf1 plays a pivotal role in LPS-induced activation of the dendritic cells.  相似文献   

16.
We examined effects of two insulin-like growth factors, insulin and insulin-like growth factor-I (IGF-I), against apoptosis, excitotoxicity, and free radical neurotoxicity in cortical cell cultures. Like IGF-I, insulin attenuated serum deprivation-induced neuronal apoptosis in a dose-dependent manner at 10-100 ng/mL. The anti-apoptosis effect of insulin against serum deprivation disappeared by addition of a broad protein kinase inhibitor, staurosporine, but not by calphostin C, a selective protein kinase C inhibitor. Addition of PD98059, a mitogen-activated protein kinase kinase (MAPKK) inhibitor, blocked insulin-induced activation of extracellular signal-regulated protein kinases (ERK1/2) without altering the neuroprotective effect of insulin. Cortical neurons underwent activation of phosphatidylinositol (PI) 3-kinase as early as 1 min after exposure to insulin. Inclusion of wortmannin or LY294002, selective inhibitors of PI 3-K, reversed the insulin effect against apoptosis. In contrast to the anti-apoptosis effect, neither insulin nor IGF-I protected excitotoxic neuronal necrosis following continuous exposure to 15 microM N-methyl-D-aspartate or 40 microM kainate for 24 h. Surprisingly, concurrent inclusion of 50 ng/mL insulin or IGF-I aggravated free radical-induced neuronal necrosis over 24 h following continuous exposure to 10 microM Fe2+ or 100 microM buthionine sulfoximine. Wortmannin or LY294002 also reversed this potentiation effect of insulin. These results suggest that insulin-like growth factors act as anti-apoptosis factor and pro-oxidant depending upon the activation of PI 3-kinase.  相似文献   

17.
Intrahepatic cholangiocarcinoma (ICC) is an aggressive malignant tumor and is refractory to conventional chemotherapy. The aim of this study is therefore to elucidate the mechanism of chemoresistance in ICC which is not fully understood. We generated cisplatin resistant ICC cells via long term exposure to cisplatin and found that these cells are also resistant to 5-fluorouracil (5-FU) and gemcitabine. The chemoresistant cells showed enhanced Bcl-2 expression and reduced Bax expression compared to parental ICC cells. In addition, the resistant cells showed enhanced activation of AKT and extracellular signal-regulated kinase (ERK) 1/2. Inhibition of AKT activation by phosphoinocitide 3-kinase (PI3K) inhibitor LY294002 resulted in reduced Bcl-2 expression and enhanced Bax expression and thus induced apoptosis in the resistant cells, whereas inhibition of ERK1/2 activation by mitogen-activated protein kinase (MEK) inhibitor U0126 did not induce apoptosis without affecting the expression of Bcl-2 and Bax but decreased cell growth. Moreover, the inhibition of AKT or ERK1/2 sensitized the resistant cells to cisplatin and therefore resulted in greatly enhanced cisplatin-induced apoptosis and growth inhibition in the cells. The results indicate that AKT and ERK1/2 signaling mediate chemoresistance in the cells and could be important therapeutic targets for overcoming chemoresistance in ICC.  相似文献   

18.
We report that prosaposin binds to U937 and is active as a protective factor on tumor necrosis factor alpha (TNFalpha)-induced cell death. The prosaposin-derived saposin C binds to U937 cells in a concentration-dependent manner, suggesting that prosaposin behaves similarly. Prosaposin binding induces U937 cell death prevention, reducing both necrosis and apoptosis. This effect was inhibited by mitogen-activated protein ERK kinase (MEK) and sphingosine kinase (SK) inhibitors, indicating that prosaposin prevents cell apoptosis by activation of extracellular signal-regulated kinases (ERKs) and sphingosine kinase. Prosaposin led to rapid ERK phosphorylation in U937 cells as detected by anti-phospho-p44/42 mitogen-activated protein (MAP) kinase and anti-phosphotyrosine reactivity on ERK immunoprecipitates. It was partially prevented by apo B-100 and pertussis toxin (PT), suggesting that both lipoprotein receptor-related protein (LRP) receptor and Go-coupled receptor may play a role in the prosaposin-triggered pathway. Moreover, sphingosine kinase activity was increased by prosaposin treatment as demonstrated by the enhanced intracellular formation of sphingosine-1-phosphate (S-1-P). The observation that the phosphatidylinositol 3-kinase (PI3K) inhibitor wortmannin prevented the prosaposin effect on cell apoptosis suggests that sphingosine kinase exerts its anti-apoptotic activity by the PI3K-Akt pathway. Thus, cell apoptosis prevention by prosaposin occurs through ERK phosphorylation and sphingosine kinase. The biological effect triggered by prosaposin might be extended to primary cells because it triggers Erk phosphorylation in peripheral blood mononuclear cells (PBMCs). This is the first evidence of a biological effect consequent to a signal transduction pathway triggered by prosaposin in cells of non-neurological origin.  相似文献   

19.
Cell motility and invasion are crucial events for the spread of cancer and, consequently, the metastatic process. Platelet-derived growth factor (PDGF) is not only capable of stimulating the proliferation of SH-SY5Y human neuroblastoma cells, but also their migration and invasion through an extracellular matrix barrier. Experiments using wortmannin and PD98059, specific inhibitors of the phosphatidylinositol 3-kinase (PI3-K) and of the mitogen-activated protein kinases (ERK 1 and 2) signaling, respectively, show that the activation of both pathways is required for the PDGF-induced cell motility responses. We have previously shown that somatostatin inhibits cell division and ERK 1/2 and Ras activity in SH-SY5Y cells. We report here that it is also capable of potently and effectively inhibiting their PDGF-stimulated migration and invasion. The inhibitory effect of somatostatin is sensitive to pertussis toxin. Although somatostatin does not affect PI3-K, it inhibits ERK 1/2 and the small G-protein Rac activation and ruffle formation induced by PDGF. These results indicate that somatostatin can be considered an anti-migratory and anti-invasive agent that acts by inhibiting ERK 1/2 signaling and the PI3-K pathway via the inhibition of Rac in SHSY5Y cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号