首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ovaries of the largemouth bass Micropterus salmoides, an alien and invasive species in South Africa, contain a germinal epithelium which consists of germline and somatic cells, as well as previtellogenic and late vitellogenic ovarian follicles. The ovarian follicle consists of an oocyte surrounded by follicular cells and a basal lamina; thecal cells adjacent to this lamina are covered by an extracellular matrix. In this article, we describe the Balbiani body and the polarization and ultrastructure of the cytoplasm (ooplasm) in previtellogenic oocytes. The nucleoplasm in all examined oocytes contains lampbrush chromosomes, nuclear bodies and several nucleoli near the nuclear envelope. The ultrastructure of the nucleoli is described. Numerous nuage aggregations are present in the perinuclear cytoplasm in germline cells as well as in the ooplasm. Possible roles of these aggregations are discussed. The ooplasm contains the Balbiani body, which defines the future vegetal region in early previtellogenic oocytes. It is comprised of nuage aggregations, rough endoplasmic reticulum, Golgi apparatus, mitochondria, complexes of mitochondria with nuage-like material, and lysosome-like organelles. In mid-previtellogenic oocytes, the Balbiani body surrounds the nucleus and later disperses in the ooplasm. The lysosome-like organelles fuse and transform into vesicles containing material which is highly electron dense. As a result of the fusion of the vesicles of Golgi and rough endoplasmic reticulum, the cortical alveoli arise and distribute uniformly throughout the ooplasm of late previtellogenic oocytes. During this stage, the deposition of the eggshell (zona radiata) begins. The eggshell is penetrated by canals containing microvilli and consists of the following: the internal and the external egg envelope. In the external envelope three sublayers can be distinguished.  相似文献   

2.
An analysis of differentiating oocytes of the gastropod, Ilyanassa obsoleta, has been made by techniques of light and electron microscopy. Early previtellogenic oocytes are limited by a smooth surfaced oolemma and are associated with each other by maculae adhaerentes. Previtellogenic oocytes are also distinguished by a large nucleus containing randomly dispersed aggregates of chromatin. Within the ooplasm are Golgi complexes, mitochondria and a few cisternae of the rough endoplasmic reticulum. When vitellogenesis begins, the oolemma becomes morphologically specialized by the formation of microvilli. One also notices an increase in the number of organelles and inclusions such as lipid droplets. During vitellogenesis there is a dilation of the saccules of the Golgi complexes and cisternae of the endoplasmic reticulum. Associated with the Golgi complexes are small protein-carbohydrate yolk precursors encompassed by a membrane. These increase in size by fusing with each other. The “mature” yolk body is a membrane-bounded structure with a central striated core and a granular periphery. At maturity a major portion of the ooplasmic constituents such as as mitochondria and lipid droplets occupy the animal region while the bulk of the population of yolk bodies are situated in the vegetal hemisphere. The follicle cells incompletely encompass the developing oocyte. In addition to the regularly occurring organelles, follicle cells are characterized by the presence of large quantities of rough endoplasmic reticulum and Golgi complexes whose saccules are filled with a dense substance. Associated with the Golgi saccules are secretory droplets of varied size. Amongst the differentiating oocytes and follicle cells are Leydig cells. These cells are characterized by a large vacuole containing glycogen. A possible function for the follicle and Leydig cells is discussed.  相似文献   

3.
Summary Late stages of oogenesis in Acerentomon gallicum Jonescu have been studied by means of light and electron microscopy. Each of the two ovaries of this species consists of a single panoistic ovariole. Late previtellogenic and early vitellogenic oocytes are enclosed in an electron opaque layer, the so-called primary sheath. The precursors for this sheath are most likely synthesized by follicle cells. The yolk develops through autosynthesis, with free ribosomes, dictyosomes and lamellar bodies being involved in the process. Mature yolk spheres contain proteins and polysaccharides. Besides the organelles that take part in vitellogenesis, mitochondria and cisternal stacks of the rough endoplasmic reticulum occur in the ooplasm.This work was supported by Government Problem Grant ii-1.3.13  相似文献   

4.
These investigations concern two freshwater calanoid copepods Hemidiaptomus ingens and Mixodiaptomus kupelwieseri. The first aspect of the research relates to the processes involved in the formation and the differentiation of the ooplasmic organelles at the time of primary vitellogenesis. During this phase, a number of complex associations develop in the ooplasm. They consist chiefly of nuage-like structures, corresponding to extruded nuclear material, and vesicular formations, some arising from the nuclear envelope and the others neoformed in the ooplasm. These associations represent centers of maturation for ribosomes and synthesis for reticulum membranes. Annulate lamellae may be observed near these associations. Biogenesis of the reticulum always precedes the differentiation of the Golgi apparatus. Indeed, the dictyo-somes develop in characteristic complexes including endoplasmic reticulum cisternae and numerous vesicles resulting from intensive blebbing from cisternae. The second aspect of this research concerns yolk synthesis and accumulation of hyaloplasmic inclusions. A preliminary synthesis of yolk occurs early in these complexes and becomes more important after achievement of Golgi apparatus biogenesis. However, the most important yolk storage results from exogenous molecules and consists of complex globules, which develop into the ooplasm during secondary vitellogenesis. Formation of these globules is associated with the accumulation of two categories of inclusions in the hyaloplasm, i.e., lipid droplets and clusters of glycogen particles. At the end of vitellogenesis, a new type of endogenous material develops into small cisternae localized in the cortical ooplasm. © 1993 Wiley-Liss, Inc.  相似文献   

5.
Summary

Oogenesis in the marine turbellarian proseriat Monocelis lineata was investigated at the ultrastructural level. Oocyte differentiation is not synchronous so that successive stages of germ cell maturation were simultaneously detected in each of the two ovaries. Each developing oocyte is enveloped by follicle cell projections which are presumably involved in a morphologically undetectable support of vitellogenesis. The main features evidenced during oocyte differentiation are: (1) The synthesis of cortical granules by the rough endoplasmic reticulum and Golgi complex, occurring in the earlier stages of oogenesis; (2) The synthesis of yolk globules by the rough endoplasmic reticulum (RER) and Golgi complex, occurring in the later stages of oogenesis, namely late meiotic prophase I. Neither morphologically visible endocytotic activity, nor the presence of intercellular bridges, nor even the development of microvilli were observed at the oolemma or cortical ooplasm, so that the sole mechanism of vitellogenesis appears to be autosynthetic. The significance of these findings is discussed in relation to the taxonomic position of M. lineata and more generally in relation to the phylogenetic history of the class Turbellaria.  相似文献   

6.
The midgut epithelium of Isohypsibius granulifer granulifer (Eutardigrada) is composed of columnar digestive cells. At its anterior end, a group of cells with cytoplasm which differs from the cytoplasm of digestive cells is present. Probably, those cells respond to crescent-like cells (midgut regenerative cells) described for some tardigrade species. Their mitotic divisions have not been observed. We analyzed the ultrastructure of midgut digestive cells in relation to five different stages of oogenesis (previtellogenesis, beginning of the vitellogenesis, vitellogenesis—early choriogenesis, vitellogenesis—middle choriogenesis, late choriogenesis). In the midgut epithelium cells, the gradual accumulation of glycogen granules, lipid droplets and structures of varying electron density occurs. During vitellogenesis and choriogenesis, in the cytoplasm of midgut cells we observed the increasing number of organelles which are responsible for the intensive synthesis of lipids, proteins and saccharides such as cisterns of endoplasmic reticulum and Golgi complexes. At the end of oogenesis, autophagy also intensifies in midgut epithelial cells, which is probably caused by the great amount of reserve material. Midgut epithelium of analyzed species takes part in the yolk precursor synthesis.  相似文献   

7.
The female gonad of the land planarians Microplana scharffi and Microplana terrestris consists of two small germaria located ventrally in the anterior third of the body and of two ventro‐lateral rows of oblong vitelline follicles distributed between the intestinal pouches. Both these structures are enveloped by a tunica composed of an outer extracellular lamina and an inner sheath of accessory cells. Oocyte maturation is characterized by the appearance of chromatoid bodies and the development of endoplasmic reticulum and Golgi complexes. These organelles appear to be correlated with the production of egg granules with a fenestrated/granular content of medium electron density, about 4–5 μm in diameter, which remain dispersed in the ooplasm of mature oocytes. On the basis of cytochemical tests showing their glycoprotein composition, and their localization in mature oocytes, these egg granules have been interpreted as yolk. In the vitelline follicles, vitellocytes show the typical features of secretory cells with well‐developed rough endoplasmic reticulum and Golgi complexes involved in the production of eggshell globules and yolk. The eggshell globules, which appear to arise from repeated coalescences of two types of Golgi‐derived vesicles, contain polyphenols and, when completely mature, they measure about 1–1,2 μm in diameter and show a meandering/concentric content pattern as is typical of the situation observed in most Proseriata and Tricladida. Mature vitellocytes also contain a large amount of glycogen and lipids as further reserve material. On the basis of the ultrastructural features of the female gonad and in relation to the current literature the two species of rhynchodemids investigated appear to be closely related to the freshwater planarians belonging to the family Dugesiidae. J. Morphol. 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
A comparative study of amphibian oocyte ultrastructural organization has shown a significant accumulation of elements of the smooth endoplasmic reticulum in the oocyte cytoplasm at the third stage of development. The analysis of oocytes of two frog species, Xenopus laevis and Rana temporaria, at the first and second stages of their development enabled us to recognize in the cytoplasm of the oocyte some myelin-like structures (MLs) made of 30-40 densely packaged membranous layers and shaped as dense bodies. MLs are also present in the adjacent follicular cells and in the intercellular space. In the oocyte cytoplasm these structures are located near the nuclear envelope and other intracellular organelles. At the third stage of oogenesis, which is characterized by a high functional activity of the cells, MLs are seen to unwrap sequentially into double-layer membranes similar to the smooth endoplasmic reticulum cisternae. Intermediate steps of this process being also observed. It is supposed that MLs may play the role of membrane stocks to be used eventually for the formation of nascent endoplasmic membranes in the amphibian oocytes.  相似文献   

9.
Differentiating oocytes and associated follicle cells of two species of amphineurans (Mollusca) Mopalia muscosa and Chaetopleura apiculata have been studied by techniques of light and electron microscopy. In addition to the regularly occurring organelles, the ooplasm of young oocytes contains large, randomly situated, basophilic regions. These regions are not demonstrable in mature eggs. As oocytes differentiate, lipid, pigment and protein-carbohydrate yolk bodies accumulate within the ooplasm. Concomitant with the appearance of pigment and the protein carbohydrate containing yolk bodies, the saccules of the Golgi complex become filled with a dense material. Associated with the Golgi complex are cisternae of the rough endoplasmic reticulum which are filled with an electron opaque substance which is thought to be composed of protein synthesized by this organelle. That portion of the cisternae of the endoplasmic reticulum facing the Golgi complex shows evaginations. These evaginations are thought to finalize into protein containing vesicles that subsequently fuse with the Golgi complex. Thus, the Golgi complex in these oocytes might serve as a center for packaging and concentrating the protein used in the construction of the protein containing pigment or protein-carbohydrate yolk bodies. The suggestion is made that the Golgi complex may also synthesize the carbohydrate portion of the formentioned yolk bodies. In an adnuclear position in young oocytes are some acid mucopolysaccharide containing vacuolar bodies. In mature eggs, these structures are found within the peripheral ooplasm and we have referred to them as cortical granules. There is no alteration of these cortical granules during sperm activation.  相似文献   

10.
Ultrastructural study of oogenesis in the acoel turbellarian Convoluta   总被引:2,自引:0,他引:2  
An ultrastructural investigation of oogenesis has been carried out on the acoel turbellarian Convoluta psammophyla. Developing female germ cells are not contained in well delimited ovaries but are freely distributed in the parenchyma and are surrounded by narrow cytoplasmic projections of accessory-follicle cells. Oogenesis can be divided into two periods, the previtellogenic and the vitellogenic phase. In the first period the oocyte undergoes a number of cell differentiations necessary for the intense biosynthetic activity of the second period. The ample development of nucleolus, ribosomes, endoplasmic reticulum and Golgi complexes along with the appearance of large lipid droplets and clusters of electron dense granules characterize the previtellogenic phase. The formation of yolk globules is the main feature of the second period of oogenesis. It occurs by an autosynthetic mechanism involving endoplasmic reticulum and Golgi complexes, since no endocytotic activity has been detected in the developing oocyte. The electron dense granules apparently move towards the cortical ooplasm during the late vitellogenic phase and take part in egg covering formation. Hypotheses on the role of follicle cells and on the phylogenetic significance of a comparative analysis of egg inclusions with homologous structures of other Turbellaria are suggested.  相似文献   

11.
利用透射电镜观察了泥螺卵子发生过程。结果表明 ,泥螺的卵子发生可划分为卵原细胞、卵黄发生早期、卵黄发生中期及卵黄发生后期卵母细胞 4个时期。卵原细胞核大而圆 ,胞质内分布有少量的线粒体和高尔基囊泡 ,细胞表面具微绒毛。卵黄发生早期的卵母细胞 ,胞质中各类细胞器发达 ,并出现数量较多的类朦胧子。卵黄发生中期的卵母细胞胞体迅速增大 ,核伸出伪足状突起 ,卵质中各种细胞器活动活跃 ,并参与形成卵黄粒和脂滴。此期还可观察到卵母细胞与滤泡细胞间的物质交换现象。卵黄发生后期的卵母细胞体积增至最大 ,细胞器数量减少。本文就卵黄发生前后卵母细胞内部构造的变化、意义及滤泡细胞与卵母细胞蛋白来源间的关系作了探讨  相似文献   

12.
Yolk formation in the oocytes of the free-living, marine copepod, Labidocera aestiva (order Calanoida) involves both autosynthetic and heterosynthetic processes. Three morphologically distinct forms of endogenous yolk are produced in the early vitellogenic stages. Type 1 yolk spheres are formed by the accumulation and fusion of dense granules within vesicular and lamellar cisternae of endoplasmic reticulum. A granular form of type 1 yolk, in which the dense granules within the cisternae of endoplasmic reticulum do not fuse, appears to be synthesized by the combined activity of endoplasmic reticulum and Golgi complexes. Type 2 yolk bodies subsequently appear in the ooplasm but their formation could not be attributed to any particular oocytic organelle. In the advanced stages of vitellogenesis, a single narrow layer of follicle cells becomes more developed and forms extensive interdigitations with the oocytes. Extra-oocytic yolk precursors appear to pass from the hemolymph into the follicle cells and subsequently into the oocytes via micropinocytosis. Pinocytotic vesicles fuse in the cortical ooplasm to form heterosynthetically derived type 3 yolk bodies.  相似文献   

13.
Oocyte differentiation in the polyclad turbellarian Prostheceraeus floridanus has been examined to determine the nature of oogenesis in a primitive spiralian. The process has been divided into five stages. (1) The early oocyte: This stage is characterized by a large germinal vesicle surrounded by dense granular material associated with the nuclear pores and with mitochondria. (2) The vesicle stage: The endoplasmic reticulum is organized into sheets which often contain dense particles. Vesicles are found in clusters in the cytoplasm, some of which are revealed to be lysosomes by treatment with the Gomori acid phosphatase medium. (3) Cortical granule formation: Cortical granules are formed by the fusion of filled Golgi vasuoles which have been released from the Golgi saccules. The association between the endoplasmic reticulum and Golgi suggests that protein is synthesized in the ER and transferred to the Golgi where polysaccharides are added to form nascent cortical granules. (4) Yolk synthesis: After a large number of cortical granules are synthesized, yolk bodies appear. They originate as small membrane-bound vesicles containing flocculent material which subsequently increase in size and become more compact. Connections between the forming yolk bodies and the endoplasmic reticulum indicate that yolk synthesis occurs in the ER. (5) Mature egg: In the final stage, the cortical granules move to the periphery and yolk platelets and glycogen fill the egg. At no time is there any evidence of uptake of macromolecules at the oocyte surface. Except for occasional desmosomes between early oocytes, no membrane specialization or cell associations are seen throughout oogenesis. Each oocyte develops as an independent entity, a conclusion supported by the lack of an organized ovary.  相似文献   

14.
The ultrastructural features of oocyte differentiation were studied in the marine triclad Cercyra hastata. Oocytes at several stages of maturation, each surrounded by follicle cell projections, are present within each of the two ovaries. A pre-vitellogenic and a vitellogenic stage have been detected in the oogenesis of C. hastata. The pre-vitellogenic stage is mainly characterized by an increase in the nuclear and nucleolar volume and activity, and the appearance and development of cortical granule precursors which are elaborated by the Golgi complex. In early phases of the vitellogenic stage, intense delamination and blebbing of the nuclear envelope occurs which probably contributes to an increase in number of cytoplasmic membranes and to transfer of nuclear material to the cytoplasm. The rough endoplasmic reticulum is extensively developed and often assumes a ‘whorl’ array. Several areas of yolk precursor formation appear in the whorls. Numerous 2–5 μm protein yolk globules are subsequently formed which appear surrounded by a double membrane (cisternae of the smooth endoplasmic reticulum) and become randomly distributed throughout the cytoplasm of mature oocytes. The peripheral ooplasm is occupied by a monolayer of electron-dense cortical granules. Finally, the evolutionary significance of the autosynthetic mechanism of yolk production is discussed.  相似文献   

15.
The first mandibular molars of the Swiss albino mice, 1 through 4 days of age, were fixed in glutaraldehyde or Karnovsky's fixative. The tissues were postfixed in OSO4, dehydrated and embedded in Epon. The prepolarizing, polarizing and secretory odontoblasts were described. The prepolarizing cells, located in the vicinity of the cervical loop, were mesenchymal-like in morphology. The cells of the polarizing stage possessed organelles indicative of protein synthesis. The nucleus was located proximally. Aperiodic fibers were evident in the wide basement membrane. The secretory odontoblasts were long, slender, polarized cells closely adjoining one another. Each odontoblast possessed six morphologically discernible regions: (1) an infranuclear region, limited in size and containing few cellular organelles; (2) a nuclear region, housing the oval nucleus and a few associated lamellae of rough endoplasmic reticulum as well as a limited number of mitochondria; (3) a supranuclear rough endoplasmic reticulum region, possessing an abundance of these organelles as well as some mitochondria and secretory vesicles; (4) a Golgi region, occupying the middle third of the cell, housing the elements of an extensive Golgi apparatus which was surrounded by peripherally located profiles of rough endoplasmic reticulum; additionally, this region contained smooth endoplasmic reticulum, mitochondria, numerous secretory granules and vesicles and occasional intracellular collagen fibers; (5) an apical rough endoplasmic reticulum region, containing a rough endoplasmic reticulum component that was less extensive than its supranuclear counterpart; in addition, this region was the one richest in mitochondria and contained a plethora of secretory vesicles and granules; (6) the odontoblastic process, a region mostly void of organelles, containing various secretory products, some of which appeared to be in the process of being released extracellularly into the surrounding dentin matrix.  相似文献   

16.
This study reports the cloning, expression analysis and localization of calreticulin (CRT) in the endoplasmic reticulum (ER) during late oogenesis and early embryogenesis of the insect Rhodnius prolixus. CRT was cloned and sequenced from cDNA extracted from unfertilized eggs. Real-time PCR showed that CRT expression remains at lower levels during late oogenesis when compared to vitellogenic oocytes or day 0 laid fertilized eggs. Immunofluorescence microscopy showed that this protein is located in the periphery of the egg, in a differential peripheral ooplasm surrounding the yolk-rich internal ooplasm, only identified by transmission electron microscopy (TEM) of thin sections. Using immunogold electron microscopy, the ER ultrastructure (CRT labeled) was identified in the peripheral ooplasm as dispersed lamellae, randomly distributed in the peripheral ooplasm. No massive alterations of ER ultrastructure were found before or right after (30 min) fertilization, but an increase in CRT expression levels and assembly of typical rough ER (parallel cisternae with associated ribosomes) were observed 18–24 h after oviposition. The lack of ER assembly at fertilization and the later formation of rough ER together with the increase in CRT expression levels, suggest that the major functions of ER might be of great importance during the early events of development. The possible involvement of ER in the early steps of embryogenesis will be discussed.  相似文献   

17.
The mole has a single pair of accessory sex organs with features of both the prostate and the seminal vesicle, for which the term prostate gland is not appropriate. Seasonal changes occuring in this gland were related to four periods: a) the quiescence period, b) the maturation period, c) the active period and d) the involution period. During the quiescence period the cuboidal epithelial cells display a quasi-embryonic fine structure and are sparse in cytoplasmic organelles, but rich in glycogen and lipopigment. With the onset of sexual activity glycogen and lipopigment disappear and the rough endoplasmic reticulum as well as the Golgi apparatus begin to proliferate. The fully active gland is lined by a low epithelium with parallel stacks of rough endoplasmic reticulum, a large Golgi apparatus and several lysosomes and secretory granules. In the involution period the gland collapses and the epithelial cells are eliminated by hetero- and autophagic processes. During this period a great number of presumably endocrine cells were observed. The results were compared with findings in experimental studies and those on postnatal development of accessory sex glands in laboratory animals.  相似文献   

18.
The study was aimed at understanding the process of reproduction and the changes happening in the ovary of Portunus pelagicus during maturation, which would be useful for its broodstock development for hatchery purposes. For that, tissue samples from different regions of the ovary at various stages of maturation were subjected to light and electron microscopy, and based on the changes revealed and the differences in ovarian morphology, the ovary was divided into five stages such as immature (previtellogenic oocytes), early maturing (early vitellogenic oocytes), late maturing (late vitellogenic oocytes), mature (vitellogenic oocytes), and spent (resorbing oocytes). The ovarian wall comprised of an outermost thin pavement epithelium, a middle layer of connective tissue, and an innermost layer of germinal epithelium. The oocytes matured as they moved from the centrally placed germinal zone toward the ovarian wall. The peripheral arrangement of nucleolar materials and the high incidence of cell organelles during the initial stages indicated vitellogenesis I. Movement of follicle cells toward oocytes in the early maturing stage and low incidence of mitochondria and endoplasmic reticulum in the ooplasm during late vitellogenic stage marked the commencement and end of vitellogenesis II, respectively. Yolk granules at various stages of development were seen in the ooplasm from late vitellogenic stage onwards. The spent ovary had an area with resorbing oocytes and empty follicle cells denoting the end of one reproductive cycle and another area with oogonial cells and previtellogenic oocytes indicating the beginning of the next.  相似文献   

19.
The cytoarchitecture of the female gonad of the endosymbiont umagillid Syndesmis patagonica has been investigated using electron microscopy and cytochemical techniques. The female gonad consists of paired germaria and vitellaria located behind the pharynx in the mid‐posterior region of the body. Both the germaria and the vitellaria are enveloped by an outer extracellular lamina and an inner sheath of accessory cells which contribute to the extracellular lamina. Oocyte maturation occurs completely during the prophase of the first meiotic division. Oocyte differentiation is characterized by the appearance of chromatoid bodies and the development of endoplasmic reticulum and Golgi complexes. These organelles appear to be involved in the production of round granules, about 2–2.5 μm in diameter, with a homogeneous electron‐dense core surrounded by a granular component and a translucent halo delimited by a membrane. These egg granules migrate to the periphery of mature oocytes, are positive to the cytochemical test for polyphenol detection, are unaffected by protease and have been interpreted as eggshell granules. The mature oocytes also contain a small number of yolk granules, lipid droplets, and glycogen particles scattered throughout the ooplasm. The vitellaria are branched organs composed of vitelline follicles with vitellocytes at different stages of maturation. Developing vitellocytes contain well‐developed rough endoplasmic reticulum and small Golgi complexes involved in the production of eggshell and yolk globules. Eggshell globules are round, measure 4–5 μm in diameter, and have a mosaic‐like patterned content which contains polyphenols. The yolk globules, 2–3 μm in diameter, show a homogeneous protein content of medium electron density, devoid of polyphenols, and completely digested by protease. The mature vitellocytes also contain glycogen as further reserve material. The presence of polyphenolic eggshell granules in the oocytes and of polyphenolic eggshell globules with a mosaic‐like pattern in the vitellocytes have been considered apomorphic features of the Rhabdocoela + Prolecithophora. J. Morphol. 275:703–719, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

20.
Abstract— A comprehensive study has been undertaken on the subcellular and subsynaptosomal distribution of a number of markers for subcellular organelles in preparations from rat brain. Although the activity of most enzymatic markers was decreased by freezing and storage at - 70oC, no significant changes were noted in the distribution of these activities. This demonstrates that contamination of brain fractions by subcellular organelles can be accurately assessed after freezing and thawing. A marked discrepancy was noted between the distribution of three putative markers for endoplasmic reticulum. CDP-choline-diacylglycerol cholinephosphotransferase (EC 2.7.8.1) activity was mainly limited to the microsomal fraction and was present to a lesser extent in the synaptosomal fraction than the other putative markers for endoplasmic reticulum. Estrone sulfate sulfohydrolase (EC 3.1.6.2) activity demonstrated a bimodal distribution between the crude nuclear and microsomal fractions. However, considerable activity was associated with the synaptosomal fraction. NADPH-cytochrome c reductase (EC 2.3.1.15) activity sedimented in the microsomal and the synaptosomal fractions. Calculations based on the relative specific activities of the microsomal and synaptic plasma membrane fraction indicated that the contamination of the synaptic plasma membranes by endoplasmic reticulum was 44.5% (NADPH-cytochrome c reductase), 38.0% (estrone sulfatase) and 9.0% (cholinephosphotransferase). Since it is believed that virtually all of the synthesis of phosphatidylcholine by cholinephosphotransferase occurs in the neuronal and glial cell bodies, it was concluded that cholinephosphotransferase is a satisfactory marker for the endoplasmic reticulum derived from these sources. The results suggest that NADPH-cytochrome c reductase and estrone sulfatase may be present in the smooth endoplasmic reticulum system responsible for the fast transport of macromolecules along the axon to the nerve endings as well as in the endoplasmic reticulum of the cell bodies. The possible relation between that portion of the smooth endoplasmic reticulum involved in fast axonal transport and the GERL (Golgi, Endoplasmic Reticulum, Lysosomes) complex discovered by Novikoff and his coworkers (Novikoff , 1976) is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号