首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the spore morphology and molecular systematics of a novel microsporidian isolate from Phyllobrotica armata Baly collected in China. The spores were long-oval and measured 4.7 × 2.6 μm on fresh smears. Ultrastructure of the spores was characteristic for the genus Nosema: 13-14 polar filament coils, posterior vacuole, and a diplokaryon. The complete rRNA gene sequence of the isolate was 4308 bp long. The organization of the rRNA gene was 5′-LSU rRNA-ITS-SSU rRNA-IGS-5S-3′, which corresponds to that of the Nosema species. Phylogenetic analysis based on the rRNA gene sequence indicated that this isolate, designated as Nosema sp. PA, is closely related to Nosemabombycis and is correctly assigned to the “true” Nosema group.  相似文献   

2.
Mao X  Jiang J  Xu X  Chu X  Luo Y  Shen G  Yu R 《Biosensors & bioelectronics》2008,23(10):1555-1561
We described a novel electrochemical DNA biosensor based on molecular beacon (MB) probe and enzymatic amplification protocol. The MB modified with a thiol at its 5' end and a biotin at its 3' end was immobilized on the gold electrode through mixed self-assembly process. Hybridization events between MB and target DNA cause the conformational change of the MB, triggering the attached biotin group on the electrode surface. Following the specific interaction between the conformation-triggered biotin and streptavidin-horseradish peroxidase (HRP), subsequent quantification of DNA was realized by electrochemical detection of enzymatic product in the presence of substrate. The detection limit is obtained as low as 0.1nM. The presented DNA biosensor has good selectivity, being able to differentiate between a complementary target DNA sequence and one containing G-G single-base mismatches.  相似文献   

3.
4.
In the present study, a gold nanoparticle-modified gold electrode (nanogold electrode) was used to develop a novel fluorescein electrochemical DNA biosensor based on a target-induced conformational change. The nanogold electrode was obtained by electrodepositing gold nanoparticles onto a bare gold electrode. This modification not only immobilized probe oligonucleotides, but also adsorbed fluorescein onto the surface of the gold nanoparticles to form an “arch-like” structure. This article compares the electrochemical signal changes caused by the hybridization of “arch-like” DNA on nanogold electrode and linear DNA on bare gold electrode. The results showed that the adsorption effect of nanogold can enhance the sensitivity of the sensor. The linear range of target ssDNA is from 2.0 × 10−9 M to 2.0 × 10−8 M with a correlation coefficient of 0.9956 and detection limit (3σ) of 7.10 × 10−10 M. Additionally, the specificity and hybridization response of this simple sensor were investigated.  相似文献   

5.
In this article, a supersandwich-type electrochemical biosensor for sequence-specific DNA detection is described. In design, single-strand DNA labeled with methylene blue (MB) was used as signal probe, and auxiliary probe was designed to hybridize with two different regions of signal probe. The biosensor construction contained three steps: (i) capture DNA labeled with thiol was immobilized on the surface of gold nanoparticles decorated reduced graphene oxide (Au NPs/rGO); (ii) the sandwich structure formation contained “capture–target–signal probe”; and (iii) auxiliary probe was introduced to produce long concatamers containing signal molecule MB. Differential pulse voltammetry (DPV) was used to monitor the DNA hybridization event using peak current changes of MB in phosphate-buffered saline (PBS) containing 1.0 M NaClO4. Under optimal conditions, the peak currents of MB were linear with the logarithm of the concentration of target DNA in the range of 0.1 μM to 0.1 fM with a detection limit of 35 aM (signal/noise = 3). In addition, this biosensor exhibited good selectivity even for single-base mismatched target DNA detection.  相似文献   

6.
In this paper, we constructed a new electrochemical biosensor for DNA detection based on a molecule recognition technique. In this sensing protocol, a novel dual-labeled DNA probe (DLP) in a stem–loop structure was employed, which was designed with dabcyl labeled at the 3′ end as a guest molecule, and with a Pb nanoparticle labeled at the 5′ end as electrochemical tag to indicate hybridization. One α-cyclodextrin-modified electrode (α-CD/MCNT/GCE) was used for capturing the DNA hybridization. Initially, the DLP was in the “closed” state in the absence of the target, which shielded dabcyl from the bulky α-CD/MCNT/GCE conjugate due to a steric effect. After hybridization, the loop sequence (16 bases) formed a rigid duplex with the target, breaking the relatively shorter stem duplex (6 bases). Consequently, dabcyl was forced away from the Pb nanoparticle and became accessible by the electrode. Therefore, the target hybridization event can be sensitively transduced via detecting the electrochemical reduction current signal of Pb. Using this method, as low as 7.1 × 10−10 M DNA target had been detected with excellent differentiation ability for even a single mismatch.  相似文献   

7.
8.
A highly sensitive, specific and rapid electrochemical oxalate biosensor was constructed by covalently immobilizing sorghum leaf oxalate oxidase on carboxylated multiwalled carbon nanotubes and conducting polymer, polyaniline nanocomposite film electrodeposited over the surface of platinum (Pt) wire using N-ethyl-N′-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxy succinimide (NHS) chemistry. The modified electrode was characterized by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectrophotometry. The optimized oxalate biosensor showed linear response range of 8.4-272 μM with correlation coefficient of 0.93 and rapid response within 5 s at a potential of 0.4 V vs Ag/AgCl. The sensitivity was approximately 0.0113 μA/μM with a detection limit of 3.0 μM. Proposed oxalate biosensor was successfully applied to human urine sample.  相似文献   

9.
Composite material based on room temperature ionic liquid (RTIL) N-butylpyridinium hexafluorophosphate (BPPF6), sodium alginate (SA), and graphite was used to construct a novel horseradish peroxidase (HRP) biosensor for the determination of H2O2. The morphology of the as-prepared biosensor was characterized by scanning electron microscopy (SEM). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to characterize the process of the performance of the biosensor. Parameters affecting the performance of the biosensor, including the concentrations of o-aminophenol (OAP) and HRP and the pH value of substrate solution, were optimized. Under the optimized experimental conditions, H2O2 could be detected in a linear calibration range of 1.0 to 6.0 μM with a correlation coefficient of 0.9847 (n = 7) and a detection limit of 0.5 μM at a signal/noise ratio of 3. The prepared biosensor not only had economic and disposable property but also showed good detection precision, bioactivity, storage stability, and reproducibility.  相似文献   

10.
A bienzyme electrochemical probe has been assembled and used to monitor the inhibition of the enzyme protein phosphatase-2A (PP2A) by okadaic acid (OA), taking advantage of the particular characteristics of a biochemical pathway in which PP2A is involved. This enzyme has significant activity toward glycogen phosphorylase a (PHOS a), which in turn catalyzes the conversion of glycogen to glucose-1-phosphate (G-1-P). In addition, PP2A is strongly inhibited by OA and its derivatives. Due to this combination of properties, PP2A was employed to develop an assay system involving a preliminary phase of off-line enzymatic incubations (OA/PP2A, PP2A/PHOS a, PHOS a/glycogen + phosphate). This off-line step was followed by the electrochemical detection of H2O2, which is the final product of two sequential enzymatic reactions: G-1-P with alkaline phosphatase (AP) producing glucose, then glucose with glucose oxidase (GOD) producing hydrogen peroxide. These two enzymes were coimmobilized on a nylon net membrane that was placed over an H2O2 platinum probe inserted into a flow injection analysis (FIA) system. During a first phase of the study, all analytical parameters were optimized. During a subsequent phase, the inhibition of PP2A enzyme by OA was evaluated. The calibration of the system shows a working range for detection of OA between 30 and 250 pg ml−1. The total analysis time is the sum of 50 min for the off-line enzymatic incubations and 4 min for the biosensor response.  相似文献   

11.
Dim2p is a eukaryal small ribosomal subunit RNA processing factor required for the maturation of 18S rRNA. Here we show that an archaeal homolog of Dim2p, aDim2p, forms a ternary complex with the archaeal homolog of eIF2α, a/eIF2α, and the RNA fragment that possesses the 3′ end sequence of 16S rRNA both in solution and in crystal. The 2.8-Å crystal structure of the ternary complex reveals that two KH domains of aDim2p, KH-1 and -2, are involved in binding the anti-Shine-Dalgarno core sequence (CCUCC-3′) and a highly conserved adjacent sequence (5′-GGAUCA), respectively, of the target rRNA fragment. The surface plasmon resonance results show that the interaction of aDim2p with the target rRNA fragment is very strong, with a dissociation constant of 9.8 × 10− 10 M, and that aDim2p has a strong nucleotide sequence preference for the 3′ end sequence of 16S rRNA. On the other hand, aDim2p interacts with the isolated α subunit and the intact αβγ complex of a/eIF2, irrespective of the RNA binding. These results suggest that aDim2p is a possible archaeal pre-rRNA processing factor recognizing the 3′ end sequence (5′-GAUCACCUCC-3′) of 16S rRNA and may have multiple biological roles in vivo by interacting with other proteins such as a/eIF2 and aRio2p.  相似文献   

12.
The discovery of natural and natural-based compounds has resulted in its application as an alternative to synthetic algicides to control harmful algae in aquatic systems. Of the many natural-product-based algicides, sorgoleone, a natural plant product from Sorghum bicolor root exudates has been investigated for its controlling effect on different algal species and its acute fish toxicity. Growth of the blue green algal species Microcystis aeruginosa Kützing was completely inhibited by the crude methanol extract of sorghum root at 20 μg mL−1. The most noticeable inhibition was observed in the bioassay of n-hexane soluble extract, where 98% growth inhibition occurred in M. aeruginosa at the concentration of 1.25 μg mL−1. Sorgoleone very effectively controlled blue green algae inhibiting 97% of M. aeruginosa at 0.5 μg mL−1 and 99% of Anabaena affinis Lemmermann at 4 μg mL−1. In contrast, inhibition of the green algae species Chlorella vulgaris Beijerinck and Scenedensmus spp. at 16 μg mL−1 sorgoleone was 87 and 68%, respectively. There were no mortalities or adverse effects observed in any of the fish exposed to water control, solvent control, and a nominal concentration of 1 μg mL−1 during the test period. The no observed effect concentration (NOEC) value was 1.5 μg mL−1 for the tested fish (O. latipes). Sorgoleone can be considered as an effective and an ecologically and environmentally sustainable approach to controlling harmful algae.  相似文献   

13.
14.
An amperometric lactate biosensor was developed based on a conducting polymer, poly-5,2′-5′,2′′-terthiophene-3′-carboxylic acid (pTTCA), and multiwall carbon nanotube (MWNT) composite on a gold electrode. Lactate dehydrogenase (LDH) and the oxidized form of nicotinamide adenine dinucleotide (NAD+) were subsequently immobilized onto the pTTCA/MWNT composite film. The modified electrode was characterized by quartz crystal microbalance (QCM), scanning electron microscopy (SEM), and electrochemical experiments. The detection signal was amplified by the pTTCA/MWNT assembly onto which a sufficient amount of enzyme was immobilized and stabilized by the covalent bond formation between the amine groups of enzyme and the carboxylic acid groups of the pTTCA/MWNT film. Experimental parameters affecting the sensor responses, such as applied potential, pH, and temperature, were assessed and optimized. Analytical performances and dynamic ranges of the sensor were determined, and the results showed that the sensitivity, stability, and reproducibility of the sensor improved significantly using pTTCA/MWNT composite film. The calibration plot was linear (r2 = 0.9995) over the range of 5 to 90 μM. The sensitivity was approximately 0.0106 μA/μM, with a detection limit of 1 μM, based on a signal/noise ratio of 3. The applicability of the sensor for the analysis of l-lactate concentration in commercial milk and human serum samples was demonstrated successfully.  相似文献   

15.
The principle that the small subunit ribosomal RNA (ssu rRNA) is generally accessible to oligonucleotide probes designed to have high thermodynamic affinity was tested with Stenotrophomonas maltophilia, Rhodobacter sphaeroides, Bacillus subtilis, and Saccharomyces cerevisiae. Fluorescein-labeled probes, designed to have ΔGoverall° = −14 ± 1 and to avoid the potential of nucleobase-specific quenching, were used to target 20 randomly selected sites in each organism. A site was considered accessible if probe brightness was at least 10 times the background signal. With 30-h hybridizations, 71 out of 80 target sites passed the accessibility criterion. Three additional sites were demonstrated to be accessible with either longer hybridizations, which seemed to have a negative effect on some probes, or the addition of formamide to the hybridization buffer. The remaining 6 sites were demonstrated to be accessible by changing the fluorophore to Cy5, slightly modifying probe lengths, using dual-labeled fluorescein probes, or a combination of these approaches. Probe elongations were only needed in 4 probes, indicating a 95% success in correctly predicting ΔGoverall°, the key parameter for the design of high affinity probes. In addition, 94% of the fluorescein labeled probes yielded bright signals, demonstrating that nucleobase-specific quenching of fluorescein is an important factor affecting probe brightness that can be predicted during probe design. Overall, the results support the principle that with a rational design of probes, it is possible to make most target sites in the ssu rRNA accessible.  相似文献   

16.
The complete 15,223-bp mitochondrial genome (mitogenome) of Tryporyza incertulas (Walker) (Lepidoptera: Pyraloidea: Crambidae) was determined, characterized and compared with seven other species of superfamily Pyraloidea. The order of 37 genes was typical of insect mitochondrial DNA sequences described to date. Compared with other moths of Pyraloidea, the A + T biased (77.0%) of T. incertulas was the lowest. Eleven protein-coding genes (PCGs) utilized the standard ATN, but cox1 used CGA and nad4 used AAT as the initiation codons. Ten protein-coding genes had the common stop codon TAA, except nad3 having TAG as the stop codon, and cox2, nad4 using T, TA as the incomplete stop codons, respectively. All of the tRNA genes had typical cloverleaf secondary structures except trnS1(AGN), in which the dihydrouridine (DHU) arm did not form a stable stem-loop structure. There was a spacer between trnQ and nad2, which was common in Lepidoptera moths. A 6-bp motif ‘ATACTA’ between trnS2(UCN) and nad1, a 7-bp motif “AGC(T)CTTA” between trnW and trnC and a 6-bp motif “ATGATA” of overlapping region between atp8 and atp6 were found in Pyraloidea moths. The A + T-rich region contained an ‘ATAGT(A)’-like motif followed by a poly-T stretch. In addition, two potential stem-loop structures, a duplicated 19-bp repeat element, and two microsatellites ‘(TA)12’ and ‘(TA)9’ were observed in the A + T-rich region of T. incertulas mitogenome. Finally, the phylogenetic relationships of Pyraloidea species were constructed based on amino acid sequences of 13 PCGs of mitogenomes using Bayesian inference (BI) and maximum likelihood (ML) methods. These molecular-based phylogenies supported the morphological classification on relationships within Pyraloidea species.  相似文献   

17.
Within the framework of a national scientific program named “MORtalités ESTivales de l'huître creuse Crassostrea gigas” (MOREST), a family-based experiment was developed to study the genetic basis of resistance to summer mortality in the Pacific oyster, Crassostrea gigas. As part of the MOREST project, the second generation of three resistant families and two susceptible families were chosen and pooled into two respective groups: “R” and “S”. These two groups of oysters were conditioned for 6 months on two food levels (4% and 12% of oyster soft-tissue dry weight in algal dry weight per day) with a temperature gradient that mimicked the Marennes-Oléron natural cycle during the oyster reproductive period. Oyster mortality remained low for the first two months, but then rapidly increased in July when seawater temperature reached 19 °C and above. Mortality was higher in “S” oysters than in “R” oysters, and also higher in oysters fed the 12% diet than those fed 4%, resulting in a decreasing, relative order in cumulative mortality as follows; 12% “S” > 12% “R” > 4% “S” > 4% “R”. Although the observed mortality rates were lower than those previously observed in the field, the mortality differential between “R” and “S” oysters was similar. Gonadal development, estimated by tissue lipid content, followed a relative order yielding a direct, positive relationship between reproductive effort and mortality as we reported precedently by quantitative histology. Regarding hemocyte parameters, one of the most striking observations was that reactive oxygen species (ROS) production was significantly higher in “S” oysters than in “R” oysters in May and June, regardless of food level. The absence of known environmental stress under these experimental conditions suggests that the ROS increase in “S” oyster could be related to their higher reproductive activity. Finally, a higher increase in hyalinocyte counts was observed for”S” oysters, compared to “R” oysters, in July, just before mortality. Taken together, our results suggest an association of genetically based resistance to summer mortality, reproductive strategy and hemocyte parameters.  相似文献   

18.
A series of luminescent ruthenium(II) amidodipyridoquinoxaline biotin (dpq-B) complexes [Ru(N-N)2(N-N′)](PF6)2 (N-N = 2,2′-bipyridine (bpy), 1,10-phenanthroline (phen), 4,7-diphenyl-1,10-phenanthroline (Ph2-phen); N-N′ = 2-((2-biotinamido)ethyl)amidodipyrido[3,2-f:2′,3′-h]quinoxaline (dpq-C2-B), 2-((6-biotinamido)hexyl)amidodipyrido[3,2-f:2′,3′-h]quinoxaline (dpq-C6-B)) has been designed as new luminescent probes for avidin. The electrochemical and photophysical properties of these complexes have been investigated. Upon irradiation, all the complexes exhibited metal-to-ligand charge-transfer (3MLCT) (dπ(Ru) → π(diimine)) emission in fluid solutions at 298 K and in low-temperature glass. In aqueous buffer, the emission was extremely weak, probably a consequence of hydrogen-bonding interactions between the amide moiety of the dpq-B ligands and the water molecules. The avidin-binding properties of all the complexes have been studied by 4′-hydroxyazobenzene-2-carboxylic acid (HABA) assays, luminescence titrations, kinetics experiments and confocal microscopy using avidin-conjugated microspheres.  相似文献   

19.
Most fish populations are declining worldwide and their management would benefit from a better estimation of recruitment. In glass eels, field studies suggest that estuarine migratory glass eels are sensitive enough to light to change their vertical location according to factors such as water turbidity and/or moon brightness. The response of glass eel (Anguilla anguilla L.) to light was tested in the laboratory using boxes where fish could choose between a lit and an unlit side. Responses were quantified as the proportion of glass eels remaining in the unlit chamber. Decreasing light levels were used and tested on different “age” glass eels (“age” in days since capture). In addition, measures of light at different depths of the water column were carried out in the Adour estuary (43°30′ N, 1°30′ W). The glass eel light avoidance level was lower in non-pigmented glass eel (less than 10 − 10 W cm − 2), than in pigmented ones (10 −9-10 − 8 W cm − 2). These results and field data on the measurement of light energy in the water column of Adour estuary are compared with previously published data on the estuarine migration of glass eel.  相似文献   

20.
杨旭  肖潇  陈章  李会东  邓乐 《微生物学通报》2007,34(6):1169-1173
基于金黄色葡萄球菌16S rRNA基因序列,采用序列比对设计了一种茎环结构的寡聚核苷酸探针。探针的环序列即为金黄色葡萄球菌16S rRNA基因序列的其中一个片段,同其他菌种的16S rRNA基因序列误配2个以上的核苷酸,因此能高度专一、灵敏的检测金黄色葡萄球菌16S rRNA。根据分子信标技术和酶联免疫分析的原理,评估一个实验方法,即利用能构象转换的、固定化的茎环结构探针酶联检测靶核酸。由于探针的特异性加强,这个检测系统能有效的排除假阳性即不会出现误配一个核苷酸的情况。采用微量浓度测定分析,最低下限可检测出大约4ng的金葡球菌16SrRNA。这种方法的灵敏度比其他常规检测方法高出了至少一个数量级。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号