首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Kwon YJ  Ma AZ  Li Q  Wang F  Zhuang GQ  Liu CZ 《Bioresource technology》2011,102(17):8099-8104
A newly isolated thermotolerant ethanologenic yeast strain, Issatchenkia orientalis IPE 100, was able to produce ethanol with a theoretical yield of 85% per g of glucose at 42 °C. Ethanol production was inhibited by furfural, hydroxymethylfurfural and vanillin concentrations above 5.56 g L−1, 7.81 g L−1, and 3.17 g L−1, respectively, but the strain was able to produce ethanol from enzymatically hydrolyzed steam-exploded cornstalk with 93.8% of theoretical yield and 0.91 g L−1 h−1 of productivity at 42 °C. Therefore, I. orientalis IPE 100 is a potential candidate for commercial lignocelluloses-to-ethanol production.  相似文献   

2.
The microalgae, Chlorella sp., were cultivated in various culture modes to assess biomass and lipid productivity in this study. In the batch mode, the biomass concentrations and lipid content of Chlorella sp. cultivated in a medium containing 0.025–0.200 g L−1 urea were 0.464–2.027 g L−1 and 0.661–0.326 g g−1, respectively. The maximum lipid productivity of 0.124 g d−1 L−1 occurred in a medium containing 0.100 g L−1 urea. In the fed-batch cultivation, the highest lipid content was obtained by feeding 0.025 g L−1 of urea during the stationary phase, but the lipid productivity was not significantly increased. However, a semi-continuous process was carried out by harvesting the culture and renewing urea at 0.025 g L−1 each time when the cultivation achieved the early stationary phase. The maximum lipid productivity of 0.139 g d−1 L−1 in the semi-continuous culture was highest in comparison with those in the batch and fed-batch cultivations.  相似文献   

3.
The thermotolerant yeast strain isolated from sugarcane juice through enrichment technique was identified as a strain of Pichiakudriavzevii (Issatchenkiaorientalis) through molecular characterization. The P. kudriavzevii cells adapted to galactose medium produced about 30% more ethanol from sugarcane juice than the non-adapted cells. The recycled cells could be used for four successive cycles without a significant drop in ethanol production. Fermentation in a laboratory fermenter with galactose adapted P. kudriavzevii cells at 40 °C resulted in an ethanol concentration and productivity of 71.9 g L−1 and 4.0 g L−1 h−1, respectively from sugarcane juice composed of about 14% (w/v) sucrose, 2% (w/v) glucose and 1% (w/v) fructose. In addition to ethanol, 3.30 g L−1 arabitol and 4.19 g L−1 glycerol were also produced, whereas sorbitol and xylitol were not formed during fermentation. Use of galactose adapted P. kudriavzevii cells for ethanol production from sugarcane juice holds potential for scale-up studies.  相似文献   

4.
3-Phenyllactic acid (PLA), which is produced by some strains of lactic acid bacteria (LAB), is a known antimicrobial agent with a broad spectrum. Batch and fed-batch fermentation by the strain Lactobacillus sp. SK007 for PLA production have been reported. With batch fermentation without pH-control, PLA production yield was 2.42 g L−1. When fed-batch fermentation by Lactobacillus sp. SK007 was conducted in 3 L initial volume with pH-control at 6.0 and intermittent feeding, which was developed after fermentation for 12 h and every 2 h with 120 mL 100 g L−1 PPA phenylpyruvic acid (PPA) and 50 mL 500 g L−1 glucose each time, PLA production yield reached 17.38 g L−1. The final conversion ratio of PPA to PLA was 51.1%, and the PLA production rate was 0.241 g L−1 h−1. This indicated that PPA was the ideal substrate for PLA fermentation production, and fed-batch fermentation with intermittent PPA feeding and pH-control was an effective approach to improve PLA production yield.  相似文献   

5.
In this study, the effect of ionic liquids, 1-ethyl-3-methylimidazolium acetate [EMIM][Ac], 1-ethyl-3-methylimidazolium diethylphosphate [EMIM][DEP], and 1-methyl-3-methylimidazolium dimethylphosphate [MMIM][DMP] on the growth and glucose fermentation of Clostridium sp. was investigated. Among the three ionic liquids tested, [MMIM][DMP] was found to be least toxic. Growth of Clostridium sp. was not inhibited up to 2.5, 4 and 4 g L−1 of [EMIM][Ac], [EMIM][DEP] and [MMIM][DMP], respectively. [EMIM][Ac] at <2.5 g L−1, showed hormetic effect and stimulated the growth and fermentation by modulating medium pH. Total organic acid production increased in the presence of 2.5 and 2 g L−1 of [EMIM][Ac] and [MMIM][DMP]. Ionic liquids had no significant influence on alcohol production at <2.5 g L−1. Total gas production was affected by ILs at ?2.5 g L−1 and varied with type of methylimidazolium IL. Overall, the results show that the growth and fermentative metabolism of Clostridium sp. is not impacted by ILs at concentrations below 2.5 g L−1.  相似文献   

6.
Olive-mill wastewater (OMW) was investigated for its suitability to serve as a medium for lipase production by Candida cylindracea NRRL Y-17506. The OMW that best supported enzyme production was characterized by low COD and low total sugars content. In shake flask batch cultures, OMW supplementation with 2.4 g l−1 NH4Cl and 3 g l−1 olive oil led to an enzyme activity of about 10 U ml−1. The addition of glucose or malt extract and supplements containing organic N (e.g., peptone, yeast extract) either depressed or did not affect the enzyme production. Further experiments were then performed in a 3-l stirred tank reactor to assess the impact of medium pH and stirring speed on the yeast enzyme activity. The lipase activity was low (1.8 U ml−1) when the pH was held constant at 6.5, significantly increased (18.7 U ml−1) with uncontrolled pH and was maximum (20.4 U ml−1) when the pH was let free to vary below 6.5. A stirring regime, that varied depending on the dissolved oxygen concentration in the medium, both prevented the occurrence of anoxic conditions during the exponential growth phase and enabled good lipase production (i.e., 21.6 U ml−1) and mean volumetric productivity (i.e., 123.5 U l−1 h−1).  相似文献   

7.
The discovery of natural and natural-based compounds has resulted in its application as an alternative to synthetic algicides to control harmful algae in aquatic systems. Of the many natural-product-based algicides, sorgoleone, a natural plant product from Sorghum bicolor root exudates has been investigated for its controlling effect on different algal species and its acute fish toxicity. Growth of the blue green algal species Microcystis aeruginosa Kützing was completely inhibited by the crude methanol extract of sorghum root at 20 μg mL−1. The most noticeable inhibition was observed in the bioassay of n-hexane soluble extract, where 98% growth inhibition occurred in M. aeruginosa at the concentration of 1.25 μg mL−1. Sorgoleone very effectively controlled blue green algae inhibiting 97% of M. aeruginosa at 0.5 μg mL−1 and 99% of Anabaena affinis Lemmermann at 4 μg mL−1. In contrast, inhibition of the green algae species Chlorella vulgaris Beijerinck and Scenedensmus spp. at 16 μg mL−1 sorgoleone was 87 and 68%, respectively. There were no mortalities or adverse effects observed in any of the fish exposed to water control, solvent control, and a nominal concentration of 1 μg mL−1 during the test period. The no observed effect concentration (NOEC) value was 1.5 μg mL−1 for the tested fish (O. latipes). Sorgoleone can be considered as an effective and an ecologically and environmentally sustainable approach to controlling harmful algae.  相似文献   

8.
GOX is the most widely used enzyme for the development of electrochemical glucose biosensors and biofuel cell in physiological conditions. The present work describes the production of a recombinant glucose oxidase from Penicillium amagasakiense (yGOXpenag) displaying a more efficient glucose catalysis (kcat/KM(glucose) = 93 μM−1 s−1) than the native GOX from Aspergillus niger (nGOXaspng), which is the most industrially used (kcat/KM(glucose) = 27 μM−1 s−1). Expression in Pichia pastoris allowed easy production and purification of the recombinant active enzyme, without overglycosylation. Its biotechnological interest was further evaluated by measuring kinetics of ferrocinium-methanol (FMox) reduction, which is commonly used for electron transfer to the electrode surface. Despite their homologies in sequence and structure, pH-dependant FMox reduction was different between the two enzymes. At physiological pH and temperature, we observed that electron transfer to the redox mediator is also more efficient for yGOXpenag than for nGOXaspng(kcat/KM(FMox) = 27 μM−1 s−1 and 17 μM−1 s−1 respectively). In our model system, the catalytic current observed in the presence of blood glucose concentration (5 mM) was two times higher with yGOXpenag than with nGOXaspng. All our results indicated that yGOXpenag is a better candidate for industrial development of efficient bioelectrochemical devices used in physiological conditions.  相似文献   

9.
The feasibility of replacing yeast extract (YE) by corn steep liquor (CSL), a low cost nutrient source, for syngas fermentation to produce ethanol using Clostridium strain P11 was investigated. About 32% more ethanol (1.7 g L−1) was produced with 20 g L−1 CSL media in 250-mL bottle fermentations compared to media with 1 g L−1 YE after 360 h. Maximum ethanol concentrations after 360 h of fermentation in a 7.5-L fermentor with 10 and 20 g L−1 CSL media were 8.6 and 9.6 g L−1, respectively, which represent 57% and 60% of the theoretical ethanol yields from CO. Only about 6.1 g L−1 of ethanol was obtained in the medium with 1 g L−1 YE after 360 h, which represents 53% of the theoretical ethanol yield from CO. The use of CSL also enhanced butanol production by sevenfold compared to YE in bottle fermentations. These results demonstrate that CSL can replace YE as the primary medium component and significantly enhance ethanol production by Clostridium strain P11.  相似文献   

10.
Acarbose, a potent α-glucosidase inhibitor, is as an oral anti-diabetic drug for treatment of the type two, noninsulin-dependent diabetes. Actinoplanes utahensis ZJB-08196, an osmosis-resistant actinomycete, had a broad osmolality optimum between 309 mOsm kg−1 and 719 mOsm kg−1. Utilizing this unique feature, an fed-batch culture process under preferential osmolality was constructed through intermittently feeding broths with feed medium consisting of 14.0 g l−1 maltose, 6.0 g l−1 glucose and 9.0 g l−1 soybean meal, at 48 h, 72 h, 96 h and 120 h. This intermittent fed-batch culture produced a peak acarbose titer of 4878 mg l−1, increased by 15.9% over the batch culture.  相似文献   

11.
The BGL1 gene, encoding β-glucosidase in Saccharomycopsis fibuligera, was intracellular, secreted or cell-wall associated expressed in an industrial strain of Saccharomyces cerevisiae. The obtained recombinant strains were studied under aerobic and anaerobic conditions. The results indicated that both the wild type and recombinant strain expressing intracellular β-glucosidase cannot grow in medium using cellobiose as sole carbon source. As for the recombinant EB1 expressing secreted enzyme and WB1 expressing cell-wall associated enzyme, the maximum specific growth rates (μmax) could reach 0.03 and 0.05 h−1 under anaerobic conditions, respectively. Meanwhile, the surface-engineered S. cerevisiae utilized 5.2 g cellobiose L−1 and produced 2.3 g ethanol L−1 in 48 h, while S. cerevisiae secreting β-glucosidase into culture broth used 3.6 g cellobiose L−1 and produced 1.5 g ethanol L−1 over the same period, but no-full depletion of cellobiose were observed for both the used recombinant strains. The results suggest that S. cerevisiae used in industrial ethanol production is deficient in cellobiose transporter. However, when β-glucoside permease and β-glucosidase were co-expressed in this strain, it could uptake cellobiose and showed higher growth rate (0.11 h−1) on cellobiose.  相似文献   

12.
Batch fermentative production of 2,3-butanediol by Klebsiella oxytoca was investigated using various oxygen supply methods though varying agitation speed. Based on the analysis of three kinetic parameters including specific cell growth rate (μ), specific glucose consumption rate (qs) and specific 2,3-butanediol formation rate (qp), a two-stage agitation speed control strategy, aimed at achieving high concentration, high yield and high productivity of 2,3-butanediol, was proposed. At the first 15 h, agitation speed was controlled at 300 rpm to obtain high μ for cell growth, subsequently agitation speed was controlled at 200 rpm to maintain high qp for high 2,3-butanediol accumulation. Finally, the maximum concentration of 2,3-butanediol reached 95.5 g l−1 with the yield of 0.478 g g−1 and the productivity of 1.71 g l−1 h−1, which were 6.23%, 6.22% and 22.14% over the best results controlled by constant agitation speeds.  相似文献   

13.
Butyrate fermentation by immobilized Clostridium tyrobutyricum was successfully carried out in a fibrous bed bioreactor using cane molasses. Batch fermentations were conducted to investigate the influence of pH on the metabolism of the strain, and the results showed that the fermentation gave a highest butyrate production of 26.2 g l−1 with yield of 0.47 g g−1 and reactor productivity up to 4.13 g l−1 h−1 at pH 6.0. When repeated-batch fermentation was carried out, long-term operation with high butyrate yield, volumetric productivity was achieved. Several cane molasses pretreatment techniques were investigated, and it was found that sulfuric acid treatment gave better results regarding butyrate concentration (34.6 ± 0.8 g l−1), yield (0.58 ± 0.01 g g−1), and sugar utilization (90.8 ± 0.9%). Also, fed-batch fermentation from cane molasses pretreated with sulfuric acid was performed to further increase the concentration of butyrate up to 55.2 g l−1.  相似文献   

14.
Šmerc A  Sodja E  Legiša M 《PloS one》2011,6(5):e19645

Background

Human cancers consume larger amounts of glucose compared to normal tissues with most being converted and excreted as lactate despite abundant oxygen availability (Warburg effect). The underlying higher rate of glycolysis is therefore at the root of tumor formation and growth. Normal control of glycolytic allosteric enzymes appears impaired in tumors; however, the phenomenon has not been fully resolved.

Methodology/Principal Findings

In the present paper, we show evidence that the native 85-kDa 6-phosphofructo-1-kinase (PFK1), a key regulatory enzyme of glycolysis that is normally under the control of feedback inhibition, undergoes posttranslational modification. After proteolytic cleavage of the C-terminal portion of the enzyme, an active, shorter 47-kDa fragment was formed that was insensitive to citrate and ATP inhibition. In tumorigenic cell lines, only the short fragments but not the native 85-kDa PFK1 were detected by immunoblotting. Similar fragments were detected also in a tumor tissue that developed in mice after the subcutaneous infection with tumorigenic B16-F10 cells. Based on limited proteolytic digestion of the rabbit muscle PFK-M, an active citrate inhibition-resistant shorter form was obtained, indicating that a single posttranslational modification step was possible. The exact molecular masses of the active shorter PFK1 fragments were determined by inserting the truncated genes constructed from human muscle PFK1 cDNA into a pfk null E. coli strain. Two E. coli transformants encoding for the modified PFK1s of 45,551 Da and 47,835 Da grew in glucose medium. The insertion of modified truncated human pfkM genes also stimulated glucose consumption and lactate excretion in stable transfectants of non-tumorigenic human HEK cell, suggesting the important role of shorter PFK1 fragments in enhancing glycolytic flux.

Conclusions/Significance

Posttranslational modification of PFK1 enzyme might be the pivotal factor of deregulated glycolytic flux in tumors that in combination with altered signaling mechanisms essentially supports fast proliferation of cancer cells.  相似文献   

15.
Glycerol was utilized by Cupriavidus necator DSM 545 for production of poly-3-hydroxybutyrate (PHB) in fed-batch fermentation. Maximal specific growth rates (0.12 and 0.3 h−1) and maximal specific non-growth PHB production rate (0.16 g g−1 h−1) were determined from two experiments (inocula from exponential and stationary phase). Saturation constants for nitrogen (0.107 and 0.016 g L−1), glycerol (0.05 g L−1), non-growth related PHB synthesis (0.011 g L−1) and nitrogen/PHB related inhibition constant (0.405 g L−1), were estimated. Five relations for specific growth rate were tested using mathematical models. In silico performed optimization procedures (varied glycerol/nitrogen ratio and feeding) has resulted in a PHB content of 70.9%, shorter cultivation time (23 h) and better PHB yield (0.347 g g−1). Initial concentration of biomass 16.8 g L−1 and glycerol concentration in broth between 3 and 5 g L−1 were decisive factors for increasing of productivity.  相似文献   

16.
Since the European Union banned disposal of sewage sludge (SS) at sea in 1998 the application rate of SS to land has risen significantly. Land application is thus possibly an important transport route for SS-associated organic chemicals, including pharmaceuticals, to soils and perhaps also to plants. The potential for the selective serotonin re-uptake inhibitor, Fluoxetine HCl, to undergo uptake into Brassicaceae tissues was therefore investigated in a tissue culture study under laboratory conditions for 12 weeks. From growth medium containing 280 ng Fluoxetine HCl mL−1, translocation into Brassica oleracea var. botrytis (cauliflower) stems (5% mean uptake of applied burden; 0.49 μg g wet weight−1) and leaves (3% mean uptake; 0.26 μg g wet weight−1) was confirmed, but no evidence of uptake into the curd was found; other possible explanations of the observations are also discussed. Although the data for individual plants were highly variable, as was the recovery of spiked internal standard (deuterated Fluoxetine HCl), the results nonetheless suggest uptake of Fluoxetine may indeed be a potential transport route to plants. A similar study of uptake from soils rather than from an artificial medium should now be undertaken, with greater numbers of replicates and improved analytical methods. Such studies have already demonstrated uptake of some antibiotics from manured soils by a variety of plants including Brassicaceae, suggesting that the uptake mechanisms may be more general.  相似文献   

17.
Three Algerian populations of female Pistacia atlantica shrubs were investigated in order to check whether their terpenoid contents and morpho-anatomical parameters may characterize the infraspecific variability. The populations were sampled along a gradient of increasing aridity from the Atlas mountains into the northwestern Central Sahara.As evidenced by Scanning Electron Microscopy, tufted hairs could be found only on seedling leaves from the low aridity site as a population-specific trait preserved also in culture. Under common garden cultivation seedlings of the high aridity site showed a three times higher density of glandular trichomes compared to the low aridity site. Increased aridity resulted also in reduction of leaf sizes while their thickness increased. Palisade parenchyma thickness also increases with aridity, being the best variable that discriminates the three populations of P. atlantica.Analysis of terpenoids from the leaves carried out by GC-MS reveals the presence of 65 compounds. The major compounds identified were spathulenol (23 μg g−1 dw), α-pinene (10 μg g−1 dw), verbenone (7 μg g−1 dw) and β-pinene (6 μg g−1 dw) in leaves from the low aridity site; spathulenol (73 μg g−1 dw), α-pinene (25 μg g−1 dw), β-pinene (18 μg g−1 dw) and γ-amorphene (16 μg g−1 dw) in those from medium aridity and spathulenol (114 μg g−1 dw), α-pinene (49 μg g−1 dw), germacrene D (29 μg g−1 dw) and camphene (23 μg g−1 dw) in leaves from the high aridity site. Terpene concentrations increased with the degree of aridity: the highest mean concentration of monoterpenes (136 μg g−1 dw), sesquiterpenes (290 μg g−1 dw) and total terpenes (427 μg g−1 dw) were observed in the highest arid site and are, respectively, 3-, 5- and 4-fold higher compared to the lower arid site. Spathulenol and α-pinene can be taken as chemical markers of aridity. Drought discriminating compounds in low, but detectable concentrations are δ-cadinene and β-copaene. The functional roles of the terpenoids found in P. atlantica leaves and principles of their biosynthesis are discussed with emphasis on the mechanisms of plant resistance to drought conditions.  相似文献   

18.
We evaluated the kinetic culture characteristics of the microalgae Cyanobium sp. grown in vertical tubular photobioreactor in semicontinuous mode. Cultivation was carried out in vertical tubular photobioreactor for 2 L, in 57 d, at 30 °C, 3200 Lux, and 12 h light/dark photoperiod. The maximum specific growth rate was found as 0.127 d−1, when the culture had blend concentration of 1.0 g L−1, renewal rate of 50%, and sodium bicarbonate concentration of 1.0 g L−1. The maximum values of productivity (0.071 g L−1 d−1) and number of cycles (10) were observed in blend concentration of 1.0 g L−1, renewal rate of 30%, and bicarbonate concentration of 1.0 g L−1. The results showed the potential of semicontinuous cultivation of Cyanobium sp. in closed tubular bioreactor, combining factors such as blend concentration, renewal rate, and sodium bicarbonate concentration.  相似文献   

19.
Aphanius dispar, a freshwater fish (mean total length ± sd, 3.42 ± 0.33 cm) was exposed to different concentrations of deltamethrin (2.25, 2.50 and 3.00 μg L−1), an insecticide used to control Dubas bug, Ommatissus lybicus in Oman. The histopathological changes in the structure of the gills in fish exposed to deltamethrin was studied using light, transmission and scanning electron microscopy. In light microscopy, the fish exposed to 2.25 μg L−1 deltamethrin, showed hypertrophy and hyperplasia of chloride cells, while in 2.50 μg L−1, additional changes like vacuolization, lifting of the lamellar epithelium and fusion of secondary lamellae were observed. The most severe alteration including vacuolization, desquamation of cells and dilation of intercellular space was recorded at 3.00 μg L−1. Transmission and scanning electron microscopy, supports the findings of light microscopy and further document the ultrastructural damage caused, especially in exposure to 2.50 and 3.00 μg L−1. Al l changes observed are described in detail. The deltamethrin exposure concentration of 2.25 μg L−1 seems to be a threshold above which any small increase in concentration results in severe damage. All present results have been compared with those of previous studies on gill damage caused by various chemical substances. The impacts of the damage on the functioning of gills as a respiratory organ are discussed.  相似文献   

20.
Zhang J  Zhou J  Liu J  Chen K  Liu L  Chen J 《Bioresource technology》2011,102(7):4807-4814
The immediate precursor of L-ascorbic acid, or vitamin C, is 2-keto-l-gulonic acid (2-KLG). This is commonly produced commercially by Ketogulonicigenium vulgare and Bacillus megaterium, using corn steep liquor powder (CSLP) as an organic nitrogen source. In this study, the effects of the individual CSLP components (amino acids, vitamins, and metal elements) on 2-KLG production were evaluated, with the aim of developing a complete, chemically defined medium for 2-KLG production. Forty components of CSLP were analyzed, and key components were correlated to biomass, 2-KLG productivity, and consumption rate of L-sorbose. Glycine had the greatest effect, followed by serine, biotin, proline, nicotinic acid, and threonine. The combination of 0.28 g L−1 serine, 0.36 g L−1glycine, 0.18 g L−1 threonine, 0.28 g L−1proline, 0.19 g L−1nicotinic acid, and 0.62 mg L−1biotin in a chemically defined medium produced the highest maximum biomass concentration (4.2 × 109 cfu mL−1), 2-KLG concentration (58 g L−1), and yield (0.76 g g−1) after culturing for 28 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号