首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glycerol carbonate is a key multifunctional compound employed as solvent, additive, monomer, and chemical intermediate. Enzymatic synthesis of glycerol carbonate from renewable starting materials (glycerol and dimethyl carbonate) was successfully achieved by immobilized lipase from Candida antarctica (CALB, Novozym 435). Addition of molecular sieves as scavenger for the removal of methanol, which was generated from dimethyl carbonate during the reaction, accelerated a reaction rate. After the optimization, the equimolar use of glycerol and dimethyl carbonate in the Novozym 435-catalyzed reaction yielded a glycerol carbonate with almost quantitative yield. The resulting glycerol carbonate from 60 °C reaction has shown the low enantiomeric excess (13% ee) as configuration of (R)-enantiomer.  相似文献   

2.
Previously, we described a similar stimulating effect of adrenocorticotrophic hormone (ACTH) and ACTH-related synthetic peptides on triacylglycerol (TAGL) and acylcholesterol (ACL) lipase activities of rat brain. In present study, TAGL and ACL activities from rat brain were further investigated and compared through the use of tri-[3H]oleoylglycerol and [14C]oleoylcholesterol, respectively, as the substrates. A number of specific properties proved to be similar for both activities: (a) comparable rates of activity decay were observed upon heat treatment, (b) similar reaction kinetics as determined at different substrate concentrations with and without ACTH (10(-4) M), (c) both activities showed a common susceptibility to the presence of sodium taurocholate (5 mM) or trace amounts (5 microliter/ml) of organic solvent in the assay medium, (d) the distributions of the two activities in various brain regions were comparable. Taken together, these data, along with the similar activability by ACTH, suggest a common structural basis for TAGL and ACL activities in rat brain.  相似文献   

3.
假单胞菌属脂肪酶的分子生物学研究进展   总被引:1,自引:0,他引:1  
微生物脂肪酶是商品化脂肪酶的主要来源,并广泛应用于诸多工业领域。与其他微生物脂肪酶相比,细菌脂肪酶催化反应的类型更多、活性更高、稳定性更好,其中又以假单胞菌属(Pseudomonas)脂肪酶的性能最为优越。作为性能最为优越、应用最为广泛的一类脂肪酶,假单胞菌属脂肪酶研究一直是脂肪酶领域的热点。就假单胞菌属脂肪酶的分子生物学研究进展进行归纳和述评,包括基因资源挖掘及克隆、基因表达调控及分泌机制、活性过表达策略、蛋白质结晶及3D结构解析、蛋白质工程,并对其未来研究方向做出展望,以期为后续研究提供有益参考。  相似文献   

4.
微生物脂肪酶在正庚烷中合成短链芳香酯的研究   总被引:14,自引:2,他引:14  
用微生物脂肪酶在溶剂相中合成短链芳香酯的研究表明:脂肪酶在正庚烷中催化合成芳香酯转化率比水相中有明显的优势。在10个不同来源的商品脂肪酶中,选择了其中对己酸乙酯转化率在85%以上来自Mucor miehei,Candida rugosaPorcine pancreas的脂肪酶对7个短链脂肪酸酯进行合成,其中Mucor miehei脂肪酶对这几个芳香酯48 h合成转化率均在90%以上,乙酸乙酯21.28g-1.丙酸乙酯19.6gL-1,丁酸乙酯26.61gL-1,戊酸乙酯24.95gL-1,己酸乙酯产量34.60gL-1,丁酸异戊酯30.76gL-1,乙酸异戊酯12.76gL-1。同时.Mucor miehei脂肪酶在正庚烷批式反应中稳定性也较好,己酸乙酯半衰期为120h,最少的乙酸乙酯也在140h。并且还发现脂肪酶在正庚烷中分解酶活降低很多,但对其酯合成转化率没有直接的影响。  相似文献   

5.
Evaluation of Pseudomonas cepacia lipase (PCL) activity by a titrimetric method with triacylglycerols (TAG) and synthetic dialkylglycerol esters (DAGE) established the chain length selectivity of the enzyme and this information has been used to design a new chromogenic substrate [1,2-di-O-octyl-sn-glycerol-3-O-(4-nitrophenyl) glutarate] for the determination of the lipolytic activity of PCL.  相似文献   

6.
Evaluation of Pseudomonas cepacia lipase (PCL) activity by a titrimetric method with triacylglycerols (TAG) and synthetic dialkylglycerol esters (DAGE) established the chain length selectivity of the enzyme and this information has been used to design a new chromogenic substrate [1,2-di-O-octyl-sn-glycerol-3-O-(4-nitrophenyl) glutarate] for the determination of the lipolytic activity of PCL.  相似文献   

7.
Three novel lipase-producing microorganisms have been isolated from 526 actinomycete strains by employing screening techniques on solid media. Time-course and scale-up of enzyme production were analyzed. The lipases, produced by microorganisms belonging to the Streptomyces genus, were tested in several reactions in organic medium using unnatural substrates. The lyophilized crude lipases are stable at least for 1 month at 4°C (100% recovered activity). The lipase activity per milliliter of cell culture broth was higher than described in the literature for other lipases from actinomycetes. The three selected lipases displayed better activity than commercial lipase from Candida rugosa in the resolution of chiral secondary alcohols. The lipase from S. halstedii also displayed very good activity in the synthesis of carbamates.  相似文献   

8.
本文对聚乙二醇修饰脂肪酶、多孔玻璃载体吸附酶、多孔玻璃载体丙酮沉积酶、硅藻土吸附酶、氧化铝吸附酶和琼脂珠疏水载体吸附酶在有机相中酯合成和酯交换反应的催化作用进行了研究。实验表明,不同形式的酶需要不同的最适加水量。而且,在各自最适条件下,对各种形式酶进行了比较,得出硅藻土和琼脂珠疏水载体是很好的固定化载体,疏水性琼脂珠固定化酶在有机相中的活力比酶粉高46.5%。  相似文献   

9.
The generally held belief that the selectivity of lipase can be changed by changing the media from aqueous to non-aqueous was tested by monitoring the rates of hydrolysis, ester synthesis and transesterification with a range of fatty acid mono-esters. Although the absolute rates of reaction varied, hydrolysis was by far the most rapid of the three, the relative rates for the fatty acids used were similar in all three reaction types. The selectivity of the five enzymes used appeared to remain unchanged irrespective of the type of reaction, i.e. hydrolysis of p-nitrophenyl esters, direct ester synthesis with butanol and fatty acid or transesterification with butyl butyrate and fatty acid, and could not be changed by changing water activity. This principle was applied to screen for suitable lipases which could be used to increase the gamma linolenic acid content of a fatty acid mixture. Enzymes could be selected by measuring the rate of hydrolysis of a range of P-nitrophenyl esters.  相似文献   

10.
The stability and activity of commercial immobilized lipase from Candida antarctica (Novozym 435) in subcritical 1,1,1,2-tetrafluoroethane (R134a) was investigated. The esterification of oleic acid with glycerol was studied as a model reaction in subcritical R134a and in solvent-free conditions. The results indicated that subcritical R134a treatment led to significant increase of activity of Novozym 435, and a maximum residual activity of 300% was measured at 4 MPa, 30 °C after 7 h incubation. No deactivation of Novozym 435 treated with subcritical R134a under different operation factors (pressure 2–8 MPa, temperature 30–60 °C, incubation time 1–12 h, water content 1:1, 1:2, 1:5 enzyme/water, depressurization rate 4 MPa/1 min, 4 MPa/30 min, 4 MPa/90 min) was observed. While the initial reaction rate was high in subcritical R134a, higher conversion was obtained in solvent-free conditions. Though the apparent conversion of the reaction is lower in subcritical R134a, it is more practicable, especially at low enzyme concentrations desired at commercial scales.  相似文献   

11.
Thermo-alkalophilic bacterium, Geobacillus thermoleovorans secrets many enzymes including a 43?kDa extracellular lipase. Significant thermostability, organic solvent stability and wide substrate preferences for hydrolysis drew our attention to solve its structure by crystallography. The structure was solved by molecular replacement method and refined up to 2.14?Å resolution. Structure of the lipase showed an alpha-beta fold with 19 α-helices and 10 β-sheets. The active site remains covered by a lid. One calcium and one zinc atom was found in the crystal. The structure showed a major difference (rmsd 5.6?Å) from its closest homolog in the amino acid region 191 to 203. Thermal unfolding of the lipase showed that the lipase is highly stable with Tm of 76?°C. 13C NMR spectra of products upon triglyceride hydrolysate revealed that the lipase hydrolyses at both sn-1 and sn-2 positions with equal efficiency.  相似文献   

12.
The aim of this study is to probe the glycerol backbone conformation of the substrate (or inhibitor) in the active site of Pseudomonas species lipase by the 1,2-cyclopentandiol analogues of the ethylene glycerol carbamate inhibitors. Cyclopentane-carbamates, cis-1,2-di-N-n- butylcarbamyl-cyclopentane (1) and trans-1,2-di-N-n-butylcarbamyl-cyclopentane (2), are the conformationally constrained analogues of 1,2-di-N-n-butylcarbamyl ethane (3). All carbamates are synthesized and characterized as the pseudo-substrate inhibitors of the enzyme. Cis-cyclopentane-di-carbamate (1) is a more potent inhibitor than both ethane-di-carbamate (3) and trans-cyclopentane-di-carbamate (2) probably because the glycerol backbone conformations of cis-cyclopentane-di-carbamate (1) are constrained by the cyclopentane ring and cis-cyclopentane-di-cabamate (1) is a meso compound but trans-cyclopentane-di-carbamate (2) is a racemate.  相似文献   

13.
Min JY  Lee EY 《Biotechnology letters》2011,33(9):1789-1796
Biodiesel [fatty acid methyl esters (FAMEs)] and glycerol carbonate were synthesized from corn oil and dimethyl carbonate (DMC) via transesterification using lipase (Novozyme 435) in solvent-free reaction in which excess DMC was used as the substrate and reaction medium. Glycerol carbonate was also simultaneously formed from DMC and glycerol. Conversions of FAMEs and glycerol carbonate were examined in batch reactions. The FAMEs and glycerol carbonate reached 94 and 62.5% from oil and DMC (molar ratio of 1:10) with 0.2% (v/v) water and 10% (w/w) Novozyme 435 (based on oil weight) at 60°C. When Novozyme 435 was washed with acetone after each reaction, more than 80% activity still remained after seven recycling.  相似文献   

14.
The present article describes formation of excipient-CRL complex from water soluble calix[4]arene derivative (3 as excipient) and Candida rugosa lipase (CRL), which is proposed as a reusable form of enzyme that is free from steric and diffusion limitations associated with those enzymes immobilized onto porous solid supports. The excipient-CRL could completely hydrolyze 50 mM p-nitrophenyl palmitate (p-NPP) in Tris–HCl buffer at a wide range of temperatures, i.e. 30–80 °C. It is stable under stirred conditions and could be reused multiple times without loss of enzyme activity. It was observed that excipient-CRL complex shows a significant effect on the enzyme activity with an enhancement in thermal stability, while pH and temperature affect the activity of excipient-CRL as well as free CRL. Consequently, the excipient-CRL was found more active than free CRL for the hydrolysis of p-NPP in respect of its reusability.  相似文献   

15.
Carboxylesterases represent a large class of hydrolytic enzymes that are involved in lipid metabolism, pharmacological determination, and detoxication of organophosphorus pesticides. These enzymes have several notable structural features including two intramolecular disulfide bonds. This study was undertaken to test the hypothesis that the disulfide bonds are required during catalysis by stabilizing the catalytically active conformation. Hydrolase B, a rat liver microsomal carboxylesterase, was reduced by dithiothreitol, electrophoretically separated and assayed for hydrolysis. Contrary to the hypothesis, reduced hydrolase B was as active as the native enzyme on the hydrolysis of 1-naphthylacetate, and sulfhydryl alkylation following reduction caused no changes in the hydrolytic activity. Interestingly, substitution of a disulfide bond-forming cysteine with an alanine caused marked reduction or complete loss of the catalytic activity, suggesting that disulfide bond formation plays a role in the biosynthetic process of hydrolase B. In support of this notion, refolding experiments restored a significant amount of hydrolytic activity when hydrolase B was unfolded with urea alone. In contrast, little activity was restored when unfolding was performed in the presence of reducing agent dithiothreitol. These results suggest that formation of the disulfide bonds plays a critical role in folding hydrolase B into the catalytically active conformation, and that the disulfide bonds play little role or function redundantly in maintaining this conformation during catalysis.  相似文献   

16.
UV scanning of alpha-chymotrypsin dissolved in neat glycerol and water showed no significant differences in its spectra at pH 7.8. Fluorescence scanning revealed a strong dependence on pH values (between 5.9 to 10.5) of the maximum wavelength emission in water and no pH-dependence in 99% glycerol supplemented with 1% of appropriate buffers. The profile of alpha-chymotrypsin activity dissolved in water-glycerol mixtures with phenyl acetate as substrate displayed two maximum: highest peak was found at 100% water, and the second one was observed in 99% glycerol concentration with about 40% of the relative activity. Optimum pH of the soluble alpha-chymotrypsin in glycerol showed a displacement of 1 pH/U towards the alkaline side compared to water at pH 8.0. Kinetic and thermodynamic analysis using kinetic measurements of the thermal stability of alpha-chymotrypsin showed a higher inactivation rate in neat glycerol as compared to water in 30 to 45 degrees C range, however, when temperature increases enzyme stability in glycerol is better than water. Thermostability of trypsin and alpha-chymotrypsin dissolved in glycerol at 100 degrees C showed a half reaction time of approximately 7 and 20 h, respectively, and less than 1 minute in aqueous buffer for both enzymes.  相似文献   

17.
Flow-injection enzymatic analysis for glycerol and triacylglycerol   总被引:2,自引:0,他引:2  
A flow-injection enzymatic analytical system was developed for determination of glycerol and triacylglycerol based on enzymatic reactions in capillary followed by electrochemical detection. The hydrogen peroxide produced from the enzyme reaction was monitored by a platinum-based electrochemical probe. Different immobilization strategies on silica support were studied. The best and most effective configuration found for the measurement of glycerol and triacylglycerols in this system was the tandem connection of a lipase column and a silica-fused capillary column coimmobilized with glycerokinase (GK) and glycerol-3-phosphate oxidase (GPO). Lipase helps the breakdown of triacylglycerol to yield free fatty acids and glycerol, while glycerokinase catalyzes the adenosine-5-triphosphate-dependent phosphorylation of glycerol to yield alpha-glycerol phosphate, which can subsequently be oxidized by 3-glycerol phosphate oxidase to produce hydrogen peroxide. Response-surface methodology (RSM) was applied to optimize the proposed system for glycerol. Experiment settings were designed by central composite design to investigate the combined effects of pH, flow rate, reaction temperature, and ATP concentration on collected signals. The fitted model, per RSM, showed that the optimum conditions of the system are 2 mM ATP in 0.1 M carbonate buffer (pH 11.0), flow rate of 0.18 mL/min, temperature of 35 degrees C, 20 microL of sample injection, and applied voltage of 0.650 V. The proposed biosensing system using lipase, GK, and GPO exhibited a flow-injection analysis peak response of 2.5 min and a detection limit of 5 x 10(-5) M glycerol (S/N = 3) with acceptable reproducibility (CV < 4.30%). It also had linear working ranges from 10(-4) to 10(-2) M for glycerol and from 10(-3) to 10(-2) M for triacylglycerol. The capillary enzyme reactor was stable up to 2 months in continuous operation, and it was possible to analyze up to 15 samples per hour. The present biosensing system holds promise for on-line detection of triacylglycerol in serum and glycerol content in fermented products.  相似文献   

18.
19.
The aim of this study was the investigation of producing cruxrhodopsin as a biomacromolecule with nanofunction from glycerol as carbon source using several process parameters. The optimum medium composition for cruxrhodopsin production was found to contain glycerol 1%, yeast extract 0.05% and K2HPO4 0.001%. The production of cruxrhodopsin in optimal conditions was 139.86 mg/l. In conclusion, halophilic microorganism Haloarcula sp. IRU1 could be a potential microorganism for production of cruxrhodopsin from glycerol in different conditions.  相似文献   

20.
Chemokines are a class of low molecular weight proteins that are involved in leukocytes trafficking. Due to their involvement in recruiting immune cells to sites of inflammation, chemokines, and chemokine receptors have become an attractive class of therapeutic targets. However, when expressed in Escherichia coli chemokines are poorly soluble and accumulate in inclusion bodies. Several purification methods have been described but involve time-consuming refolding, buffer exchange, and purification steps that complicate expression of these proteins. Here, we describe a simple and reliable method to express chemokines as fusions to the protein NusA. The fusion proteins were largely found in the soluble fraction and could be readily purified in a single step. Proteolytic cleavage was used to obtain soluble recombinant chemokines that were found to be very active in a novel in vitro chemotaxis assays. This method could be applied to several alpha and beta human chemokines, suggesting that it is generally applicable to this class of proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号