首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Three crown ether derivatives, 1,2-O-dioleoyl-3-O-{2-[(12-crown-4)methoxy]ethyl}-sn-glycerol (12C4L), 1,2-O-dioleoyl-3-O-{2-[(15-crown-5)methoxy]ethyl}-sn-glycerol (15C5L) and 2,3-naphtho-15-crown-5 (NAP5), have been incorporated into 1-palmitoyl-2-oleoyl-phosphatydilcholine (POPC) liposomes. The size of the crown ether and the lipophilic moiety of 12C4L, 15C5L and NAP5 influence the stability and the properties of the extruded POPC liposomes determined at 25 °C in buffered aqueous solution at pH 7.4. The investigated liposomes are zwitterionic for POPC headgroups but can be turned into cationic aggregates in the presence of divalent cations. The capability of these systems to complex DNA has been demonstrated by SAXS experiments.  相似文献   

2.
Previous investigations have revealed that the boron cluster compound Na2B12H11SH (BSH) is very potent in causing major structural rearrangements of and leakage from phosphatidylcholine liposomes. This somewhat unexpected finding is interesting from a fundamental point of view and may also constitute the basis of future important pharmaceutical/medical applications of BSH. In order to further explore the BSH-lipid interaction, we have studied the effects caused by BSH on dimyristoyl phosphatidylcholine (DMPC) liposomes.Cryo-transmission electron microscopy showed that BSH induces aggregation, membrane rupture and increasing wall thickness of the liposomes. Differential scanning calorimetry revealed a BSH dependent shift of the gel to liquid crystalline phase transition temperature of DMPC. The zeta potential of the liposomes decreases with increasing BSH concentrations, and an apparent dissociation constant of 0.23 mM was found.BSH caused leakage of liposome-encapsulated carboxyfluorescein; leakage was higher at 23 °C (near the phase transition temperature) than at 15 °C and 37 °C. It induced lipid mixing only at very high concentrations.  相似文献   

3.
Cyclodextrin glycosyltransferase (CGTase) from Thermoanaerobacter sp. was covalently immobilized on glutaraldehyde-activated chitosan spheres and used in a packed bed reactor to investigate the continuous production of β-cyclodextrin (β-CD). The optimum temperatures were 75 °C and 85 °C at pH 6.0, respectively for free and immobilized CGTase, and the optimum pH (5.0) was the same for both at 60 °C. In the reactor, the effects of flow rate and substrate concentration in the β-CD production were evaluated. The optimum substrate concentration was 4% (w/v), maximizing the β-CD production (1.32 g/L) in a flow rate of 3 mL/min. In addition, the biocatalyst had good operational stability at 60 °C, maintaining 61% of its initial activity after 100 cycles of batch and 100% after 100 h of continuous use. These results suggest the possibility of using this immobilized biocatalyst in continuous production of CDs.  相似文献   

4.
5.
The cationic large unilamellar mixed liposomes from 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) and didodecyldimethylammonium bromide (DDAB) or dioctadecyldimethylammonium bromide (DODAB) were prepared. The influence of the addition of Triton X-100 (TX-100) or octaethylene glycol mono-n-dodecylether (C12E8) on the membrane integrity was investigated turbidimetrically. The stability of the liposomal systems was estimated by monitoring fluorimetrically at 25 °C the rate of spontaneous and surfactant-induced release of entrapped 5(6)-carboxyfluorescein (CF). In order to evaluate the interaction of the cationic DODAB guest with the host POPC membrane, the main phase transition temperatures (Tm) were determined by electron paramagnetic resonance spectroscopy (EPR). All the results obtained show that the presence of DODAB and DDAB stabilizes the POPC liposomes. The extent of stabilization depends on the concentration and nature of the cationic guest.  相似文献   

6.
Liposomes, capable of temperature-triggered content release at the site of interest, can be of great importance for imaging and therapy of tumors. The delivery of imaging agents or therapeutics can be improved by application of liposomes with a gel-to-liquid phase-transition temperature suitable for mild hyperthermia (41-43 °C), and by prolonging their circulation time by incorporation of lipids containing polyethyleneglycol moieties. Still, the rapid wash out of the delivered material from the tumor tissue is a major obstacle for both imaging and therapy. In this study, we developed an optimized temperature sensitive liposomal system to be used with mild hyperthermia: highly stable at physiological temperature and with a sharp transition of the bilayer at 41.5 °C, with subsequent rapid release of entrapped compounds such as calcein or tumor cell-targeting contrast agents. Intravital microscopy on calcein/rhodamine containing liposomes was applied to demonstrate the applicability of this system in vivo. The calcein loaded liposomes were injected iv into nude mice with a human BLM melanoma tumor implanted in a dorsal skin-fold window chamber. Arrival of the liposomes at the tumor site and content release after temperature increase were monitored. The results demonstrated not only accumulation of the liposomes at the tumor site, but also a massive release of calcein after increase of the temperature to 41 °C. The versatility of the thermosensitive liposomes was further demonstrated by encapsulation of a tumor cell-targeting DOTA-phenylboronate conjugate and its release at elevated temperatures. The DOTA ligand in this system is able to chelate a variety of metals suitable for both diagnostic and therapeutic applications, whereas the phenylboronate function is able to target specifically to tumor cells through a covalent binding with sialic acid moieties over-expressed on their surface upon heat-triggered release from the liposomal carrier.  相似文献   

7.
We are investigating the use of liposomes, which are synthetic, microscopic vesicles, for the intracellular delivery of trehalose into mammalian cells. This study focuses on the effects trehalose-containing liposomes improve the recovery and membrane quality of human RBCs following cryopreservation. Unilamellar liposomes consisting of a lipid bilayer composed of DPPC, PS and cholesterol (60:30:10 mol%) were synthesized using an extrusion method. Liposome-treated RBCs (l-RBCs) were resuspended in either physiological saline, 0.3 M trehalose or liposome solution, then cooled with slow (0.95 ± 0.02 °C/min), medium (73 ± 3 °C/min) and fast (265 ± 12 °C/min) cooling rates and storage in liquid nitrogen, followed by a 37 °C thawing step. RBC post-thaw quality was assessed using percent recovery, RBC morphology, PS and CD47 expression. Liposome treatment did not adversely affect the RBC membrane. Post-thaw recovery of l-RBCs was significantly higher (66% ± 5% vs 29% ± 4%) compared to control RBCs (c-RBC, p = 0.003). Medium and high cooling rates resulted in significantly higher cell recovery compared to a slow cooling rate (p = 0.039 and p = 0.041, respectively). The recovery of l-RBCs frozen in liposome solution and trehalose solution was significantly higher than that of l-RBCs frozen in NaCl solution for all three cooling rates (p = 0.021). Flow cytometry and morphology assessment showed that liposome treatment resulted in improved post-thaw membrane quality. There was no statistically significant difference in the post-thaw recovery between RBCs treated with liposomes containing trehalose in their aqueous core and RBCs treated with liposomes containing saline in their aqueous core (p = 0.114). Liposome treatment significantly improves the recovery and membrane integrity of RBCs following low temperature exposure.  相似文献   

8.
The production of a lipase by a wild-type Brazilian strain of Penicillium simplicissimum in solid-state fermentation of babassu cake, an abundant residue of the oil industry, was studied. The enzyme production reached about 90 U/g in 72 h, with a specific activity of 4.5 U/mg of total proteins. The crude lipase showed high activities at 35–60 °C and pH 4.0–6.0, with a maximum activity at 50 °C and pH 4.0–5.0. Enzyme stability was enhanced at pH 5.0 and 6.0, with a maximum half-life of 5.02 h at 50 °C and pH 5.0. Thus, this lipase shows a thermophilic and thermostable behavior, what is not common among lipases from mesophilic filamentous fungi. The crude enzyme catalysed the hydrolysis of triglycerides and p-nitrophenyl esters (C4:0–C18:0), preferably acting on substrates with medium-chain fatty acids. This non-purified lipase in addition to interesting properties showed a reduced production cost making feasible its applicability in many fields.  相似文献   

9.
10.
Yeast alcohol dehydrogenase (YADH) with its cofactor nicotinamide adenine dinucleotide (NAD+) could be stably encapsulated in liposomes composed of POPC (1-palmitoyl-2-oleoyl-sn-glycero-3- phosphocholine). The YADH- and NAD+-containing liposomes (YADH-NADL) were 100 nm in mean diameter. The liposomal YADH and NAD+ concentrations were 2.3 mg/mL and 3.9 mM, respectively. A synergistic effect of the liposomal encapsulation and the presence of NAD+ was examined on the thermal stability of YADH at 45 and 50 degrees C. The enzyme stability of the YADH-NADL was compared to the stabilities of the liposomal YADH (YADHL) containing 3.3 mg/mL YADH without NAD+ as well as the free YADH with and without NAD+. Free YADH was increasingly deactivated during its incubation at 45 degrees C for 2 h with decrease of the enzyme concentration from 3.3 to 0.01 mg/mL because of the dissociation of tetrameric YADH into its subunits. At that temperature, the coexistence of free NAD+ at 3.9 mM improved the stability of free YADH at 2.3 mg/mL through forming their thermostable complex, although the stabilization effect of NAD+ was lowered at 50 degrees C. The turbidity measurements for the above free YADH solution with and without NAD+ revealed that the change in the enzyme tertiary structure was much more pronounced at 50 degrees C than at 45 degrees C even in the presence of NAD+. This suggests that YADH was readily deactivated in free solution due to a decrease in the inherent affinity of YADH with NAD+. On the other hand, both liposomal enzyme systems, YADH-NADL and YADHL, showed stabilities at both 45 and 50 degrees C much higher than those of the above free enzyme systems, YADH/NAD+ and YADH. These results imply that the liposome membranes stabilized the enzyme tertiary and thus quaternary structures. Furthermore, the enzyme activity of the YADH-NADL showed a stability higher than that of the YADHL with a more remarkable effect of NAD+ at 50 degrees C than at 45 degrees C. This was considered to be because even at 50 degrees C the stabilization effect of lipid membranes on the tertiary and quaternary structures of the liposomal YADH allowed the enzyme to form its thermostable complex with NAD+ in liposomes.  相似文献   

11.
An insect antifreeze protein gene Mpafp698 was cloned by the RT-PCR approach from the desert beetle Microdera punctipennis. The gene was constructed and heterogeneously expressed in Escherichia coli as fusion proteins, His-MpAFP698, glutathione S-transferase (GST)-MpAFP698, and maltose-binding protein (MBP)-MpAFP698. The thermostability and thermal hysteresis activity of these proteins were determined, with the aim of elucidating the biological characteristics of this protein. The approximate thermal hysteresis (TH) value of the purified His-MpAFP698 was 0.37 °C at 0.84 mg/ml, and maintained approximately 95.7% of the TH activity at 100 °C for 5 min. Furthermore, heat incubation showed that MBP-MpAFP698 was 10 °C more thermostable than MBP protein, indicating that MpAFP698 could, to some extent, improve the thermal stability of the fused partner MBP protein. This study suggests that MpAFP698 has a high thermal stability and could be used to improve the thermal stability of the less stable proteins by producing fusion proteins, which could be used for biotechnological purposes.  相似文献   

12.
Dextran is a long chain polymer of d-glucose produced by different bacterial strains including Leuconostoc, Streptococcus and Acetobacter. The bacterial cells from Leuconostoc mesenteroides KIBGE HA1 were immobilized on calcium alginate for dextran production. It was observed that dextran production increases as the temperature increases and after reaching maxima (30 °C) production started to decline. It was also observed that at 50 °C free cells stopped producing dextran, while immobilized cells continued to produce dextran even after 60 °C and still not exhausted. It was found that when 10 g% substrate (sucrose) was used, maximum dextran production was observed. Immobilized cells produced dextran upto 12 days while free cells stopped producing dextran only after 03 days. Molecular mass distribution of dextran produced by immobilized cells is low as compared to free cells.  相似文献   

13.
An enzyme was purified from the pyloric caecum of tambaqui (Colossoma macropomum) through heat treatment, ammonium sulfate fractionation, Sephadex® G-75 and p-aminobenzamidine-agarose affinity chromatography. The enzyme had a molecular mass of 23.9 kDa, NH2-terminal amino acid sequence of IVGGYECKAHSQPHVSLNI and substrate specificity for arginine at P1, efficiently hydrolizing substrates with leucine and lysine at P2 and serine and arginine at P1′. Using the substrate z-FR-MCA, the enzyme exhibited greatest activity at pH 9.0 and 50 °C, whereas, with BAPNA activity was higher in a pH range of 7.5-11.5 and at 70 °C. Moreover, the enzyme maintained ca. 60% of its activity after incubated for 3 h at 60 °C. The enzymatic activity significantly decreased in the presence of TLCK, benzamidine (trypsin inhibitors) and PMSF (serine protease inhibitor). This source of trypsin may be an attractive alternative for the detergent and food industry.  相似文献   

14.
We report on the effects of temperature and pressure on the structure, conformation and phase behavior of aqueous dispersions of the model lipid “raft” mixture palmitoyloleoylphosphatidylcholine (POPC)/bovine brain sphingomyelin (SM)/cholesterol (Chol) (1:1:1). We investigated interchain interactions, hydrogen bonding, conformational and structural properties as well as phase transformations of this system using Fourier transform-infrared (FT-IR) spectroscopy, small-angle X-ray scattering (SAXS), differential scanning calorimetry (DSC) coupled with pressure perturbation calorimetry (PPC), and Laurdan fluorescence spectroscopy. The IR spectral parameters in combination with the scattering patterns from the SAXS measurements were used to detect structural and conformational transformations upon changes of pressure up to 7-9 kbar and temperature in the range from 1 to about 80 °C. The generalized polarization function (GP) values, obtained from the Laurdan fluorescence spectroscopy studies also reveal temperature and pressure dependent phase changes. DSC and PPC were used to detect thermodynamic properties accompanying the temperature-dependent phase changes. In combination with literature fluorescence spectroscopy and microscopy data, a tentative p,T stability diagram of the mixture has been established. The data reveal a broad liquid-order/solid-ordered (lo + so) two-phase coexistence region below 8 ± 2 °C at ambient pressure. With increasing temperature, a lo + ld + so three-phase region is formed, which extends up to ∼27 °C, where a liquid-ordered/liquid-disordered (lo + ld) immiscibility region is formed. Finally, above 48 ± 2 °C, the POPC/SM/Chol (1:1:1) mixture becomes completely fluid-like (liquid-disordered, ld). With increasing pressure, all phase transition lines shift to higher temperatures. Notably, the lo + ld (+so) phase coexistence region, mimicking raft-like lateral phase separation in natural membranes, extends over a rather wide temperature range of about 40 °C, and a pressure range, which extends up to about 2 kbar for T = 37 °C. Interestingly, in this pressure range, ceasing of membrane protein function in natural membrane environments has been observed for a variety of systems.  相似文献   

15.
An optical biosensor based on glutamate dehydrogenase (GLDH) immobilized in a chitosan film for the determination of ammonium in water samples is described. The biosensor film was deposited on a glass slide via a spin-coating method. The ammonium was measured based on β-nicotinamide adenine dinucleotide (NADH) oxidation in the presence of α-ketoglutaric acid at a wavelength of 340 nm. The biosensor showed optimum activity at pH 8. The optimum chitosan concentrations and enzyme loading were found to be at 2% (w/v) and 0.08 mg, respectively. Optimum concentrations of NADH and α-ketoglutaric acid both were obtained at 0.15 mM. A linear response of the biosensor was obtained in the ammonium concentration range of 0.005 to 0.5 mM with a detection limit of 0.005 mM. The reproducibility of the biosensor was good, with an observed relative standard deviation of 5.9% (n = 8). The biosensor was found to be stable for at least 1 month when stored dry at 4 °C.  相似文献   

16.
Surf clam, Mactra veneriformis is one of the crucial fishery resources in Korea. This study was performed to examine the immune functions of the surf clam under the stress of water temperature changes at 10 °C, 20 °C or 30 °C for 24 h. Viable bacterial counts (VBC), total haemocyte count (THC), phagocytic activity, lysozyme activity, NRR times and SOD activity were assessed in three different water temperature groups. Clams held at 10 °C decreased in THC, lysozyme activity and NRR times, but phagocytic activity was increased. The highest temperature (30 °C) significantly increased in THC, whereas it decreased in phagocytic activity, lysozyme activity and NRR times. In clams maintained at 20 °C, phagocytic activity, lysozyme activity and NRR times were increased whereas THC was somewhat decreased with respect to clams held at 30 °C. However, water temperature changes did not elicit any alteration of VBC and SOD activity. The present study demonstrates that acute water temperature change affects the haemocytic and haemolymphatic functions, reducing immunosurveillance in stressed surf clam, M. veneriformis.  相似文献   

17.
We investigated whether diapause pupae of Byasa alcinous exhibit pupal color diphenism (or polyphenism) similar to the diapause pupal color polyphenism shown by Papilio xuthus. All diapause pupae of B. alcinous observed in the field during winter showed pupal coloration of a dark-brown type. When larvae were reared and allowed to reach pupation under short-day conditions at 18 °C under a 60 ± 5% relative humidity, diapause pupae exhibited pupal color types of brown (33%), light-brown (25%), yellowish-brown (21%), diapause light-yellow (14%) and diapause yellow (7%). When mature larvae reared at 18 °C were transferred and allowed to reach pupation at 10 °C and 25 °C under a 60 ± 5% relative humidity after a gut purge, the developmental ratio of brown and light-brown, yellowish-brown, and diapause light-yellow and diapause yellow types was 91.2, 8.8 and 0.0% at 10 °C, and 12.2, 48.8 and 39.0% at 25 °C, respectively. On the other hand, when mature larvae reared at 18 °C were transferred and allowed to reach pupation at 10 °C, 18 °C and 25 °C under an over 90% relative humidity after a gut purge, the developmental ratio of brown and light-brown, yellowish-brown, and diapause light-yellow and diapause yellow types was 79.8, 16.9 and 3.3% at 10 °C, 14.5, 26.9 and 58.6% at 18 °C, and 8.3, 21.2 and 70.5% at 25 °C, respectively. These results indicate that diapause pupae of brown types are induced by lower temperature and humidity conditions, whereas yellow types are induced by higher temperature and humidity conditions. The findings of this study show that diapause pupae of B. alcinous exhibit pupal color diphenism comprising brown and diapause yellow types, and suggest that temperature and humidity experienced after a gut purge are the main factors that affect the diapause pupal coloration of B. alcinous as environmental cues.  相似文献   

18.
Zhao W  Zheng J  Zhou HB 《Bioresource technology》2011,102(16):7538-7547
The mannan endo-1,4-β-mannosidase gene man26A from Aspergillus niger CBS 513.88 was optimized according to the codon usage bias in Pichia pastoris and synthesized by splicing overlap extension PCR. It was successfully expressed in P. pastoris using constitutive expression vector pGAPzαA. The recombinant endo-beta-1,4-mannanase could work in an extremely board temperature range and over 30% relative activity were retained in the temperature range of 5-60 °C. The optimal pH value and temperature for activity were 5.0 and 45 °C, respectively. It was highly thermotolerant with a half-life time of 15 min at 90 °C. A novel fed-batch strategy was developed successfully for high cell-density fermentation and mannanase activity reached 5069 U/mL after cultivation for 56 h in 50 L fermenter. The broad working temperature range, high thermotolerance and efficient expression made this enzyme possible to be applied in food, animal feed and the production of biofuels.  相似文献   

19.
Anyphaena accentuata and Philodromus spp. are cold adapted and winter-active spider species. Their predation activity was investigated at constant temperatures between –4 and 30 °C. The lower temperature threshold for Anyphaena was –3.7 °C, while that of Philodromus was –1.2 °C. At 1 °C the latency to capture and prey consumption was significantly shorter in Anyphaena than in Philodromus. The capture rate increased with temperature and was maximal at 15 °C in Anyphaena and at 30 °C in Philodromus. At 30 °C, the latency to the capture was significantly shorter in Philodromus than in Anyphaena whose mortality significantly increased.  相似文献   

20.
To understand the pressure-adaptation mechanism of deep-sea enzymes, we studied the effects of pressure on the enzyme activity and structural stability of dihydrofolate reductase (DHFR) of the deep-sea bacterium Moritella profunda (mpDHFR) in comparison with those of Escherichia coli (ecDHFR). mpDHFR exhibited optimal enzyme activity at 50 MPa whereas ecDHFR was monotonically inactivated by pressure, suggesting inherent pressure-adaptation mechanisms in mpDHFR. The secondary structure of apo-mpDHFR was stable up to 80 °C, as revealed by circular dichroism spectra. The free energy changes due to pressure and urea unfolding of apo-mpDHFR, determined by fluorescence spectroscopy, were smaller than those of ecDHFR, indicating the unstable structure of mpDHFR against pressure and urea despite the three-dimensional crystal structures of both DHFRs being almost the same. The respective volume changes due to pressure and urea unfolding were − 45 and − 53 ml/mol at 25 °C for mpDHFR, which were smaller (less negative) than the corresponding values of − 77 and − 85 ml/mol for ecDHFR. These volume changes can be ascribed to the difference in internal cavity and surface hydration of each DHFR. From these results, we assume that the native structure of mpDHFR is loosely packed and highly hydrated compared with that of ecDHFR in solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号