首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction between the ATP-dependent evolution of H2 catalyzed by nitrogenase and the oxidation of H2 via a hydrogenase has been postulated to influence the efficiency of the N2-fixing process in nodulated legumes. A comparative study using soybean (Glycine max L. Merr.) cv. Anoka inoculated with either Rhizobium japonicum strain USDA 31 or USDA 110 and cowpea (Vigna unguiculata L. Walp.) cv. Whippoorwill inoculated with Rhizobium strain 176A27 or 176A28 cultured on a N-free medium was conducted to address this question. Nodules from the Anoka cultivar inoculated with USDA 31 evolved H2 in air and the H2 produced accounted for about 30% of the energy transferred to the nitrogenase system during the period of active N2 fixation. In contrast the same soybean cultivar inoculated with USDA 110 produced nodules with an active hydrogenase and consequently did not evolve H2 in air. A comparison of Anoka soybeans inoculated with the two different strains of R. japonicum showed that mean rates of C2H2 reduction and O2 consumption and mean mass of nodules taken at four times during vegetative growth were not significantly different.

When compared to Anoka inoculated with USDA 31, the same cultivar inoculated with USDA 110 showed increases in total dry matter, per cent nitrogen, and total N2 fixed of 24, 7, and 31%, respectively. Cowpeas in symbiosis with the hydrogenase-producing strain 176A28 in comparison with the same cultivar inoculated with the H2-evolving strain 176A27 produced increases in plant dry weight and total N2 fixed of 11 and 15%, respectively. This apparent increase in the efficiency of N2 fixation for nodulated legumes capable of reutilizing the H2 evolved from nitrogenase is considered and it is concluded that provision of conclusive evidence of the role of the H2-recycling process in N2-fixing efficiency of legumes will require comparison of Rhizobium strains that are genetically identical with the exception of the presence of hydrogenase.

  相似文献   

2.
3.
Nif- Hup- mutants of Rhizobium japonicum.   总被引:7,自引:2,他引:5       下载免费PDF全文
Two H2 uptake-negative (Hup-) Rhizobium japonicum mutants were obtained that also lacked symbiotic N2 fixation (acetylene reduction) activity. One of the mutants formed green nodules and was deficient in heme. Hydrogen oxidation activity in this mutant could be restored by the addition of heme plus ATP to crude extracts. Bacteroid extracts from the other mutant strain lacked hydrogenase activity and activity for both of the nitrogenase component proteins. Hup+ revertants of the mutant strains regained both H2 uptake ability and nitrogenase activity.  相似文献   

4.
In order to evaluate energy efficiency of nitrogen fixation by the Lotus corniculatus/Rhizobium loti symbiosis, Uruguayan R. loti strains were tested for hydrogen-uptake (Hup) status. Nodules induced in L. corniculatus by all eight R. loti strains tested evolved high amounts of hydrogen (2.0–8.7 mol H2/h.g nodule fresh weight). This production of hydrogen corresponds to 38–69% of total nitrogenase activity estimated as acetylene reduction, suggesting that hydrogen is not recycled within these nodules. This was confirmed by the lack of hydrogenase activity in bacteroid suspensions. Additionally, no hybridization signals were observed in total DNA restriction digests from these strains when a DNA fragment containing part of hydrogenase structural genes from Rhizobium leguminosarum bv. viciae was used as probe. Cosmid pHU52, containing the complete gene cluster required for hydrogen oxidation in Bradyrhizobium japonicum, was introduced into two R. loti strains. Transconjugants from only one of the strains were able to express hydrogenase activity in vegetative cells incubated under the derepression conditions described for B. japonicum. Bacteroids induced by both transconjugant strains in L. corniculatus and Lotus tenuis expressed hydrogenase activity in nodules. The level of hydrogenase activity induced in L. tenuis nodules was two-fold higher than those induced in L. corniculatus. This implies the existence of a strong host effect on hydrogenase expression in this symbiotic system.  相似文献   

5.
A series of Rhizobium meliloti and Rhizobium trifolii strains were used as inocula for alfalfa and clover, respectively, grown under bacteriologically controlled conditions. Replicate samples of nodules formed by each strain were assayed for rates of H2 evolution in air, rates of H2 evolution under Ar and O2, and rates of C2H2 reduction. Nodules formed by all strains of R. meliloti and R. trifolii on their respective hosts lost at least 17% of the electron flow through nitrogenase as evolved H2. The mean loss from alfalfa nodules formed by 19 R. meliloti strains was 25%, and the mean loss from clover nodules formed by seven R. trifolii strains was 35%. R. meliloti and R. trifolii strains also were cultured under conditions that were previously established for derepression of hydrogenase synthesis. Only strains 102F65 and 102F51 of R. meliloti showed measurable activity under free-living conditions. Bacteroids from nodules formed by the two strains showing hydrogenase activity under free-living conditions also oxidized H2 at low rates. The specific activity of hydrogenase in bacteroids formed by either strain 102F65 or strain 102F51 of R. meliloti was less than 0.1% of the specific activity of the hydrogenase system in bacteroids formed by H2 uptake-positive Rhizobium japonicum USDA 110, which has been investigated previously. R. meliloti and R. trifolii strains tested possessed insufficient hydrogenase to recycle a substantial proportion of the H2 evolved from the nitrogenase reaction in nodules of their hosts. Additional research is needed, therefore, to develop strains of R. meliloti and R. trifolii that possess an adequate H2-recycling system.  相似文献   

6.
Soybean (Glycine max L. cv Williams) seeds were sown in pots containing a 1:1 perlite-vermiculite mixture and grown under greenhouse conditions. Nodules were initiated with a nitrate reductase expressing strain of Rhizobium japonicum, USDA 110, or with nitrate reductase nonexpressing mutants (NR 108, NR 303) derived from USDA 110. Nodules initiated with either type of strain were normal in appearance and demonstrated nitrogenase activity (acetylene reduction). The in vivo nitrate reductase activity of N2-grown nodules initiated with nitrate reductase-negative mutant strains was less than 10% of the activity shown by nodules initiated with the wild-type strain. Regardless of the bacterial strain used for inoculation, the nodule cytosol and the cell-free extracts of the leaves contained both nitrate reductase and nitrite reductase activities. The wild-type bacteroids contained nitrate reductase but not nitrite reductase activity while the bacteroids of strains NR 108 and NR 303 contained neither nitrate reductase nor nitrite reductase activities.

Addition of 20 millimolar KNO3 to bacteroids of the wild-type strain caused a decrease in nitrogenase activity by more than 50%, but the nitrate reductase-negative strains were insensitive to nitrate. The nitrogenase activity of detached nodules initiated with the nitrate reductase-negative mutant strains was less affected by the KNO3 treatment as compared to the wild-type strain; however, the results were less conclusive than those obtained with the isolated bacteroids.

The addition of either KNO3 or KNO2 to detached nodules (wild type) suspended in a semisolid agar nutrient medium caused an inhibition of nitrogenase activity of 50% and 65% as compared to the minus N controls, and provided direct evidence for a localized effect of nitrate and nitrite at the nodule level. Addition of 0.1 millimolar sucrose stimulated nitrogenase activity in the presence or absence of nitrate or nitrite. The sucrose treatment also helped to decrease the level of nitrite accumulated within the nodules.

  相似文献   

7.
Expression of Bradyrhizobium japonicum wild-type strain USDA110 nirK , norC and nosZ denitrification genes in soybean root nodules was studied by in situ histochemical detection of β -galactosidase activity. Similarly, PnirK- lacZ , PnorC- lacZ , and PnosZ- lacZ fusions were also expressed in bacteroids isolated from root nodules. Levels of β -galactosidase activity were similar in both bacteroids and nodule sections from plants that were solely N2-dependent or grown in the presence of 4 m M KNO3. These findings suggest that oxygen, and not nitrate, is the main factor controlling expression of denitrification genes in soybean nodules. In plants not amended with nitrate, B. japonicum mutant strains GRK308, GRC131, and GRZ25, that were altered in the structural nirK , norC and nosZ genes, respectively, showed a wild-type phenotype with regard to nodule number and nodule dry weight as well as plant dry weight and nitrogen content. In the presence of 4 m M KNO3, plants inoculated with either GRK308 or GRC131 showed less nodules, and lower plant dry weight and nitrogen content, relative to those of strains USDA110 and GRZ25. Taken together, the present results revealed that although not essential for nitrogen fixation, mutation of either the structural nirK or norC genes encoding respiratory nitrite reductase and nitric oxide reductase, respectively, confers B. japonicum reduced ability for nodulation in soybean plants grown with nitrate. Furthermore, because nodules formed by each the parental and mutant strains exhibited nitrogenase activity, it is possible that denitrification enzymes play a role in nodule formation rather than in nodule function.  相似文献   

8.
Recombinant cosmids containing a Rhizobium japonicum gene involved in both hydrogenase (Hup) and nitrogenase (Nif) activities were isolated. An R. japonicum gene bank utilizing broad-host-range cosmid pLAFR1 was conjugated into Hup- Nif- R. japonicum strain SR139. Transconjugants containing the nif/hup cosmid were identified by their resistance to tetracycline (Tcr) and ability to grow chemoautotrophically (Aut+) with hydrogen. All Tcr Aut+ transconjugants possessed high levels of H2 uptake activity, as determined amperometrically. Moreover, all Hup+ transconjugants tested possessed the ability to reduce acetylene (Nif+) in soybean nodules. Cosmid DNAs from 19 Hup+ transconjugants were transferred to Escherichia coli by transformation. When the cosmids were restricted with EcoRI, 15 of the 19 cosmids had a restriction pattern with 13.2-, 4.0-, 3.0-, and 2.5-kilobase DNA fragments. Six E. coli transformants containing the nif/hup cosmids were conjugated with strain SR139. All strain SR139 transconjugants were Hup+ Nif+. Moreover, one nif/hup cosmid was transferred to 15 other R. japonicum Hup- mutants. Hup+ transconjugants of six of the Hup- mutants appeared at a frequency of 1.0, whereas the transconjugants of the other nine mutants remained Hup-. These results indicate that the nif/hup gene cosmids contain a gene involved in both nitrogenase and hydrogenase activities and at least one and perhaps other hup genes which are exclusively involved in H2 uptake activity.  相似文献   

9.
10.
Five strains of Bradyrhizobium japonicum (USDA 6, 110, 122, 138, and 143) were screened in cell culture for tolerance to acidity (pH 4.2, 4.4, and 4.6) and Al (0, 3, 4, 5, and 6 mg L–1) under low P conditions. Each strain was later grown in association with seven soybean [Glycine max. (L) Merr.] cultivars which were also screened for tolerance to the same stresses in nutrient culture to determine which soybean-Bradyrhizobium combinations would establish the most effective symbiotic N2 fixing relationships. Results indicated that strains USDA 110 and 6 were more tolerant than USDA 122, 138 and 143 with USDA 110 being the most tolerant. Acidity appeared to be the more severe stress; but even when strains showed tolerance to the stresses, cell numbers were significantly reduced. This suggests that colonization of soils and soybean roots can be adversely affected under similar conditions in the field which may result in reduced nodulation. The strains found to be more tolerant to the stresses were more effective N2 fixers in symbiosis with all soybean cultivars, with USDA 110 being definitely superior. The association between the more tolerant strains and cultivars had the largest nitrogenase activity. Further studies on the inclusion of tolerant Bradyrhizobium strains in inoculum used on tolerant soybean cultivars in the field are warranted.  相似文献   

11.
We previously reported the identification of a soybean plant introduction (PI) genotype, PI 417566, which restricts nodulation by Bradyrhizobium japonicum MN1-1c (USDA 430), strains in serogroup 129, and USDA 110 (P. B. Cregan, H. H. Keyser, and M. J. Sadowsky, Appl. Environ. Microbiol. 55:2532-2536, 1989, and Crop Sci. 29:307-312, 1989). In this study, we further characterized nodulation restriction by PI 417566. Twenty-four serogroup 110 isolates were tested for restricted nodulation on PI 417566. Of the 24 strains examined, 62.5% were restricted in nodulation by the PI genotype. The remainder of the serogroup 110 strains tested (37.5%), however, formed significant numbers of nodules on PI 417566, suggesting that host-controlled restriction of nodulation by members of serogroup 110 is strain dependent. Analysis of allelic variation at seven enzyme-encoding loci by multilocus enzyme electrophoresis indicated that the serogroup 110 isolates can be divided into two major groups. The majority of serogroup 110 isolates which nodulated PI 417566 belonged to the same multilocus enzyme electrophoresis group. B. japonicum USDA 110 and USDA 123 were used as coinoculants in competition-for-nodulation studies using PI 417566. Over 98% of the nodules formed on PI 417566 contained USDA 123, whereas less than 2% contained USDA 110. We also report the isolation of a Tn5 mutant of USDA 110 which has overcome nodulation restriction conditioned by PI 417566. This mutant, D4.2-5, contained a single Tn5 insertion and nodulated PI 417566 to an extent equal to that seen with the unrestricted strain USDA 123. The host range of D4.2-5 on soybean plants and other legumes was unchanged relative to that of USDA 110, except that the mutant nodulated Glycine max cv. Hill more efficiently. While strain USDA 110 has the ability to block nodulation by D4.2-5 on PI 417566, the nodulation-blocking phenomenon was not seen unless strain USDA 110 was inoculated at a 100-fold greater concentration than the mutant strain.  相似文献   

12.
Twenty naturally occurring strains of Bradyrhizobium japonicum in 11 serogroups were screened for the ability to take up Mo as bacteroids from soybean root nodules. The strains varied greatly in their ability to take up Mo in a 1-min period. The best strain was USDA 136, which had an Mo uptake activity of almost 3.0 pmol/min per mg of bacteroid (dry weight). In contrast, the poorest strain, USDA 62, had an Mo uptake activity of 0.35 pmol of Mo per min per mg of bacteroid. There were similarities in Mo uptake ability among most of the same serogroup members. The variability in Mo uptake rates between the best (USDA 136 and USDA 122) and poorest (USDA 62 and USDA 140) strains was attributed to their differing affinities for Mo. Double-reciprocal plots of velocity versus substrate indicated a Km for USDA 136 and USDA 122 of 0.045 and 0.054 microM, respectively, whereas strains USDA 62 and USDA 140 both exhibited an apparent Km for MoO42- of about 0.36 microM. The two strains with the higher-affinity Mo binding also accumulated four to five times as much Mo over a 30-min period as the other strains. Soybeans were grown in Mo-deficient and Mo-supplemented conditions after inoculation with the three top-ranking Mo uptake strains and the three poorest Mo uptake strains. Two separate greenhouse studies indicated that Mo supplementation significantly increased the N2 fixation activity of USDA 140 nodules; up to a 35% increase in specific nitrogen fixation activity of nodules due to Mo supplementation was observed. Strain USDA 62 nodule N2 fixation responded positively to Mo supplementation in one of the two experiments. The results indicate that MoO42- transport and, specifically, affinity for Mo by the bacteroid may ultimately affect symbiotic N2 fixation activity. Attempts to reactivate nitrogenase by adding molybdate to bacteroids from plants grown in Mo-deficient conditions were unsuccessful.  相似文献   

13.
Although Rhizobium japonicum nodulates Vigna unguiculata and Macroptilium atropurpurem, little is known about the physiology of these symbioses. In this study, strains of R. japonicum of varying effectiveness on soybean were examined. The nonhomologous hosts were nodulated by all the strains tested, but effectiveness was not related to that of the homologous host. On siratro, compared to soybean, many strains reversed their relative effectiveness ranking. Both siratro and cowpea produced more dry matter with standard cowpea rhizobia CB756 and 176A22 than with the strains of R. japonicum. Strains USDA33 and USDA74 were more effective with siratro and cowpea than with soybean. The strain USDA122 expressed high rates of hydrogenase activity in symbiosis with the cowpea as well as the soybean host. The strains USDA61 and USDA74 expressed low levels of hydrogenase activity in symbiosis with cowpea, but no activity was found with soybean. Our results indicate host influence for the expression of hydrogenase activity, and suggest the possibility of host influence of nitrogenase for the allocation of electrons to N2 and H+.  相似文献   

14.
The role of uptake hydrogenase was studied in Rhizobium leguminosarum bacteroids from the nodules of Pisum sativum L. cv. Homesteader. Uptake hydrogenase activity, measured by the 3H2 uptake method, was dependent on O-consumption and was similar to H2 uptake measured by gas chromatography. Km for O2 of 0.0007 atm (0.0709 kPa) and a Km for H2 of 0.0074 atm (0.7498, kPa) were determined. H2 increased the rate of endogenous respiration by isolates with uptake hydrogenase (Hup+) but had no effect on an isolate lacking uptake hydrogenase (Hup-). A survey of 14 Hup+ isolates indicated a wide range of H2 uptake activities. Four of the isolates tested had activities similar to or higher than those found in two Hup+ Rhizobium japonicum strains. H2 uptake was strongly coupled to ATP formation in only 5 of the 14 isolates. H2 increased the optimal O2 level of C2H2 reduction by 0.01 atm and permitted enhanced C2H2 reduction at O2 levels above the optimum in both a coupled and an uncoupled isolate. At suboptimal O2 concentrations a small enhancement of C2H2 reduction by H2 was seen in two out of three isolates in which H2 oxidation was coupled to ATP formation. Thus, the main function of uptake hydrogenase in R. leguminosarum appears to be in the protection of nitrogenase from O2 damage.  相似文献   

15.
Rates of respiratory CO2 loss and nitrogenase activities of H2 uptake-negative mutant strains and H2 uptake-positive revertant strains of Rhizobium japonicum have been investigated. Two-dimensional gel protein patterns of bacteroids formed by inoculation of soybeans (Glycine max L.) with these two strains show that they are closely related and revealed only one obvious difference between them. On the basis of molecular weight standards, it was concluded that the missing protein spot in the H2 uptake-negative mutant strain could be caused by a failure of the mutant to synthesize hydrogenase. Nodules formed by the H2 uptake-negative mutant strain evolved respiratory CO2 at a rate of about 10% higher than that of nodules formed by the H2 uptake-positive revertant strain. During short-term experiments employed, rates of both C2H2 reduction and 15N2 fixation varied considerably among replicate samples and no statistically significant differences between mutant and revertant strains were observed. It was observed that increasing the partial pressure of O2 over nodules significantly decreased the proportion of nitrogenase electrons allocated to H+.  相似文献   

16.
Ineffective and non-nodulating mutant strains of Rhizobium japonicum.   总被引:27,自引:17,他引:10       下载免费PDF全文
Mutant strains of Rhizobium japonicum that were unable to allow the Corsoy cultivar of soybean to reduce acetylene or fix N2 were isolated. These strains grow as well as the wild type in a variety of media. Mutant strains SM1 and SM2 did not form nodules on the host plant; however, they reduced acetylene in the nonsymbiotic assay. Strains SM3 and SM4 produced nodules that did not have the characteristic pink pigment caused by leghemoglobin. The nodules formed by these strains also were small. One mutant strain, SM5, produced large pink nodules. The lesion in this strain seems to be in the gene that specifies nitrogenase component II.  相似文献   

17.
The effect of genetic factors in Rhizobium on host plant biomass production and on the carbon costs of N2 fixation in pea root nodules was studied. Nine strains of Rhizobium leguminosarum were constructed, each containing one of three symbiotic plasmids in combination with one of three different genomic backgrounds. The resulting strains were tested in symbiosis with plants of Pisum sativum using a flow-through apparatus in which nodule nitrogenase activity and respiration were measured simultaneously under steady state conditions. Nodules formed by strains containing the background of JI6015 had the lowest carbon costs of N2 fixation (7.10–8.10 μmol C/μmol N2), but shoot dry weight of those plants was also smaller than that of plants nodulated by strains with the background of B151 or JI8400. Nodules formed by these two strain types had carbon costs of N2 fixation varying between 11.26 and 13.95 μmol C/μmol N2. The effect of symbiotic plasmids on the carbon costs was relatively small. A time-course experiment demonstrated that nodules formed by a strain derived from JI6015 were delayed in the onset of nitrogenase activity and had a lower rate of activity compared to nodules induced by a strain with the background of B151. The relationship between nitrogenase activity, carbon costs of N2 fixation and host plant biomass production is discussed.  相似文献   

18.
A method was devised that allows measurement in vivo of hydrogenase-catalysed H2 evolution from the cyanobacterium Anabaena cylindrica, independent of nitrogenase activity, which is also present. Addition of low concentrations of reduced Methyl Viologen (1-10mM) to intact heterocystous filaments of the organism resulted in H2 evolution, but produced conditions giving total inhibition of nitrogenase (acetylene-reducing and H2-evolving) activity. That the H2 formed under these conditions was not contributed to by nitrogenase was also supported by the observation that its rate of formation was similar in the dark or with Ar replaced by N2 in the gas phase, and also in view of the pattern of H2 evolution at very low Methyl Viologen concentrations. Conclusive evidence that the H2 formed in the presence of Methyl Viologen was solely hydrogenase-mediated was its evolution even from nitrogenase-free (non-heterocystous) cultures; by contrast 'uptake' hydrogenase activity in such cultures was greatly decreased. The hydrogenase activity was inhibited by CO and little affected by acetylene. Finally the hydrogenase activity was shown to be relatively constant at different stages during the batch growth of the organism, as opposed to nitrogenase activity, which varied.  相似文献   

19.
The effect of host plant cultivar on H2 evolution by root nodules was examined in symbioses between Pisum sativum L. and selected strains of Rhizobium leguminosarum. Hydrogen evolution from root nodules containing Rhizobium represents the sum of H2 produced by the nitrogenase enzyme complex and H2 oxidized by any uptake hydrogenase present in those bacterial cells. Relative efficiency (RE) calculated as RE = 1 − (H2 evolved in air/C2 H2 reduced) did not vary significantly among `Feltham First,' `Alaska,' and `JI1205' peas inoculated with R. leguminosarum strain 300, which lacks uptake hydrogenase activity (Hup). That observation suggests that the three host cultivars had no effect on H2 production by nitrogenase. However, RE of strain 128C53 was significantly (P ≤ 0.05) greater in symbiosis with cultivar JI1205 than in root nodules of Feltham First. At a similar rate of C2H2 reduction on a whole-plant basis, nearly 24 times more H2 was evolved from the Feltham First/128C53 symbiosis than from the JI1205/128C53 association. Root nodules from the Alaska/128C53 symbiosis had an intermediate RE over the entire study period, which extended from 21 to 36 days after planting. Direct assays of uptake hydrogenase by two methods showed significant (P ≤ 0.05) host cultivar effects on H2 uptake capacity of both strain 128C53 and the genetically related strain 3960. The 3H2 incorporation assay showed that strains 128C53 and 3960 in symbiosis with Feltham First had about 10% of the uptake hydrogenase activity measured in root nodules of Alaska or JI1205. These data are the first demonstration of significant host plant effects on rhizobial uptake hydrogenase in a single plant species.  相似文献   

20.
H2 uptake and H2-supported O2 uptake were measured in N2-fixing cultures of Frankia strain ArI3 isolated from root nodules of Alnus rubra. H2 uptake by intact cells was O2 dependent and maximum rates were observed at ambient O2 concentrations. No hydrogenase activity could be detected in NH4+-grown, undifferentiated filaments cultured aerobically indicating that uptake hydrogenase activity was associated with the vesicles, the cellular site of nitrogen fixation in Frankia. Hydrogenase activity was inhibited by acetylene but inhibition could be alleviated by pretreatment with H2. H2 stimulated acetylene reduction at supraoptimal but not suboptimal O2 concentrations. These results suggest that uptake hydrogenase activity in ArI3 may play a role in O2 protection of nitrogenase, especially under conditions of carbon limitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号