首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A major insight that has emerged in the study of haustoria-forming plant pathogens over the last few years is that these eukaryotic biotrophs deliver suites of secreted proteins into host cells during infection. This insight has largely derived from successful efforts to identify avirulence (Avr) genes and their products from these pathogens. These Avr genes, identified from a rust and a powdery mildew fungus and three oomycete species, encode small proteins that are recognized by resistance proteins in the host plant cytoplasm, suggesting that they are transported inside plant cells during infection. These Avr proteins probably represent examples of fungal and oomycete effector proteins with important roles in subverting host cell biology during infection. In this respect, they represent a new opportunity to understand the basis of disease caused by these biotrophic pathogens. Elucidating how these pathogen proteins gain entry into plant cells and their biological function will be key questions for future research.  相似文献   

2.
This paper examines the molecular machinery involved in membrane exchange within the plant endomembrane system. A study has been undertaken on beta-COP-like proteins in plant cells using M3A5, an antibody raised against the conserved sequence of mammalian beta-COP proteins. In mammalian cells, beta-COP proteins are part of a complex named the coatomer, which probably recruits some specific areas of the endomembrane system. Immunofluorescence analyses by confocal laser scanning microscopy showed that beta-COP-like proteins marked predominantly the plant Golgi apparatus. Other proteins known to be part of a potential machinery for COPI vesicle formation (gamma-COP, beta'-COP and Arf1 proteins) were immunolocalized on the same membraneous structures as beta-COP. Moreover, beta-COP and other COPI antibodies stained the cell plate in dividing cells. It is further shown that, in maize root cells, and in contrast to observations upon mammalian cells, the drug Brefeldin A (BFA) does not induce the release of beta-COP and Arf1 proteins from the Golgi membrane into the cytosol. These data clearly demonstrate that the antibody M3A5 is a valuable marker for studies on trafficking events in plant cells. They also report for the first time the location of COP components in plant tissue at the light level, especially on a model well known for secretion, i.e. the maize root cells. They also suggest that the membrane recruitment machinery may function in a plant-specific way.  相似文献   

3.
4.
The root knot nematode, Meloidogyne incognita, is an obligate parasite that causes significant damage to a broad range of host plants. Infection is associated with secretion of proteins surrounded by proliferating cells. Many parasites are known to secrete effectors that interfere with plant innate immunity, enabling infection to occur; they can also release pathogen-associated molecular patterns (PAMPs, e.g., flagellin) that trigger basal immunity through the nematode stylet into the plant cell. This leads to suppression of innate immunity and reprogramming of plant cells to form a feeding structure containing multinucleate giant cells. Effectors have generally been discovered using genetics or bioinformatics, but M. incognita is non-sexual and its genome sequence has not yet been reported. To partially overcome these limitations, we have used mass spectrometry to directly identify 486 proteins secreted by M. incognita. These proteins contain at least segmental sequence identity to those found in our 3 reference databases (published nematode proteins; unpublished M. incognita ESTs; published plant proteins). Several secreted proteins are homologous to plant proteins, which they may mimic, and they contain domains that suggest known effector functions (e.g., regulating the plant cell cycle or growth). Others have regulatory domains that could reprogram cells. Using in situ hybridization we observed that most secreted proteins were produced by the subventral glands, but we found that phasmids also secreted proteins. We annotated the functions of the secreted proteins and classified them according to roles they may play in the development of root knot disease. Our results show that parasite secretomes can be partially characterized without cognate genomic DNA sequence. We observed that the M. incognita secretome overlaps the reported secretome of mammalian parasitic nematodes (e.g., Brugia malayi), suggesting a common parasitic behavior and a possible conservation of function between metazoan parasites of plants and animals.  相似文献   

5.
Epitope tagging provides a useful tool for immunological detection and cellular localization of proteins in vivo. Using T-DNA-mediated transformation, the detection of epitope-tagged proteins in planta is currently feasible only in transgenic plants, because an artificial expression of cDNA and gene constructs driven by plant promoters in bacteria obscures an early detection of epitope-tagged proteins in Agrobacterium-infected plant cells. We have developed a method for labelling plant coding sequences with intron-tagged epitope-coding domains that are not processed in Agrobacterium. Here we show that the expression of HA-epitope-tagged constructs encoding beta-glucuronidase and S-phase kinase-associated (AtSKP1/ASK1) proteins can be specifically and exclusively detected in cultured Arabidopsis cells as early as five days after Agrobacterium infection. This epitope-tagging approach offers an unlimited source of transformed material for purification and localization of proteins expressed individually or simultaneously in Agrobacterium-transformed plant cells.  相似文献   

6.
Secreted proteins are central to the success of plant pathogenic bacteria. They are used by plant pathogens to adhere to and degrade plant cell walls, to suppress plant defence responses, and to deliver bacterial DNA and proteins into the cytoplasm of plant cells. However, experimental investigations into the identity and role of secreted proteins in plant pathogenesis have been hindered by the fact that many of these proteins are only expressed or secreted in planta, that knockout mutations of individual proteins frequently have little or no obvious phenotype, and that some obligate and fastidious plant pathogens remain recalcitrant to genetic manipulation. The availability of genome sequence data for a large number of agriculturally and scientifically important plant pathogens enables us to predict and compare the complete secretomes of these bacteria. In this paper we outline strategies that are currently being used to identify secretion systems and secreted proteins in Proteobacterial plant pathogens and discuss the implications of these analyses for future investigations into the molecular mechanisms of plant pathogenesis.  相似文献   

7.
The bacterial plant pathogen Pseudomonas syringae injects effector proteins into plant cells via a type III secretion system (T3SS), which is required for pathogenesis. The protein HrpJ is secreted by P. syringae and is required for a fully functional T3SS. A hrpJ mutant is non-pathogenic and cannot inject effectors into plant cells or secrete the harpin HrpZ1. Here we show that the hrpJ mutant also cannot secrete the harpins HrpW1 and HopAK1 or the translocator HrpK1, suggesting that these proteins are required in the translocation (injection) of effectors into plant cells. Complementation of the hrpJ mutant with secretion incompetent HrpJ derivatives restores the secretion of HrpZ1 and HrpW1 and the ability to elicit a hypersensitive response, a measure of translocation. However, growth in planta and disease symptom production is only partially restored, suggesting that secreted HrpJ may have a direct role in virulence. Transgenic Arabidopsis plants expressing HrpJ-HA complemented the virulence phenotype of the hrpJ mutant expressing a secretion incompetent HrpJ derivative and were reduced in their immune responses. Collectively, these data indicate that HrpJ has a dual role in P. syringae: inside bacterial cells HrpJ controls the secretion of translocator proteins and inside plant cells it suppresses plant immunity.  相似文献   

8.
Cytoskeleton and plant organogenesis   总被引:4,自引:0,他引:4  
The functions of microtubules and actin filaments during various processes that are essential for the growth, reproduction and survival of single plant cells have been well characterized. A large number of plant structural cytoskeletal or cytoskeleton-associated proteins, as well as genes encoding such proteins, have been identified. Although many of these genes and proteins have been partially characterized with respect to their functions, a coherent picture of how they interact to execute cytoskeletal functions in plant cells has yet to emerge. Cytoskeleton-controlled cellular processes are expected to play crucial roles during plant cell differentiation and organogenesis, but what exactly these roles are has only been investigated in a limited number of studies in the whole plant context. The intent of this review is to discuss the results of these studies in the light of what is known about the cellular functions of the plant cytoskeleton, and about the proteins and genes that are required for them. Directions are outlined for future work to advance our understanding of how the cytoskeleton contributes to plant organogenesis and development.  相似文献   

9.
Pseudomonas syringae pv. tomato strain DC3000 is a pathogen of tomato and Arabidopsis: The hrp-hrc-encoded type III secretion system (TTSS), which injects bacterial effector proteins (primarily called Hop or Avr proteins) into plant cells, is required for pathogenicity. In addition to being regulated by the HrpL alternative sigma factor, most avr or hop genes encode proteins with N termini that have several characteristic features, including (i) a high percentage of Ser residues, (ii) an aliphatic amino acid (Ile, Leu, or Val) or Pro at the third or fourth position, and (iii) a lack of negatively charged amino acids within the first 12 residues. Here, the well-studied effector AvrPto was used to optimize a calmodulin-dependent adenylate cyclase (Cya) reporter system for Hrp-mediated translocation of P. syringae TTSS effectors into plant cells. This system includes a cloned P. syringae hrp gene cluster and the model plant Nicotiana benthamiana. Analyses of truncated AvrPto proteins fused to Cya revealed that the N-terminal 16 amino acids and/or codons of AvrPto are sufficient to direct weak translocation into plant cells and that longer N-terminal fragments direct progressively stronger translocation. AvrB, tested because it is poorly secreted in cultures by the P. syringae Hrp system, was translocated into plant cells as effectively as AvrPto. The translocation of several DC3000 candidate Hop proteins was also examined by using Cya as a reporter, which led to identification of three new intact Hop proteins, designated HopPtoQ, HopPtoT1, and HopPtoV, as well as two truncated Hop proteins encoded by the naturally disrupted genes hopPtoS4::tnpA and hopPtoAG::tnpA. We also confirmed that HopPtoK, HopPtoC, and AvrPphE(Pto) are translocated into plant cells. These results increased the number of Hrp system-secreted proteins in DC3000 to 40. Although most of the newly identified Hop proteins possess N termini that have the same features as the N termini of previously described Hop proteins, HopPtoV has none of these characteristics. Our results indicate that Cya should be a useful reporter for exploring multiple aspects of the Hrp system in P. syringae.  相似文献   

10.
Isolation of nuclear shells from plant cells   总被引:1,自引:0,他引:1  
Abstract. Nuclei from Zea mays and Phaseolus vulgaris root meristematic and differentiated cells were treated according to a recently developed simple procedure for isolation of nuclear lamina of Ehrlich Ascite Tumor (EAT) cells. As revealed by electron microscopy, the residual structures obtained represented empty nuclear shells, resembling those previously isolated from animal cells. Moreover, the composition of the residual nuclear structures from plant cells was found to be very similar to that described previously for the nuclear lamina purified by the adopted procedure. As demonstrated by SDS-polyacrylamide gel electrophoresis, the plant nuclear shells contained a small number of proteins in the 65-45 kD range. Two proteins — 62 and 50 kD—were most characteristic for beans, while a 55-kD protein was abundant in maize. When blotted on nitrocellulose paper, some of the proteins of plant nuclear shells were immunoreactive with sera containing antibodies against the proteins of EAT nuclear envelopes. The degree of phosphorylation of the proteins of plant nuclear shells was found to be higher in meristematic than in differentiated maize root cells, correlating with the mitotic activity of the starting material.  相似文献   

11.
Phytopathogenic bacteria use the type-III secretion system (TTSS) to inject effector proteins into plant cells, presumably to colonize their hosts. The function of these proteins inside plant cells has remained a mystery for years. The recent discovery that the effectors XopD, AvrXv4, AvrPphB, and AvrRpt2 have cysteine protease functions reveals that the proteolysis of host substrates is an important strategy employed by pathogens to alter plant physiology. Moreover, the characterization of these proteases and their targets provides new insight to mechanisms of bacterial virulence and the activation of plant immunity.  相似文献   

12.
The product of the retinoblastoma susceptibility gene (Rb) controls the passage of mammalian cells through G1 phase. Animal virus oncoproteins interact with the Rb protein via an LXCXE motif and disrupt Rb-E2F complexes, driving cells into S-phase. Recently, we found that the RepA protein of a plant geminivirus contains an LXCXE motif that is essential for its function, a finding that predicts the existence of Rb-related proteins in plant cells. Here we report the isolation of a maize cDNA clone encoding a protein (ZmRb1) which, based on structural and functional studies, is closely related to the mammalian Rb family of growth regulatory proteins. ZmRb1 shows a high degree of amino acid conservation when compared with animal Rb members, particularly in the A/B 'pocket' domain, but ZmRb1 has a shorter N-terminal domain. ZmRb1 forms stable complexes with plant LXCXE-containing proteins, e.g. geminivirus RepA protein. Geminivirus DNA replication is reduced in plant cells transfected with plasmids encoding either ZmRb1 or human p130, a member of the Rb family. This suggests that ZmRb1 controls the G1/S transit in plant cells and is consistent with the fact that geminiviruses need an S-phase environment for DNA replication, as animal DNA tumor viruses do. Our results allow the extension of the Rb family of tumor suppressor proteins to plants and have implications on animal and plant strategies for cell growth control.  相似文献   

13.
Production of recombinant proteins in suspension cultures of genetically modified plant cells is a promising and rapidly developing area of plant biotechnology. In the present review article, advantages related to using plant systems for expression of recombinant proteins are considered. Here, the main focus is covering the literature on optimization of cultivation conditions of suspension-cultured plant cells to obtain a maximal yield of target proteins. In particular, certain examples of successful use of such cells to produce pharmaceuticals were described.  相似文献   

14.
In receptor-mediated sorting of soluble protein ligands in the endomembrane system of eukaryotic cells, three completely different receptor proteins for mammalian (mannose 6-phosphate receptor), yeast (Vps10p) and plant cells (vacuolar sorting receptor; VSR) have in common the features of pH-dependent ligand binding and receptor recycling. In striking contrast, the plant receptor homology-transmembrane-RING-H2 (RMR) proteins serve as sorting receptors to a separate type of vacuole, the protein storage vacuole, but do not recycle, and their trafficking pathway results in their internalization into the destination vacuole. Even though plant RMR proteins share high sequence similarity with the best-characterized mammalian PA-TM-RING family proteins, these two families of proteins appear to play distinctly different roles in plant and animal cells. Thus, this minireview focuses on this unique sorting mechanism and traffic of RMR proteins via dense vesicles in various plant cell types.  相似文献   

15.
In mammals and yeast, a cytosolic dilysine motif is critical for endoplasmic reticulum (ER) localization of type I membrane proteins. Retrograde transport of type I membrane proteins containing dilysine motifs at their cytoplasmic carboxy (C)-terminal tail involves the interaction of these motifs with the COPI coat. The C-terminal dilysine motif has also been shown to confer ER localization to type I membrane proteins in plant cells. Using in vitro binding assays, we have analyzed sorting motifs in the cytosolic tail of membrane proteins, which may be involved in the interaction with components of the COPI coat in plant cells. We show that a dilysine motif in the -3,-4 position (relative to the cytosolic C-terminus) recruits in a very specific manner all the subunits of the plant coatomer complex. Lysines cannot be replaced by arginines or histidines to bind plant coatomer. A diphenylalanine motif in the -7,-8 position, which by itself has a low ability to bind plant coatomer, shows a clear cooperativity with the dilysine motif. Both dilysine and diphenylalanine motifs are present in the cytosolic tail of several proteins of the p24 family of putative cargo receptors, which has several members in plant cells. The cytosolic tail of a plant p24 protein is shown to recruit not only coatomer but also ADP ribosylation factor 1 (ARF1), a process which depends on both dilysine and diphenylalanine motifs. ARF1 binding increases twofold upon treatment with brefeldin A (BFA) and is completely abolished upon treatment with GTPgammaS, suggesting that ARF1 can only interact with the cytosolic tail of p24 proteins in its GDP-bound form.  相似文献   

16.
脱水素在植物低温胁迫响应中的作用   总被引:1,自引:0,他引:1  
脱水素(dehydrin)是一类胚胎发育后期丰富蛋白(LEA.late embryogenesis abundant proteins),含有富含赖氨酸的K片段,属于具有高度热稳定性的亲水性蛋白,在植物脱水条件下能保护细胞内蛋白质和膜结构免受破坏.低温胁迫下,耐低温植物细胞内部会发生一系列的生理生化反应来抵御低温所造成的伤害.很多研究表明植物脱水素的表达和积累与多种双子叶植物(包括草本和木本植物)以及冬季栽培的禾本科植物品种(特别是小麦和大麦)的耐低温能力密切相关.本文对近年来国内外关于脱水素的结构、功能以及内源ABA(abscisie acid)含量、拟南芥CBF(C-repeat binding factor)同源转录激活因子、春化基因、光周期信号等对脱水素基因的表达调控机制进行综述.  相似文献   

17.
Song D  Xi W  Shen J  Bi T  Li L 《Plant molecular biology》2011,76(1-2):97-115
The constituents of plasma membrane proteins, particularly the integral membrane proteins, are closely associated with the differentiation of plant cells. Secondary vascular differentiation, which gives rise to the increase in plant stem diameter, is the key process by which the volume of the plant body grows. However, little is known about the plasma membrane proteins that specifically function in the vascular differentiation process. Proteomic analysis of the membrane proteins in poplar differentiating secondary vascular tissues led to the identification 226 integral proteins in differentiating xylem and phloem tissues. A majority of the integral proteins identified were receptors (55 proteins), transporters (34 proteins), cell wall formation related (27 proteins) or intracellular trafficking (17 proteins) proteins. Gene expression analysis in developing vascular cells further demonstrated that cambium differentiation involves the expression of a group of receptor kinases which mediate an array of signaling pathways during secondary vascular differentiation. This paper provides an outline of the protein composition of the plasma membrane in differentiating secondary vascular tissues and sheds light on the role of receptor kinases during secondary vascular development.  相似文献   

18.
19.
The monoclonal antibody (anti-IFA) raised (Pruss et al., 1981, Cell 27:419-428) against an intermediate filament antigen, which is widespread throughout phylogeny, has been shown here to cross-react with higher plants. On immunoblotting, anti-IFA cross-reacted with proteins in homogenates of carrot suspension cells and of meristematic cells from onion root tips. A 50-kD cross-reactive protein was enriched in a fraction that consisted of detergent-insoluble bundles of 7-nm fibrils from carrot protoplasts (Powell et al., 1982, J. Cell Sci. 56:319-335). By use of indirect immunofluorescence, anti-IFA stained formaldehyde-fixed onion meristematic cells and carrot protoplasts in patterns approximating those obtained with monoclonal anti-tubulins. That anti-IFA was not recognizing plant tubulins was established by use of immunoblots of two-dimensional gels on which the proteins that comprised isolated fibrillar bundles and taxol-purified carrot tubulins had been separated. The two groups of proteins had different positional coordinates: anti-IFA recognized the fibrillar bundle proteins, and anti-tubulins recognized plant microtubule proteins with no cross-reaction to the heterologous proteins. Likewise, formaldehyde-fixed taxol microtubules from carrot cells could be stained with anti-tubulin but not with anti-IFA. It is concluded that an epitope common to intermediate filaments from animals co-distributes with microtubules in higher plant cells.  相似文献   

20.
Nuclear proteins are involved in many critical biological processes within plant cells and, therefore, are in the focus of studies that usually begin with demonstrating that the protein of interest indeed exhibits nuclear localization. Thus, studies of plant nuclear proteins would be facilitated by a convenient experimental system for identification of proteins that are actively imported into the cell nucleus and visualization of their nuclear accumulation in vivo. To this end, we developed a system of vectors that allows screening for cDNAs coding for nuclear proteins in a simple genetic assay in yeast cells, and verification of nuclear accumulation in planta following one-step transfer and autofluorescent tagging of the identified clones into a multiple cloning site-compatible and reading frame-compatible plant expression vector. In a recommended third experimental step, the plant expression cassette containing the identified clone can be transferred, also by a one-step cloning, into a binary multigene expression vector for transient or stable coexpression with any other proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号