首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A glycogen synthase phosphatase was purified from the yeast Saccharomyces cerevisiae. The purified yeast phosphatase displayed one major protein band which coincided with phosphatase activity on nondenaturing polyacrylamide gel electrophoresis. This phosphatase had a molecular mass of about 160,000 Da determined by gel filtration and was comprised of three subunits, termed A, B, and C. The subunit molecular weights estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis were 60,000 (A), 53,000 (B), and 37,000 (C), indicating that this yeast glycogen synthase phosphatase is a heterotrimer. On ethanol treatment, the enzyme was dissociated to an active species with a molecular weight of 37,000 estimated by gel filtration. The yeast phosphatase dephosphorylated yeast glycogen synthase, rabbit muscle glycogen phosphorylase, casein, and the alpha subunit of rabbit muscle phosphorylase kinase, was not sensitive to heat-stable protein phosphatase inhibitor 2, and was inhibited 90% by 1 nM okadaic acid. Dephosphorylation of glycogen synthase, phosphorylase, and phosphorylase kinase by this yeast enzyme could be stimulated by histone H1 and polylysines. Divalent cations (Mg2+ and Ca2+) and chelators (EDTA and EGTA) had no effect on dephosphorylation of glycogen synthase or phosphorylase while Mn2+ stimulated enzyme activity by approximately 50%. The specific activity and kinetics for phosphorylase resembled those of mammalian phosphatase 2A. An antibody against a synthetic peptide corresponding to the carboxyl terminus of the catalytic subunit of rabbit skeletal muscle protein phosphatase 2A reacted with subunit C of purified yeast phosphatase on immunoblots, whereas the analogous peptide antibody against phosphatase 1 did not. These data show that this yeast glycogen synthase phosphatase has structural and catalytic similarity to protein phosphatase 2A found in mammalian tissues.  相似文献   

2.
The phosphorylase phosphatase activity of the holoenzyme form of phosphatase 2A isolated from extracts of porcine renal cortex or bovine heart was stimulated 600% and 500%, respectively, by the addition of histone H1. After conversion of the phosphatase to the catalytic subunit form by treatment with ethanol at room temperature, histone H1 stimulated activity by about 150% only. Purification of the catalytic subunit from porcine renal cortex yielded two forms of the enzyme which were separated by heparin-Sepharose chromatography. These forms were designated peak 1 and peak 2 according to their order of elution from the column. Peak 1 catalytic subunit was stimulated by more than 400% by histone H1, whereas peak 2 was stimulated by about 50% only. Based on polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, peak 2 had a slightly higher Mr value than peak 1 (35,500 vs. 35,000). Incubation of the peak 2 phosphatase with trypsin converted it to a form that was similar to peak 1 with respect to Mr and stimulation by histone H1. When the catalytic subunit of phosphatase 2A was purified from bovine heart only one form was obtained. Bovine heart enzyme was similar to renal peak 2 in that it had an apparent Mr of 35,500 and was only slightly stimulated by histone H1. Treatment of the bovine heart catalytic subunit with trypsin, chymotrypsin or type 2 Ca2+-dependent proteinase decreased the apparent Mr by about 500 and increased histone H1 stimulation to about 500%. Thus, when a small peptide was removed by proteolysis, histone H1 stimulation of the 'nicked' catalytic subunit was similar to that obtained with the holoenzyme.  相似文献   

3.
Sarcoplasmic phosphorylase phosphatase extracted from ground skeletal muscle was recovered in a high molecular weight from (Mr = 250000). This enzyme has been purified from extracts by anion-exchange and gel chromatography to yield a preparation with three major protein components of Mr 83000, 72000, and 32000 by sodium dodecyl sulfate gel electrophoresis. The phosphorylase phosphatase activity of the complex form was activated more than 10-fold by Mn2+, with a K0.5 of 10(-5) M, but not by Mg2+ or Ca2+. Manganese activation occurred over a period of several minutes and resulted primarily in an increase in Vmax of a phosphatase that was sensitive to trypsin. Activation persisted after gel filtration, and the active form of the enzyme did not contain bound manganese measured by using 54Mn2+. A contaminating p-nitrophenylphosphatase was activated by either Mn2+ (K0.5 of 10(-4) M) or Mg2+ (K0.5 of 10(-3) M). Unlike the protein phosphatase this enzyme was inactive following removal of the metal ions by gel filtration. The phosphatase complex could be dissociated into its component subunits by precipitation with 50% acetone at 20 degrees C in the presence of an inert divalent cation, reducing agent, and bovine serum albumin. Two catalytic subunits were quantitatively recovered; one of Mr 83000 was a trypsin-sensitive manganese-activated phosphatase and the second of Mr 32000 was trypsin-stable and metal ion dependent. Both enzymes were effective in catalyzing the dephosphorylation of either phosphorylase a or the regulatory subunit of adenosine cyclic 3',5'-phosphate (cAMP) dependent protein kinase, but neither subunit possessed p-nitrophenylphosphatase activity.  相似文献   

4.
Protein phosphatases assayed with phosphorylase alpha are present in the soluble and particulate fractions of rat thymocytes. Phosphorylase phosphatase activity in the cytosol fraction was resolved by heparin-Sepharose chromatography into type-1 and type-2A enzymes. Similarities between thymocyte and muscle or liver protein phosphatase-1 included preferential dephosphorylation of the beta subunit of phosphorylase kinase, inhibition by inhibitor-2 and retention by heparin-Sepharose. Similarities between thymocyte and muscle or liver protein phosphatase-2A included specificity for the alpha subunit of phosphorylase kinase, insensitivity to the action of inhibitor-2, lack of retention by heparin-Sepharose and stimulation by polycationic macromolecules such as polybrene, protamine and histone H1. Protein phosphatase-1 from the cytosol fraction of thymocytes had an apparent molecular mass of 120 kDa as determined by gel filtration. The phosphatase-2A separated from the cytosol of thymocytes may correspond to phosphatase-2A0, since it was completely inactive (latent) in the absence of polycation and had activity only in the presence of polycations. The apparent molecular mass of phosphatase-2A0 from thymocytes was 240 kDa as determined by gel filtration. The catalytic subunit of thymocyte type-1 protein phosphatase was purified with heparin-Sepharose chromatography followed by gel filtration and fast protein liquid chromatography on Mono Q column. The purified type-1 catalytic subunit exhibited a specific activity of 8.2 U/mg and consisted of a single protein of 35 kDa as judged by SDS-gel electrophoresis. The catalytic subunit of type-2A phosphatase from thymocytes appearing in the heparin-Sepharose flow-through fraction was further purified on protamine-Sepharose, followed by gel filtration. The specific activity of the type-2A catalytic subunit was 2.1 U/mg and consisted of a major protein of 34.5 kDa, as revealed by SDS-gel electrophoresis.  相似文献   

5.
1. Phosphoprotein phosphatase IB is a form of rat liver phosphoprotein phosphatase, distinguished from the previously studied phosphoprotein phosphatase II [Tamura et al. (1980) Eur. J. Biochem. 104, 347-355] by earlier elution from DEAE-cellulose, by higher molecular weight on gel filtration (260000) and by lower activity toward phosphorylase alpha. This enzyme was purified to apparent homogeneity by chromatography on DEAE-cellulose, aminohexyl--Sepharose-4B, histone--Sepharose-4B, protamine--Sepharose-4B and Sephadex G-200. 2. The molecular weight of purified phosphatase IB was 260000 by gel filtration and 185000 from S20,W and Stokes' radius. Using histone phosphatase activity as the reference for comparison, the phosphorylase phosphatase activity of purified phosphatase IB was only one-fifth that of phosphatase II. 3. Sodium dodecyl sulfate gel electrophoresis revealed that phosphatase IB contains three types of subunit, namely alpha, beta and gamma, whose molecular weights are 35000, 69000 and 58000, respectively. The alpha subunit is identical to the alpha subunit of phosphatase II. While the beta subunit is also identical or similar to the beta subunit of phoshatase II, the gamma subunit appears to be unique to phosphatase IB. 4. When purified phosphatase IB was treated with 2-mercaptoethanol at -20 degrees C, the enzyme was dissociated to release the catalytically active alpha subunit. Along with this dissociation, there was a 7.4-fold increase in phosphorylase phosphatase activity; but histone phosphatase activity increased only 1.6-fold. The possible functions of the gamma subunit are discussed in relation to this activation of enzyme.  相似文献   

6.
Glycogen-bound protein phosphatase G from rat liver was transferred from glycogen to beta-cyclodextrin (cycloheptaamylose) linked to Sepharose 6B. After removal of the catalytic subunit and of contaminating proteins with 2 M NaCl, elution with beta-cyclodextrin yielded a single protein on native polyacrylamide gel electrophoresis and two polypeptides (161 and 54 kDa) on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Several lines of evidence indicate that the latter polypeptides are subunits of the protein phosphatase G holoenzyme. First, these polypeptides were also present, together with the catalytic subunit, in the extensively purified holoenzyme. Also, polyclonal antibodies against these polypeptides were able to bind the holoenzyme. Further, while bound to cyclodextrin-Sepharose, the polypeptides were able to recombine with separately purified type-1 (AMD) catalytic subunit, but not with type-2A (PCS) catalytic subunit. The characteristics of the reconstituted enzyme resembled those of the nonpurified protein phosphatase G. At low dilutions, the spontaneous phosphorylase phosphatase activity of the reconstituted enzyme was about 10 times lower than that of the catalytic subunit, but it was about 1000-fold more resistant to inhibition by the modulator protein (inhibitor-2). In contrast with the free catalytic subunit, the reconstituted enzyme co-sedimented with glycogen, and it was able to activate purified liver glycogen synthase b. Also, the synthase phosphatase activity was synergistically increased by a cytosolic phosphatase and inhibited by physiological concentrations of phosphorylase alpha and of Ca2+.  相似文献   

7.
The catalytic subunit of the branched-chain alpha-keto acid dehydrogenase (BCKDH) phosphatase (Damuni, Z., Merryfield, M.L., Humphreys, J.S., and Reed, L.J., (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 4335-4338) has been purified over 50,000-fold from extracts of bovine kidney mitochondria. The apparently homogeneous protein consists of a single polypeptide chain with an apparent Mr = approximately 33,000 as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. BCKDH phosphatase, with an apparent Mr = 460,000, was dissociated to its catalytic subunit with no apparent change in activity, at an early stage in the purification procedure by treatment with 6 M urea. The specific activity of the catalytic subunit was 1,500-2,500 units/mg. The catalytic subunit exhibited approximately 10% maximal activity with 32P-labeled pyruvate dehydrogenase complex but was inactive with phosphorylase a and with p-nitrophenyl phosphate. The catalytic subunit, like the Mr = 460,000 species, was inhibited by nanomolar concentrations of BCKDH phosphatase inhibitor protein, was unaffected by protein phosphatase inhibitor 1 and inhibitor 2, and was inhibited by nucleoside tri- and diphosphates but not by nucleoside monophosphates.  相似文献   

8.
A high molecular weight protein phosphatase (phosphatase H-II) was isolated from rabbit skeletal muscle. The enzyme had a Mr = 260,000 as determined by gel filtration and possessed two types of subunit, of Mr = 70,000 and 35,000, respectively, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. On ethanol treatment, the enzyme was dissociated to an active species of Mr = 35,000. The purified phosphatase dephosphorylated lysine-rich histone, phosphorylase a, glycogen synthase, and phosphorylase kinase. It dephosphorylated both the alpha- and beta-subunit phosphates of phosphorylase kinase, with a preference for the dephosphorylation of the alpha-subunit phosphate over the beta-subunit phosphate of phosphorylase kinase. The enzyme also dephosphorylated p-nitrophenyl phosphate at alkaline pH. Phosphatase H-II is distinct from the major phosphorylase phosphatase activities in the muscle extracts. Its enzymatic properties closely resemble that of a Mr = 33,500 protein phosphatase (protein phosphatase C-II) isolated from the same tissue. However, despite their similarity of enzymatic properties, the Mr = 35,000 subunit of phosphatase H-II is physically different from phosphatase C-II as revealed by their different sizes on sodium dodecyl sulfate-gel electrophoresis. On trypsin treatment of the enzyme, this subunit is converted to a form which is a similar size to phosphatase C-II.  相似文献   

9.
The catalytic subunit of phosphatase-1 has been purified from Drosophila melanogaster by precipitation with (NH4)2SO4 and ethanol, by affinity chromatography on heparin-Sepharose and by fast protein liquid chromatography on Mono Q beads. The preparation is homogeneous as tested by SDS gel electrophoresis and has a molecular mass of 33,000. The phosphatase specifically dephosphorylates the beta subunit of phosphorylase kinase. Its phosphorylase phosphatase activity is inhibited by inhibitor-1, inhibitor-2, protamine and histone H2B while is stimulated by histone H1.  相似文献   

10.
Four types of polycation-stimulated (PCS) phosphorylase phosphatases have been isolated from rabbit skeletal muscle. They are called PCSH (390 kDa), PCSM (250 kDa), and PCSL (200 kDa) phosphatase according to the apparent molecular weight of the native enzymes in gel filtration. Two forms of PCSH phosphatase could be separated by Mono Q fast protein liquid chromatography: PCSH1 and PCSH2. In the absence of polycations, the specific activities of the PCSH1, PCSH2, PCSM, and PCSL phosphatase were 400, 680, 600, and 3000 units/mg, respectively, using phosphorylase a as a substrate. They all contain a 62-65- and a 35-kDa subunit, the latter being the catalytic subunit. In addition PCSH1 phosphatase contains a 55-kDa subunit and the PCSM phosphatase a 72-75-kDa subunit in a substoichiometric ratio. All the PCS phosphatases are insensitive to Ca2+ calmodulin, inhibitor-1, and modulator protein. They display a high specificity for the alpha-subunit of phosphorylase kinase and a broad substrate specificity. The PCSH1 and PCSH2 phosphatases, but not the catalytic subunit (PCSC phosphatase), show a high degree of specificity for the deinhibitor protein. During the purification the phosphorylase to inhibitor-1 phosphatase activity ratio (10:1) remained constant for the PCSH and PCSL enzymes but decreased for the PCSM phosphatase. The stimulation observed with low concentrations of polycations is enzyme directed. The different enzyme forms show a characteristic concentration optimum and degree of stimulation. At higher concentrations, polycations become inhibitory and a time-dependent deactivation of the phosphatases is observed.  相似文献   

11.
12.
A polycation-stimulated (PCS) protein phosphatase was isolated in high yield (280 micrograms/100 g ovaries) from Xenopus laevis oocytes through a procedure involving a tyrosine-agarose hydrophobic chromatography. The 220-kDa enzyme contains a 35-kDa and a 62-kDa subunit. It was identified as the low-Mr polycation-stimulated (PCSL) protein phosphatase. The labile p-nitrophenyl phosphatase activity, copurifying with the phosphorylase phosphatase activity, can be increased severalfold by preincubating the purified enzyme with ATP, its analogues or PPi. This activation is time-dependent and accompanied by a parallel decrease of the phosphorylase phosphatase activity. Although the stimulation was antagonized by metal ions during the preincubation, the basal and ATP-stimulated p-nitrophenyl phosphatase requires Mg2+ or Mn2+ in the assay, with pH optima of 8.5-9 and 7.5 respectively.  相似文献   

13.
1. The phosphorylase phosphatase and glycogen-synthase phosphatase activities associated with the glycogen particles from rat liver were progressively inhibited by incubation with modulator protein. However, the phosphorylase phosphatase activity of the catalytic subunit was entirely recovered after destruction of the modulator and the regulatory subunit(s) by trypsin. 2. Inhibition of protein phosphatase G by modulator was associated with a translocation of the phosphorylase phosphatase activity (measured after incubation with trypsin) from glycogen to the soluble fraction. The degree of inhibition of phosphatase G corresponded closely to the extent to which the phosphorylase phosphatase activity was released from the glycogen particles. Incubation of glycogen-free protein phosphatase G with modulator did not change the affinity of the enzyme for added glycogen, but decreased the amount of phosphatase that could be bound to glycogen. 3. The phosphorylase phosphatase activity that was released from the glycogen particles by modulator migrated on gel filtration as a complex (Mr 106,000) of the catalytic subunit with modulator. Phosphorylase phosphatase activity could be transferred from glycogen-bound protein phosphatase G to modulator that was covalently bound to Sepharose. After elution from the column, the enzyme was identified as the free catalytic subunit (Mr 37,000).  相似文献   

14.
α-1,4-Glucan phosphorylase (EC 2.4.1.1) from the red seaweed Gracilaria sordida (Harv.) W. Nelson was adsorbed onto starch-Sepharose 6B and Sephacryl S-300 under specified conditions. The algal enzyme was purified to homogeneity by these two steps. A molecular weight of 97.4 kDa was observed on SDS-polyacrylamide gel electrophoresis under reducing conditions, while the native molecular weight was 240 kDa asrevealed by 8-25% native gradient gel electrophoresis or 245 kDa by gel filtration. The pI of the enzyme was 5.4. It had a Km of 227, 264, 285, and 453 μg ml-1, respectively, towards glycogen, amylopectin, amylose, and maltodextrin. The enzyme activity was inhibited by cyclohexaamylose, ADP-glucose, and UDP-glucose. In contrast to other plant sources, cell-free extracts of G. sordida contained only one form of phosphorylase.  相似文献   

15.
An active form of phosphorylase phosphatase of Mr = 33,000, referred to as the catalytic subunit for over a decade, was purified to near-homogeneity from rabbit skeletal muscle. Repeated immunization of a sheep produced immunoglobulins that blocked the activity of the phosphatase. These immunoglobulins were affinity-purified on columns of immobilized phosphorylase phosphatase and used as macromolecular probes in a "Western" immunoblotting procedure with peroxidase-conjugated rabbit anti-sheep immunoglobulins. Only one protein, of Mr = 33,000, was stained in samples of the immunogen, attesting to the specificity of the probes. However, the Mr = 33,000 phosphatase protein was not detected in muscle extracts or in partially purified preparations. Instead, a single protein of Mr = 70,000 was detected. Limited proteolysis, in particular by Staphylococcus aureus V8 protease and thermolysin, converted the immunoreactive protein from Mr = 70,000 to Mr = 33,000. Coagulation of the phosphatase preparation with 80% ethanol at room temperature rendered the Mr = 70,000 protein insoluble, but allowed extraction of the Mr = 33,000 protein from the precipitate. Thus, we conclude that the immunoreactive protein of Mr = 70,000 is the "catalytic subunit" of phosphorylase phosphatase with a catalytic domain of Mr = 33,000. Previous purification schemes have yielded only the fragment of Mr = 33,000 due to its relative resistance to proteolysis and coagulation. Gel filtration chromatography of the "native" form of phosphorylase phosphatase showed Mr approximately 230,000. Both the Mr = 70,000 catalytic subunit and a Mr = 60,000 protein related to inhibitor-2 were detected by immunoblotting in the same fractions that exhibited activity after treatment with Co2+ and trypsin. Only the Mr = 60,000 protein was degraded during this activation process. We propose that the native phosphorylase phosphatase is an elongated structure with two-fold symmetry, containing one catalytic subunit of Mr = 70,000 and one regulatory subunit of Mr = 60,000.  相似文献   

16.
Properties and function of phosphatases from vascular smooth muscle   总被引:1,自引:0,他引:1  
Myosin light chain phosphatase (MLCP) activity was present in extracts from a wide variety of mammalian tissues. A partially purified preparation of bovine aortic MLCP also showed activity against phosphorylase a and p-nitrophenyl phosphate (PNP). Whether these three activities are ascribable to a single multifunctional phosphatase or to three distinct phosphatases is unknown. The three phosphatase activities coelute during gel filtration both before and after treatment with ethanol showing exclusion volumes corresponding to 240,000 and 35,000 daltons, respectively. This indicates that the enzyme is dissociable into a smaller catalytic subunit. The widespread occurrence of MLCP activity and the close parallel among MLCP, phosphorylase a phosphatase, and PNP phosphatase activities suggest that the enzyme (or enzymes) may participate in physiological processes in addition to dephosphorylation of phosphorylated myosin light chains.  相似文献   

17.
A phosphoprotein phosphatase active towards casein, phosphorylase a and mRNP proteins has been detected in the cytosol of cryptobiotic gastrulae of Artemia sp. This phosphatase has a relative molecular mass (Mr) of 225,000 as measured by gel filtration on Sephadex G-200 and has been purified to near homogeneity by ion-exchange chromatography on different DEAE-substituted matrices, affinity chromatography on polylysine-agarose, histone-Sepharose 4B and protamine-agarose, hydrophobic chromatography on phenyl-Sepharose 4B and gel filtration on Sephadex G-200. Sodium dodecyl sulphate gel electrophoresis of the final purification step revealed that the enzyme contains two types of subunits, alpha and beta, with Mr of 40,000 and 75,000, respectively. These values, in conjunction with the native Mr and the molar ratios of the subunits estimated by densitometric analysis of the gel, suggested that the subunit composition of the enzyme is alpha 2 beta 2. When treated with 1.7% (v/v) 2-mercaptoethanol at -20 degrees C or with ethanol, the enzyme released the catalytic alpha subunit of Mr 40,000. The protein phosphatase was activated by basic proteins e.g. protamine (A 0.5 = 1 microM), histone H1 (A 0.5 = 1.6 microM) and polylysine (A 0.5 = 0.2 microM) and inhibited by ATP (I 0.5 = 12 microM), NaF (I 0.5 = 3.1 mM) and pyrophosphate (I 0.5 = 0.6 mM). The enzyme is a polycation-stimulated protein phosphatase. Purified mRNP proteins, phosphorylated by the mRNP-associated casein kinase type II, are among the substrates used by the enzyme. The function of reversible phosphorylation-dephosphorylation of mRNP as a regulatory mechanism in mRNP metabolism is discussed.  相似文献   

18.
The native structures of protein phosphatases have not been clearly established. Several tissues contain high molecular weight enzymes which are converted to active species of Mr approximately 35,000 by denaturing treatments or partial proteolysis. We have used a monoclonal antibody directed against purified bovine cardiac Mr = 38,000 protein phosphatase to determine whether this species is the native catalytic subunit or a proteolytic product of a larger polypeptide. Monoclonal antibody was obtained from a cloned hybrid cell line produced by the fusion of Sp2 myeloma cells with spleen cells from a mouse immunized with phosphatase coupled to hemocyanin. This antibody was specific for the Mr = 38,000 phosphatase as determined by immunoblot analysis of purified enzyme or cardiac tissue extracts after native or sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A single immunoreactive protein of Mr = 38,000 was present in cardiac tissue extracts including extracts prepared from freeze-clamped rat heart rapidly denatured in hot sodium dodecyl sulfate buffer. Precipitation of cardiac extract with 80% ethanol did not alter the Mr of the phosphatase nor did it liberate new immunoreactive material not observed in the extract. Ethanol precipitation caused the dissociation of both phosphatase activity and immunoreactivity from a high Mr form to a form of Mr between 30,000 and 40,000. An immunoreactive protein of Mr = 38,000 was identified in several bovine and rat tissues as well as tissues from rabbits, mice and chickens and human HT-29 cells. From these data we conclude that the Mr = 38,000 cardiac phosphatase is a native catalytic subunit of higher molecular complexes which are dissociated by ethanol precipitation. A very similar, or identical, protein is present in several tissues and species suggesting that this catalytic subunit is a ubiquitous enzyme important in many dephosphorylation reactions.  相似文献   

19.
The catalytic subunit of protein serine/threonine phosphatase 4 (PP4C) has greater than 65% amino acid identity to the catalytic subunit of protein phosphatase 2A (PP2AC). Despite this high homology, PP4 does not appear to associate with known PP2A regulatory subunits. As a first step toward characterization of PP4 holoenzymes and identification of putative PP4 regulatory subunits, PP4 was purified from bovine testis soluble extracts. PP4 existed in two complexes of approximately 270-300 and 400-450 kDa as determined by gel filtration chromatography. The smaller PP4 complex was purified by sequential phenyl-Sepharose, Source 15Q, DEAE2, and Superdex 200 gel filtration chromatographies. The final product contained two major proteins: the PP4 catalytic subunit plus a protein that migrated as a doublet of 120-125 kDa on SDS-polyacrylamide gel electrophoresis. The associated protein, termed PP4R1, and PP4C also bound to microcystin-Sepharose. Mass spectrometry analysis of the purified complex revealed two major peaks, at 35 (PP4C) and 105 kDa (PP4R1). Amino acid sequence information of several peptides derived from the 105 kDa protein was utilized to isolate a human cDNA clone. Analysis of the predicted amino acid sequence revealed 13 nonidentical repeats similar to repeats found in the A subunit of PP2A (PP2AA). The PP4R1 cDNA clone engineered with an N-terminal Myc tag was expressed in COS M6 cells and PP4C co-immunoprecipitated with Myc-tagged PP4R1. These data indicate that one form of PP4 is similar to the core complex of PP2A in that it consists of a catalytic subunit and a "PP2AA-like" structural subunit.  相似文献   

20.
A high molecular weight protein phosphatase (Mr = 260K) has been isolated from rabbit skeletal muscle. The enzyme has a very low activity towards phosphorylase a isolated from the same tissue, but its activity towards this substrate is stimulated several fold after dissociation by 2-mercaptoethanol treatment. The purified phosphatase shows one major protein staining band on non denaturing polyacrylamide gel electrophoresis, and contains four subunits with molecular weights of 95K, 75K, 65K and 38K. The catalytic activity resides in the Mr = 38K subunit and is not sensitive to inhibition by the heat stable protein phosphatase inhibitor-1 or modulator protein. Polyamines stimulate the holoenzyme in a dose dependent, biphasic manner, but inhibit the activity of the dissociated Mr = 38K catalytic subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号