首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Maintenance of polarity of auxin movement by basipetal transport   总被引:4,自引:3,他引:1       下载免费PDF全文
The polar, basipetal transport of indoleacetic acid helps to maintain polarity of auxin movement in coleoptiles of Avena sativa L. by opposing acropetal diffusion. This conclusion is supported by 3 different kinds of experiments. In all 3 experiments, sections took up 14C carboxyl-labeled indole-3-acetic acid anaerobically, and the distribution of auxin within all sections was similar at the end of uptake.

[List: see text]

  相似文献   

2.
Transport of tritiated cyclic AMP in the coleoptile of oats (Avena sativa) and corn (Zea mays) is polar, with basipetal to acropetal ratios of 4.0 and 3.2, respectively. The rate of transport is approximately that of indoleacetic acid. The linear velocity of transport, however, is at least five times that of auxin. A loss in transport polarity of the nucleotide occurs in subapical tissues within several hours after decapitation of the coleoptile, accompanied by a decrease in transport rate. The loss in polarity is not reversed by exogenous auxin, but the reduction in transport is. Auxin also inhibits the uptake of cyclic AMP. Exogenous cyclic AMP is metabolized rapidly by coleoptile tissues. If cyclic AMP does have a cellular function in the coleoptile, its transport behavior is compatible with that of a hormone.  相似文献   

3.
The effect of a 180° displacement from the normal vertical orientation on longitudinal growth and on the acropetal and basipetal movement of 14C-IAA was investigated in Avena sativa L. and Zea mays L. coleoptile sections. Inversion inhibits growth in intact sections (apex not removed) and in decapitated sections supplied apically with donor blocks containing auxin. Under aerobic conditions, inversion inhibits basipetal auxin movement and promotes acropetal auxin movement, whereas under anaerobic conditions, it does not influence the movement of auxin in either direction. Inversion retards the basipetal movement of the peak of a 30-minute pulse of auxin in corn.

The inversion-induced inhibition of basipetal auxin movement is not explained by an effect of gravity on production, uptake, destruction, exit from sections, retention in tissue, or purely physical movement of auxin. It is concluded that inversion (a) inhibits basipetal transport, the component of auxin movement that is metabolically dependent, and as a result (b) inhibits growth and (c) promotes acropetal auxin movement.

  相似文献   

4.
Summary The basipetal movement of IAA in 5-mm Zea coleoptile segments is drastically reduced under anaerobic conditions, but it remains greater than acropetal movement which is closely similar in the presence and absence of oxygen. The polarity of IAA movement has thus been confirmed in Zea coleoptile segments which have been deprived of oxygen. This net polar flux is dependent upon anaerobic metabolism since it is abolished in the presence of the metabolic inhibitiors sodium fluoride and iodoacetic acid.Acropetal movement of IAA is unaffected by the presence of sodium fluoride in air or anaerobic conditions. Uptake of IAA from a basal donor is not affected by sodium fluoride in air, but under anaerobic conditions the inhibitor decreased uptake by approximately 13%.Under anaerobic conditions both inhibitors reduce basipetal movement of IAA to the level of acropetal movement, and both decrease the total uptake of IAA from an apical donor by up to 30–45%. Under aerobic conditions sodium fluoride has no marked effect upon either the uptake of IAA from an apical donor or the basipetal movement of IAA by the segments. On the other hand, iodoacetic acid greatly decreased the uptake of IAA by the segments in air, but the same fraction of the total IAA taken up was recovered in the receiving block in the presence and absence of the inhibitor.This research was supported by Grant Number 83/6 to Professor M. B. Wilkins from the U. K. Agricultural Research Council.  相似文献   

5.
To identify developmental mechanisms that might have been involved in the evolution of axial sporophytes in early land plants, we examined the effects of auxin-regulatory compounds in the sporophytes of the hornwort Phaeoceros personii, the liverwort Pellia epiphylla, and the moss Polytrichum ohioense, members of the three divisions of extant bryophytes. The altered growth of isolated young sporophytes exposed to applied auxin (indole-3-acetic acid) or an auxin antagonist (p-chlorophenoxyisobutyric acid) suggests that endogenous auxin acts to regulate the rates of axial growth in all bryophyte divisions. Auxin in young hornwort sporophytes moved at very low fluxes, was insensitive to an auxin-transport inhibitor (N-[1-naphthyl]phthalamic acid), and exhibited a polarity ratio close to 1.0, implying that auxin moves by simple diffusion in these structures. Emerging liverwort sporophytes had somewhat higher auxin fluxes, which were sensitive to transport inhibitors but lacked any measurable polarity. Thus, auxin movement in liverwort sporophytes appears to result from a unique type of apolar facilitated diffusion. In young Polytrichum sporophytes, auxin movement was predominantly basipetal and occurred at high fluxes exceeding those measured in maize coleoptiles. In older Polytrichum sporophytes, acropetal auxin flux had increased beyond the level measured for basipetal flux. Insofar as acropetal and basipetal fluxes had different inhibitor sensitivities, these results suggested that moss sporophytes carry out bidirectional polar transport in different cellular pathways, which resembles the transport in certain angiosperm structures. Therefore, the three lineages of extant bryophytes appear to have evolved independent innovations for auxin regulation of axial growth, with similar mechanisms operating in moss sporophytes and vascular plants.  相似文献   

6.
We examined the influence of aluminum and calcium (and certain other cations) on hormone transport in corn roots. When aluminum was applied unilaterally to the caps of 15 mm apical root sections the roots curved strongly away from the aluminum. When aluminum was applied unilaterally to the cap and 3H-indole-3-acetic acid was applied to the basal cut surface twice as much radioactivity (assumed to be IAA) accumulated on the concave side of the curved root as on the convex side. Auxin transport in the apical region of intact roots was preferentially basipetal, with a polarity (basipetal transport divided by acropetal transport) of 6.3. In decapped 5 mm apical root segments, auxin transport was acropetally polar (polarity = 0.63). Application of aluminum to the root cap strongly promoted acropetal transport of auxin reducing polarity from 6.3 to 2.1. Application of calcium to the root cap enhanced basipetal movement of auxin, increasing polarity from 6.3 to 7.6. Application of the calcium chelator, ethylene-glycol-bis-(β-aminoethylether)-N,N,N′, N′-tetraacetic acid, greatly decreased basipetal auxin movement, reducing polarity from 6.3 to 3.7. Transport of label after application of tritiated abscisic acid showed no polarity and was not affected by calcium or aluminum. The results indicate that the root cap is particularly important in maintaining basipetal polarity of auxin transport in primary roots of corn. The induction of root curvature by unilateral application of aluminum or calcium to root caps is likely to result from localized effects of these ions on auxin transport. The findings are discussed relative to the possible role of calcium redistribution in the gravitropic curvature of roots and the possibility of calmodulin involvement in the action of calcium and aluminum on auxin transport.  相似文献   

7.
Polar transport of kinetin in tissues of radish   总被引:1,自引:1,他引:0       下载免费PDF全文
Polar transport of kinetin-8-14C occurred in segments of petioles, hypocotyls, and roots of radish (Raphanus sativus L.). The polarity was basipetal in petioles and hypocotyls and acropetal in roots. In segments excised from seedlings with fully expanded cotyledons, indole-3-acetic acid was required for polarity to develop. In hypocotyl segments isolated at this stage, basipetal and acropetal movements were equal during the first 12 hours of auxin treatment after which time acropetal movement declined. Pretreatment with auxin eliminated this delay in the appearance of polarity. In hypocotyl segments excised from seedlings with expanding cotyledons, exogenous auxin was unnecessary for polarity. Potassium cyanide abolished polarity at both stages of growth by allowing increased acropetal movement. The rate of accumulation of kinetin in receiver blocks was greater than the in vivo increase in cytokinin content of developing radish roots.  相似文献   

8.
3H-IAA transport in excised sections of carnation cuttings was studied by using two receiver systems for recovery of transported radioactivity: agar blocks (A) and wells containing a buffer solution (B). When receivers were periodically renewed, transport continued for up to 8 h and ceased before 24 h. If receivers were not renewed, IAA transport decreased drastically due to immobilization in the base of the sections. TIBA was as effective as NPA in inhibiting the basipetal transport irrespective of the application site (the basal or the apical side of sections). The polarity of IAA transport was determined by measuring the polar ratio (basipetal/acropetal) and the inhibition caused by TIBA or NPA. The polar ratio varied with receiver, whereas the inhibition by TIBA or NPA was similar. Distribution of immobilized radioactivity along the sections after a transport period of 24 h showed that the application of TIBA to the apical side or NPA to the basal side of sections, increased the radioactivity in zones further from the application site, which agrees with a basipetal and acropetal movement of TIBA and NPA, respectively. The existence of a slow acropetal movement of the inhibitor was confirmed by using 3H-NPA. From the results obtained, a methodological approach is proposed to measure the variations in polar auxin transport. This method was used to investigate whether the variations in rooting observed during the cold storage of cuttings might be related to changes in polar auxin transport. As the storage period increased, a decrease in intensity and polarity of auxin transport occurred, which was accompanied by a delay in the formation and growth of adventitious roots, confirming the involvement of polar auxin transport in supplying the auxin for rooting. Received April 19, 1999; accepted December 2, 1999  相似文献   

9.
The action of abscisic acid on the kinetics of auxin transport through Zea mays L. (cv. Goudster) coleoptiles has been investigated. Abscisic acid applied simultaneously with indoleacetic acid-2-14C in the donor block reduced the transport intensity without materially affecting the basipetal velocity or the uptake. No effect on acropetal transport was observed. The data have been used to discuss the similarities in effects of abscisic acid and visible radiation and a hypothesis is proposed to explain the phenomena of phototropism.  相似文献   

10.
Wochok ZS 《Plant physiology》1974,53(5):738-741
The rhizophore of Selaginella willdenovii Baker develops from the ventral angle meristem. The morphological nature of this organ has been in dispute. The purpose of this investigation was to obtain physiological evidence to support the contention that the rhizophore is a root and not a shoot. This was accomplished by studying the movement of 3H-indoleacetic acid and 14C-indoleacetic acid in Selaginella rhizophores. In 6-millimeter tissue segments, twice as much radioactivity accumulated in acropetal receivers as in basipetal. During 1 hour of transport in intact roots auxin traveled twice as far in the acropetal direction as basipetal. A significant amount of radioactivity transported in the tissue was found to co-chromatograph with cold indoleacetic acid. Decarboxylation accounted for 10% loss of activity from donors. The data provide sufficient physiological evidence that this organ is morphogenetically a root.  相似文献   

11.
Auxin transport: a new synthetic inhibitor   总被引:1,自引:1,他引:0  
Beyer EM 《Plant physiology》1972,50(3):322-327
The new synthetic plant growth regulator DPX1840 (3,3a-dihydro-2-(p-methoxyphenyl)-8H-pyrazolo [5,1-a] isoindol-8-one) was examined for its effects on auxin transport. At a concentration of 0.5 mm in the receiver agar cylinders DPX1840 significantly inhibited the basipetal transport of naphthaleneacetic acid-1-14C in stem sections of Vigna sinensis Endl., Pisum sativum L., Phaseolus vulgaris L., Glycine max L., Helianthus annuus L., Gossypium hirsutum L., and Zea mays L. without significantly reducing total auxin uptake or recovery. The time sequence of the effect varied with the plant species. A similar inhibition of the basipetal movement of indoleacetic acid-1-14C was observed in intact seedlings of Phaseolus vulgaris L. In contrast to basipetal auxin transport DPX1840 had no significant effect on the acropetal movement of indoleacetic acid-1-14C in stem sections of Gossypium hirsutum L. Qualitatively the effect of DPX1840 on basipetal auxin transport was similar to that of other known auxin transport inhibitors. Quantitative differences, however, suggested the following order of activity: Naptalam>morphactin[unk]DPX1840>2,3,5-triiodobenzoic acid.  相似文献   

12.
In an effort to investigate possible involvement of abscisic acid (ABA) in foliar abscission processes, its movement and endogenous levels were examined in cotyledons taken from cotton seedlings (Gossypium hirsutum L.) subjected to varying degrees of water deficit, a condition which initiates leaf abscission. Using a pulse-labeling technique to avoid complications of uptake and exit from the tissue, ABA-1-14C movement was observed in both basipetal and acropetal directions in cotyledonary petioles taken from well watered, stressed, and rewatered plants. The label distribution patterns obtained after 1 and 3 hours of transport under all situations of water supply were diffusive in nature and did not change when tested under anaerobic conditions. The transport capacity of the petioles ranged from 3.6 to 14.4% ABA-1-14C transported per hour at estimated velocities of 0 to 2 millimeters per hour. Comparison of basipetal and acropetal movement indicated a lack of polarity under all conditions tested. These low transport capacities and slow velocities of movement, when compared to the active transport systems associated with auxin movement, as well as the lack of anaerobic effects and polarity, suggest that ABA movement in cotton cotyledonary petiole sections is facilitated by passive diffusion. Increases in free and bound ABA in the lamina with increased water stress did not correlate with patterns of cotyledonary abscission. Thus, no evidence was found to suggest that ABA is directly involved in stress-induced abscission processes.  相似文献   

13.
Lateral movement of auxin in phototropism   总被引:2,自引:1,他引:1       下载免费PDF全文
Lateral movement of indoleacetic acid-1-14C in corn coleoptiles was measured as radioactivity moving laterally following unilateral application of the auxin. The data suggest that there is an endogenous lateral movement of auxin, and that phototropic stimulation of the coleoptile depresses lateral movement towards the light and enhances lateral movement away from the light. The lateral movement was found to be principally as indoleacetic acid. In experiments using sunflower hypocotyl sections, evidence is also presented to support the suggestion that lateral redistribution of auxin may be effected by a deflection of auxin around a barrier to basipetal transport.  相似文献   

14.
The dependence of acropetal Ca2+ transport on polar basipetal indoleacetic acid (IAA) transport was investigated in excised tomato fruits ( Lycopersicon esculentum L. Mill.) using an in vitro fruit system. Auxin transport inhibitors like triiodobenzoic acid (TIBA), chlorofluorenolmethyl ester (CME) and naphthylphthalamic acid (NPA) were used in order to investigate the effect of restricted polar basipetal auxin transport on the acropetal transport of 45Ca2+, 86Rb+ and 98Sr2+ into the same fruits. TIBA and CME inhibited basipetal transport of IAA. particularly in 10- to 12-day-old tomato fruits, and simultaneously restricted the acropetal transport of 45Ca2+. The auxin transport inhibitors failed to significantly reduce the upward transport of 86Rb+ and the transport of 96Sr2+ was less inhibited than that of 45Ca2+. TIBA and CME did not significantly affect the acropetal transport of labelled water into the fruit, nor the cation-exchange capacity or K+ and Mg2+ concentrations in the tomato fruit. These results support the view that a part of the Ca2+-specific acropetal transport into tomato fruits is associated with the polar basipetal IAA transport. This Ca2+ transport is independent of the transpiration stream into the fruit and the cation exchange capacity of the fruit tissue.  相似文献   

15.
Polarity of Indoleacetic Acid in young Coleus Stems   总被引:1,自引:1,他引:0       下载免费PDF全文
Young internodes of Coleus blumei Benth. have long been known for their sizable amount of acropetal indoleacetic acid movement. However, plants of the same clone, under improved growing conditions, now show almost absolute basipetal polarity of 14C-indoleacetic acid, as measured by liquid scintillation counting of 14C in the receiver cylinders of agar. The ratio of basipetal to acropetal movement is now as much as 85:1, instead of the 3:1 ratio found years ago under conditions providing slower growth.  相似文献   

16.
The specificity of the auxin transport system   总被引:1,自引:1,他引:0  
Summary In an effort to examine the specificity of the auxin transport system, the movement of a variety of growth substances and of auxin analogues through corn coleoptile sections was measured in both the basipetal and acropetal directions. In contrast to the basipetal, polar transport of the auxins indoleacetic acid (IAA) and 2,4-dichlorophenoxyacetic acid, no such movement was found for benzoic acid or for gibberellin A1. A comparison of the - and -isomers of naphthaleneacetic acid showed that the growth-active -form is transported, but not the inactive -analogue. Both the dextro (+) and leavo (-) isomer of 3-indole-2-methylacetic acid showed the basipetal movement characteristic of IAA, the dextro isomer being more readily transported than the (-)-form. In this instance, too, the transport was roughtly proportional to the growth promoting activity. The antiauxin p-chlorophenoxyisobutyric acid inhibited auxin transport as it inhibited auxin-induced growth. These results agree with the hypothesis that processes involved in auxin transport are closely linked to or even identical with the primary auxin action.  相似文献   

17.
In stem sections of lentil seedlings, there is a typical polar movement of IAA labelled with 14C. The degree of polarity, expressed as the ratio of basipetal to acropetal transport, was (25°C) 7.6. A decrease (from 25° to 15°C) and an increase (from 25° to 30°C) of temperature cause a reduction of the IAA uptake by the sections and a decrease of both the basipetal and the acropetal translocation of IAA. Results suggest that the basipetal as well as the acropetal movement of auxin, are dependent of a metabolical component which is discussed.  相似文献   

18.
Auxin transport has been reported to occur in two distinct polarities, acropetally and basipetally, in two different root tissues. The goals of this study were to determine whether both polarities of indole-3-acetic acid (IAA) transport occur in roots of Arabidopsis and to determine which polarity controls the gravity response. Global application of the auxin transport inhibitor naphthylphthalamic acid (NPA) to roots blocked the gravity response, root waving, and root elongation. Immediately after the application of NPA, the root gravity response was completely blocked, as measured by an automated video digitizer. Basipetal [(3)H]IAA transport in Arabidopsis roots was inhibited by NPA, whereas the movement of [(14)C]benzoic acid was not affected. Inhibition of basipetal IAA transport by local application of NPA blocked the gravity response. Inhibition of acropetal IAA transport by application of NPA at the root-shoot junction only partially reduced the gravity response at high NPA concentrations. Excised root tips, which do not receive auxin from the shoot, exhibited a normal response to gravity. The Arabidopsis mutant eir1, which has agravitropic roots, exhibited reduced basipetal IAA transport but wild-type levels of acropetal IAA transport. These results support the hypothesis that basipetally transported IAA controls root gravitropism in Arabidopsis.  相似文献   

19.
Summary The cytoplasm of maize coleoptile cells was displaced to either the apical or basal ends of the cells by centrifuging (1750xg for 10 min) segments in which protoplasmic streaming had been stopped by pretreatment with cytochalasin B. Centrifugation toward the base of the segment promotes the subsequent basipetal transport of indole-3-acetic acid, whereas apical centrifugation dramatically inhibits this transport. Apical centrifugation neither promotes acropetal transport nor reverses the polarity of auxin transport. Experiments in which the amyloplasts were separated from the bulk of the cytoplasm indicate that the basipetal transport is independent of both the position and pressure exerted by the amyloplasts but is strongly dependent on the amount of cytoplasm at the basal end of the cells. These effects of centrifugation on auxin transport lead to the conclusion that the metabolic component of the transport is a polar secretion of auxin localized in the basal plasma membrane of each cell.  相似文献   

20.
Auxin transport promotes Arabidopsis lateral root initiation   总被引:22,自引:0,他引:22       下载免费PDF全文
Lateral root development in Arabidopsis provides a model for the study of hormonal signals that regulate postembryonic organogenesis in higher plants. Lateral roots originate from pairs of pericycle cells, in several cell files positioned opposite the xylem pole, that initiate a series of asymmetric, transverse divisions. The auxin transport inhibitor N-1-naphthylphthalamic acid (NPA) arrests lateral root development by blocking the first transverse division(s). We investigated the basis of NPA action by using a cell-specific reporter to demonstrate that xylem pole pericycle cells retain their identity in the presence of the auxin transport inhibitor. However, NPA causes indoleacetic acid (IAA) to accumulate in the root apex while reducing levels in basal tissues critical for lateral root initiation. This pattern of IAA redistribution is consistent with NPA blocking basipetal IAA movement from the root tip. Characterization of lateral root development in the shoot meristemless1 mutant demonstrates that root basipetal and leaf acropetal auxin transport activities are required during the initiation and emergence phases, respectively, of lateral root development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号