首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to evaluate the effect of scrotal cooling on rectal temperature in man. Pilot studies suggested that immersing the scrotum in a 30 degrees C water bath increased rectal temperature, but immersing the scrotum in a 0 degree C water bath did not. Six healthy young men immersed their scrotums in a 35 degrees C water bath for 11 min followed by 21 min at 30 degrees C. Rectal temperature rose by 0.38 +/- 0.04 degrees C (P < 0.01) in response to the 30 degrees C water bath. Repetition of the study by immersing the hands instead of the scrotum in the water bath had no effect on rectal temperature. The scrotum appears to play a role in human temperature regulation.  相似文献   

2.
The magnitude of damage to the viability of cryopreserved bovine spermatozoa by pre- and post-thaw thermal insults was compared. Semen collected by artificial vagina from 5 Holstein bulls was diluted in egg yolk-citrate-7% glycerol extender (EYCG) and cryopreserved in 0.5 mL French straws at a sperm concentration of 40 to 60 x 10(6) cells/mL. In Experiment 1, straws were subjected to 22, 5 or -18 degrees C static air temperature for a duration of 1, 2, 3, 4 or 5 min before or after thawing in a 37 degrees C water bath for 1 min. Control straws were thawed in a 37 degrees C water bath for 1 min without further thermal insult. In Experiment 2, straws were thawed for 1 min in a 37 (control), 20 or 5 degrees C water bath, or were loaded into an insemination gun and plunged into a 37 degrees C water bath for 3 min. In both experiments, straws were returned to a 37 degrees C water bath for incubation prior to viability analysis. Viability evaluations, conducted in triplicate, included the percentage of motile spermatozoa at 1 min and at 3 h post thermal insult and the percentage of intact acrosomal membranes at 3 h post thermal insult. In both experiments, acrosomal integrity was more sensitive than motility to thermal insult. In Experiment 1, a significant interaction was observed between timing of thermal insult (pre- or post-thaw), static air temperature and duration of straw exposure. At 22 and 5 degrees C, thermal insults applied before thawing significantly (P<0.05) reduced acrosomal integrity at > or = 2 and > or = 4 min of exposure, respectively. However, post-thaw exposure to 22 and 5 degrees C for up to 5 min had no effect on any of the sperm viability parameters evaluated. In contrast, at -18 degrees C static air temperature, post-thaw exposure for > or = 3 min decreased acrosomal integrity (P<0.05), while 5 min of pre-thaw exposure was required for alteration of acrosomal integrity. In Experiment 2, each alternative thawing method resulted in significantly (P<0.05) lower incubated acrosomal integrity relative to the controls. These findings suggest that bovine spermatozoa cryopreserved in EYCG extender are more sensitive to pre-thaw than post-thaw thermal insults and that acrosomal integrity following 3-h incubation at 37 degrees C is superior to motility evaluations for detection of damage to sperm viability due to thermal insult.  相似文献   

3.
Peloids are ubiquitous components in modern and fossil carbonates. The term peloid is non-genetic because the origin of these grains and the pathways of their formation are not fully understood. Based on Berriasian material originating from Dorset, southern England, we report here on peloids that result from the more or less in-place breakdown of previously micritized bivalve shells. The continuum from shell breakdown to peloids is documented by petrography and observation by scanning electron microscopy. The identical elemental composition of peloids and micritized shells confirms the petrographic observation and interpretation. Bivalve shells that were previously entirely micritized appear to be the preferential source for the formation of peloids. Obviously, the micritization weakened the shells, facilitating their breakdown and abrasion. This result identifies the fragmentation of micritized shells as a process leading to the formation of distinct peloids, adding to the categories of peloids recognized to date. Mold, mud, and microbial peloids observed in the studied sections and documented herein are distinct from peloids derived from bivalve shells.  相似文献   

4.
G J Morris  J Farrant 《Cryobiology》1973,10(2):119-125
The increase in thermal shock hemolysis in hypertonic sodium chloride with increasing cooling rate was confirmed. Thermal shock damage was also induced by hypertonic solutions of sucrose but it decreased with increasing cooling rate. The effect of cooling rate on thermal shock hemolysis appears to be due to the time that the cells are in the hypertonic solutions. The extent of the stress of the temperature reduction was independent of the cooling rate. In hypertonic sodium chloride susceptibility to thermal shock damage increased with increasing time of exposure at +25 °C (0–5 min) before decreasing with time (5–50 min). In contrast, with hypertonic sucrose, thermal shock damage increased gradually with time of exposure. The protective effects of sucrose on thermal shock hemolysis at a given osmolality can be explained by the different solution properties (e.g., ionic strength) of hypertonic sodium chloride and sucrose. These results suggest that the role of thermal shock damage during slow freezing should be reexamined.  相似文献   

5.
Jeunghwan Choi 《Cryobiology》2010,60(1):52-2221
It is well accepted in cryobiology that the temperature history and cooling rates experienced in biomaterials during freezing procedures correlate strongly with biological outcome. Therefore, heat transfer measurement and prediction in the cryogenic regime is central to the field. Although direct measurement of temperature history (i.e. heat transfer) can be performed, accuracy is usually achieved only for local measurements within a given system and cannot be readily generalized to another system without the aid of predictive models. The accuracy of these models rely upon thermal properties which are known to be highly dependent on temperature, and in the case of significant cryoprotectant loading, also on crystallized fraction. In this work, we review the available thermal properties of biomaterials in the cryogenic regime. The review shows a lack of properties for many biomaterials in the subzero temperature domain, and especially for systems with cryoprotective agents. Unfortunately, use of values from the limited data available (usually only down to −40 °C) lead to an underestimation of thermal property change (i.e. conductivity rise and specific heat drop due to ice crystallization) with lower temperatures. Conversely, use of surrogate values based solely on ice thermal properties lead to an overestimation of thermal property change for most biomaterials. Additionally, recent work extending the range of available thermal properties to −150 °C has shown that the thermal conductivity will drop in both PBS and tissue (liver) due to amorphous/glassy phases (versus crystalline) of biomaterials with the addition of cryoprotective additives such as glycerol. Thus, we investigated the implications of using approximated or constant property values versus measured temperature-dependent values for predicting temperature history during freezing in PBS (phosphate-buffered saline) and porcine liver with and without cryoprotectants (glycerol). Using measured property values (thermal conductivity, specific heat, and latent heat of phase change) of porcine liver, a standard was created which showed that values based on surrogate ice properties under-predicted cooling times, while constant properties (i.e. based on limited data reported near the freezing point) over-predicted cooling times. Additionally, a new iterative numerical method that accommodates non-equilibrium cooling effects as a function of time and position (i.e. crystallization versus amorphous phase) was used to predict temperature history during freezing in glycerol loaded systems. Results indicate that in addition to the increase in cooling times due to the lowering of thermal diffusivity with more glycerol, non-equilibrium effects such as the prevention of maximal crystallization (i.e. amorphous phases) will further increase required cooling times. It was also found that the amplified effect of non-equilibrium cooling and crystallization with system size prevents the thermal history to be described with non-dimensional lengths, such as was possible under equilibrium cooling. These results affirm the need to use accurate thermal properties that incorporate temperature dependence and crystallized fraction. Further studies are needed to extract thermal properties of other important biomaterials in the subzero temperature domain and to develop accurate numerical methods which take into account non-equilibrium cooling events encountered in cryobiology when partial or total vitrification occurs.  相似文献   

6.
Currently, the different roles of peloidal micrites are not well understood in matrix-supported bioconstructions such as mud mounds. Upper Viséan outcrops from Guadiato Valley, Cordoba Province, SW Spain provide well-preserved peloidal-dominated mud mounds. Microstructual analysis of these mud mounds has allowed us to establish 13 microfabrics. Although peloids are conspicuous constituents in the microfabrics, they have been differentiated into seven peloidal-dominated types, grouped into three categories: (a) homogeneous fine peloidal types (3 subtypes); (b) homogeneous coarse peloidal types (2 subtypes); and (c) heterogeneous coarse peloidal types (two subtypes). Fast cm-scale microfabric changes were mapped directly onto thin sections. This methodology allows the researcher to recognize the micro-framework of these mud mounds as a complex, multiepisodic organization of microframes and intermicroframes that are formed by primary and secondary automicrites (non-reworked and reworked automicrites, respectively), autochthonous internal sediment, and allomicrite and marine fibrous cements. The thin-section mapping was also used to estimate the automicrite-allomicrite relationship, which is crucial in separating the microbial and biodetrital mud mounds.  相似文献   

7.
Vibrational circular dichroism (VCD) spectroscopy has been used for the first time to investigate the thermal denaturation of proteins in H(2)O solutions. Films prepared from heated aqueous solutions were used for these investigations. A well-known alpha-helical protein, bovine serum albumin (BSA), is used for this first study. Both VCD and infrared absorption results obtained for BSA films indicate that the heat treatment of BSA induces significant amounts of beta-sheet structure and that the denaturation process is irreversible. To verify the irreversible nature of thermal denaturation, optical rotation was also measured as a function of temperature in both heating and cooling cycles. These results also indicate that thermal denaturation of BSA in solution is irreversible. This study establishes the usefulness of films for VCD investigations and offers new avenues for VCD studies on biologically important systems.  相似文献   

8.
In this work the thermal properties of diethyl sulphoxide (Et2SO), as well as its cryoprotective ability are studied and related to other well-known cryoprotectant substances, like dimethyl sulphoxide (Me2SO). We have investigated the thermal properties of Et2SO/water systems using Differential Scanning Calorimetry at a very low heating/cooling rate (2 degrees C/min). Liquid/solid or glassy/crystalline transitions have been observed only for the solutions with content of Et2SO ranging from 5 up to 40% w/w and/or greater than 85%. In the 45-75% w/w Et2SO range we have found a noticeable glass-forming tendency and a great stability of the amorphous state to the reheating. In samples with Et2SO content ranging from 80 to 85%, we observed a great stability of the glass forming by cooling, but a lesser stability to the subsequent reheating. The glass-forming tendency of these solutions is discussed in terms of existing competitive interactions between molecules of Et2SO, on the one hand, and Et2SO and water molecules, on the other hand. The results are well explainable on the basis of the model structure of water/Et2SO solutions, deduced by Raman and infrared studies [J. Mol. Struct. 665 (2003) 285-292]. The cryoprotective ability of Et2SO on Escherichia coli survival has been also investigated, and a comparison among Et2SO and other widely used cryoprotectants, like Me2SO and glycerol has been done. Survival of E. coli, determined after freezing-thawing process, was maximal at 45% w/w Et2SO (more than 85% viability). It should be noted that at the same concentration the survival is only about 35% in the presence of Me2SO and not more than 15% in the presence of glycerol. These features are well consisted with the glass-forming properties of Et2SO.  相似文献   

9.
A variety of transport properties have been measured for solutions of the water soluble polymer poly(ethylene oxide)(PEO) with molecular weights ranging from 200 to 14,000, and volume fractions ranging from 0-80%. The transport properties are thermal conductivity, electrical conductivity at audio frequencies (in solutions containing dilute electrolyte), and water self-diffusion. These data, together with dielectric relaxation data previously reported, are amenable to analysis by the same mixture theory. The ionic conductivity and water self-diffusion coefficient, but not the thermal conductivity, are substantially smaller than predicted by the Maxwell and Hanai mixture relations, calculated using the known transport properties of pure liquid water. A 25% (by volume) solution of PEO exhibits an average dielectric relaxation frequency of the suspending water of one half that of pure water, with clear evidence of a distribution of relaxation times present. The limits of the cumulative distribution of dielectric relaxation times that are consistent with the data are obtained using a linear programming technique. The application of simple mixture theory, under appropriate limiting conditions, yields hydration values for the more dilute polymer solutions that are somewhat larger than values obtained from thermodynamic measurements.  相似文献   

10.
To investigate the genetic difference of Legionella pneumophila in human‐made environments, we collected isolates of L. pneumophila from bath water (n = 167) and cooling tower water (n = 128) primarily in the Kanto region in 2001 and 2005. The environmental isolates were serogrouped and sequenced for a target region of flaA. A total of 14 types of flaA genotypes were found: 10 from cooling tower water and nine from bath water. The flaA genotypes of isolates from cooling tower water were quite different from those of bath water.  相似文献   

11.
The effects of alcohol on core cooling rates (rectal and tympanic), skin temperatures, and metabolic rate were determined for 10 subjects rendered hypothermic by immersion for 45 min in 10 degrees C water. Experiments were duplicated with and without a 20-min period of exercise at the beginning of cold water immersion. Measurements were continued during rewarming in a hot bath. With blood alcohol concentrations averaging 82 mg 100 mL-1, core cooling rates and changes in skin temperatures were insignificantly different from controls, even if the exercise period was imposed. Alcohol reduced shivering metabolic rate by an overall mean of 13%, insufficient to affect cooling rate. Alcohol had no effect on metabolic rate during exercise. During rewarming by hot bath, the amount of 'afterdrop' and rate of increase in core temperature were unaffected by alcohol. It was concluded that alcohol in a moderate dosage does not influence the rate of progress into hypothermia or subsequent, efficient rewarming. This emphasizes that the high incidence of alcohol involvement in water-related fatalities is due to alcohol potentiation of accidents rather than any direct effects on cold water survival, although very high doses of alcohol leading to unconsciousness would increase rate of progress into hypothermia.  相似文献   

12.
为研究植物层传热特性,选取校园内十种常见园林植物测定其叶片导热系数、叶片与周边空气对流换热系数,拟合导热系数与叶片含水量的近似关系式,对比实验测定对流换热系数与通过经验公式理论计算所得对流换热系数,比较与叶片接触前后空气的相对湿度。结果表明,叶片存在降温增湿作用,在5~25 ℃下叶片导热系数随温度变化较小;叶温20 ℃时,叶片导热系数随叶片含水量降低而减小;实验测试对流换热系数与理论计算结果吻合度较高。  相似文献   

13.
Understanding the phase change behavior of biomaterials during freezing/thawing including their thermal properties at low temperatures is essential to design and improve cryobiology applications such as cryopreservation and cryosurgery. However, knowledge of phase change behavior and thermal properties of various biomaterials is still incomplete, especially at cryogenic temperatures (< or = -40 degrees C). Moreover, in these applications, chemicals are often added to improve their outcome, which can result in significant variation in the phase change behavior and thermal properties from those of the original biomaterials. These chemical additives include cryoprotective agents (CPAs), antifreeze protein (AFP), or cryosurgical adjuvants like sodium chloride (NaCl). In the present study, phase change behavior and thermal properties of saline solutions--either water-NaCl or phosphate buffered saline (PBS)--with various chemical additives were investigated. The chemical additives studied are glycerol and raffinose as CPAs, an AFP (Type III, molecular weight = 6500), and NaCl as a cryosurgical adjuvant. The phase change behavior was investigated using a differential scanning calorimeter (DSC) and a cryomicroscope. The specific and latent heat of these solutions were also measured with the DSC. The saline solutions have two distinct phase changes--water/ice and eutectic phase changes. During freezing, eutectic solidification of both water-NaCl and PBS are significantly supercooled below their thermodynamic equilibrium eutectic temperatures. However, their melting temperatures are close to thermodynamic equilibrium during thawing. These eutectic phase changes disappear when even a small amount (0.1 M glycerol) of CPA was added, but they are still observed after the addition of an AFP. The specific heats of these solutions are close to that of ice at very low temperatures (< or = -100 degrees C) regardless of the additives, but they increase between -100 degrees C and -30 degrees C with the addition of CPAs. The amount of latent heat, which is evaluated with sample weight, generally decreases with the addition of the additives, but can be normalized to approximately 300 J/g based on the weight of water which participates in the phase change. This illustrates that thermal properties, especially latent heat, of a biomaterial should be evaluated based on the understanding of its phase change behavior. The results of the present study are discussed in the context of the implications for cryobiology applications.  相似文献   

14.
The survival of various cells subjected to low temperature exposure is higher when they are cooled slowly. This increase is consistent with the view that slow cooling decreases the probability of intracellular freezing by permitting water to leave the cell rapidly enough to keep the protoplasm at its freezing point. The present study derives a quantitative relation between the amount of water in a cell and temperature. The relation is a differential equation involving cooling rate, surface-volume ratio, membrane permeability to water, and the temperature coefficient of the permeability constant. Numerical solutions to this equation give calculated water contents which permit predictions as to the likelihood of intracellular ice formation. Both the calculated water contents and the predictions on internal freezing are consistent with the experimental observations of several investigators.  相似文献   

15.
Thawing in the water bath is often considered as a standard procedure. The thermal history of samples thawed in this way is poorly controlled, but cryopreservation and banking of cell-based products require standardization, automation and safety of all the technological stages including thawing. The programmable freezers allow implementation of the controlled cooling as well as the controlled thawing. As the cell damage occurs during the phase transformation that takes place in the cryoprotectant medium in the process of freezing–thawing, the choice of warming rates within the temperature intervals of transformations is very important. The goal of the study was to investigate the influence of warming rates within the intervals of the phase transformations in the DMSO-based cryoprotectant medium on the cell recovery and to develop a cryopreservation protocol with controlled cooling and warming rates. The temperature intervals of phase transformations such as melting of the eutectic mixture of the cryoprotectant solution (MEMCS), melting of the eutectic salt solution (MESS), melting of the main ice mass (MMIM), recrystallization before MEMCS, recrystallization before MESS and recrystallization before MMIM were determined by thermo-mechanical analysis. The biological experiments were performed on the rat testicular interstitial cells (TIC). The highest levels of the cell recovery and metabolic activity after cryopreservation were obtained using the protocol with the high (20 °C/min) warming rate in the temperature intervals of crystallization of the eutectics as well as recrystallizations and the low (1 °C/min) warming rate in the temperature intervals of melting of the eutectics as well as MMIM. The total cell recovery was 65.3 ± 2.1 %, the recovery of the 3-beta-HSD-positive (Leydig) cells was 82.9 ± 1.8 %, the MTT staining was 32.5 ± 0.9 % versus 42.1 ± 1.7 %; 57.4 ± 2.1 % and 24.0 ± 1.1 % respectively, when compared to the thawing in the water bath.  相似文献   

16.
Silk fibroin (SF) was dissolved in N-methyl morpholine N-oxide (NMMO) at a polymer concentration of 13% (w/w); thermal and rheological solution properties were characterized. The melting/crystallization behaviour of NMMO was influenced by SF presence. Melting of NMMO hydrate decreased to 71 degrees C and a cold crystallization peak appeared at 35 degrees C on heating. None crystallization occurred on cooling. Quenching at a temperature of 50 degrees C or higher did not induce any crystallization on heating. Viscosity of SF-NMMO solutions decreased as a function of temperature. At 75 degrees C, viscosity remained constant for 360 min. SF-NMMO dope was spun by using a lab-scale wet spinning line. The extruded filament was coagulated in an ethanol bath. Regenerated SF fibres were collected at different draw ratios and their morphological, physical, and mechanical properties were characterized. Fibre diameters ranged from 133 to 19mum, cross-section was regularly circular, and surface was generally smooth, with a very fine granular aspect. Birefringence increased with increasing the draw ratio, especially when take up and post-spinning draw were coupled. FT-IR spectra and DSC thermograms confirmed that SF fibres crystallized into Silk II structure. The IR crystallinity index did not change as a function of drawing. Regenerated SF fibres undrawn or drawn only during the coagulation step showed the mechanical behaviour typical of a brittle material. However, when both take up and post-spinning draw were applied, fibres displayed a ductile-stable behaviour. Typical values of the mechanical parameters of regenerated SF fibres were: E=8.7 GPa, sigma(b)=120 MPa and epsilon(b)=35%.  相似文献   

17.
A starch block electrophoresis system is described which includes (a) a single-unit Lucite electrophoresis chamber, (b) temperature control with a circulating water bath and casting resin-coated brass cooling plate, (c) continuous monitoring of block surface temperature and (d) an easily-assembled apparatus for rapid elution of protein from the starch segments.  相似文献   

18.
We investigated the thermal diffusion phenomena of a rodlike mutant filamentous fd-Y21M virus in the isotropic phase by means of an improved infrared thermal-diffusion-forced Rayleigh scattering (IR-TDFRS) setup optimized for measurements of slowly diffusing systems. Because this is the first thermal diffusion study of a stiff anisotropic solute, we investigate the influence of the shape anisotropy on the thermal diffusion behavior. The influence of temperature, fd-Y21M concentration, and ionic strength in relation with the thermodiffusion properties is discussed. We characterize and eliminate the effect of these parameters on the absolute diffusion of the rods and show that diffusion determines the behavior of the Soret coefficient because the thermal diffusion coefficient is constant in the investigated regime. Our results indicate that for the thermal diffusion behavior structural changes of the surrounding water are more important than structural changes between the charged macroions. In the investigated temperature and concentration range, the fd-Y21M virus is thermophobic for the low salt content, whereas the solutions with the high salt content change from thermophobic to thermophilic behavior with decreasing temperature. A comparison with recent measurements of other charged soft and biological matter systems shows that the shape anisotropy of the fd-virus becomes not visible in the results.  相似文献   

19.
A starch block electrophoresis system is described which includes (a) a single-unit Lucite electrophoresis chamber, (b) temperature control with a circulating water bath and casting resin-coated brass cooling plate, (c) continuous monitoring of block surface temperature and (d) an easily-assembled apparatus for rapid elution of protein from the starch segments.  相似文献   

20.
Five subjects were sequentially heated and cooled in a double-climate chamber while mean skin temperature (except the head) and head skin temperature were separately varied. The tympanic membrane temperatures of these subjects were disproportionately influenced by changes in head skin temperature. By heating and cooling localized regions of the head, changes in tympanic membrane temperature that followed changes in skin temperature on the ipsilateral side of the head could be produced. During heating of the head, oral and tympanic membrane temperatures were influenced to a similar degree, while esophageal temperature remained essentially unaffected. However, under conditions in which the legs and feet were heated in a water bath, esophageal temperature showed more rapid changes than either tympanic membrane or oral temperature. These findings suggest that tympanic membrane temperature and, to a lesser degree, oral temperature may be affected by thermal exchange occurring between arteries and veins in the cervical and cephalic regions. In addition, the ability to influence selectively esophageal and tympanic membrane temperatures brings into question the arbitrary use of these measurements under widely different experimental conditions as estimates of core temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号