首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
F James  L Paquet  S A Sparace  D A Gage    A D Hanson 《Plant physiology》1995,108(4):1439-1448
3-Dimethylsulfoniopropionate (DMSP) is an osmoprotectant accumulated by certain flowering plants and algae. In Wollastonia biflora (L.) DC. (Compositae) the first intermediate in DMSP biosynthesis has been shown to be S-methylmethionine (SMM) (A.D. Hanson, J. Rivoal, L. Paquet, D.A. Gage [1994] Plant Physiol 105: 103-110). Other possible intermediates were investigated by radiolabeling methods using W. biflora leaf discs. In pulse-chase experiments with [35S]SMM, 3-dimethylsulfoniopropionaldehyde (DMSP-ald) acquired label rapidly and lost it during the chase period. Conversely, 3-dimethylsulfoniopropylamine (DMSP-amine), 3-dimethylsulfoniopropionamide (DMSP-amide), and 4-dimethylsulfonio-2-hydroxybutyrate (DMSHB) labeled slowly and continuously during both pulse and chase. When unlabeled compounds were supplied along with [35S]SMM, DMSP-ald promoted [35S]DMSP-ald accumulation but DMSHB, DMSP-amide, and DMSP-amine had no such trapping effect. These data indicate that DMSP-ald is an intermediate in DMSP biosynthesis and that the other three compounds are not. Consistent with this, [35S]DMSHB was not metabolized to DMSP. Although [14C]DMSP-amine and [14C]DMSP-amide were converted slowly to DMSP, similar or higher conversion rates were found in plants that do not naturally accumulate DMSP, indicating that nonspecific reactions were responsible. These nonaccumulating species did not form [35S]DMSP-ald from [35S]SMM, implying that DMSP-ald is specific to DMSP biosynthesis. W. biflora leaf discs catabolized supplied sulfonium compounds to dimethylsulfide at differing rates, in the order DMSP-ald >> DMSP-amine > SMM > DMSP-amide > DMSHB > DMSP.  相似文献   

2.
Rhodes D  Gage DA  Cooper A  Hanson AD 《Plant physiology》1997,115(4):1541-1548
Leaves of Wollastonia biflora (L.) DC. synthesize the osmoprotectant 3-dimethylsulfoniopropionate (DMSP) from methionine via S-methylmethionine (SMM) and 3-dimethylsulfoniopropionaldehyde (DMSP-ald); no other intermediates have been detected. To test whether the amino group of SMM is lost by transamination or deamination, [methyl-2H3,15N]SMM was supplied to leaf discs, and 15N-labeling of amino acids was monitored, along with synthesis of [2H3]DMSP. After short incubations more 15N was incorporated into glutamate than into other amino acids, and the 15N abundance in glutamate exceeded that in the amide group of glutamine (Gln). This is more consistent with transamination than deamination, because deamination would be predicted to give greater labeling of Gln amide N due to reassimilation, via Gln synthetase, of the 15NH4+ released. This prediction was borne out by control experiments with 15NH4Cl. The transamination product of SMM, 4-dimethylsulfonio-2-oxobutyrate (DMSOB), is expected to be extremely unstable. This was confirmed by attempting to synthesize it enzymatically from SMM using L-amino acid oxidase or Gln transaminase K and from 4-methylthio-2-oxobutyrate using methionine S-methyltransferase. In each case, the reaction product decomposed rapidly, releasing dimethylsulfide. The conversion of SMM to DMSP-ald is therefore unlikely to involve a simple transamination that generates free DMSOB. Plausible alternatives are that DMSOB is channeled within a specialized transaminase-decarboxylase complex or that it exists only as the bound intermediate of a single enzyme catalyzing an unusual transamination-decarboxylation reaction.  相似文献   

3.
A D Hanson  J Rivoal  L Paquet    D A Gage 《Plant physiology》1994,105(1):103-110
The compatible solute 3-dimethylsulfoniopropionate (DMSP) is accumulated by certain salt-tolerant flowering plants and marine algae. It is the major biogenic precursor of dimethylsulfide, an important sulfur-containing trace gas in the atmosphere. DMSP biosynthesis was investigated in Wollastonia biflora (L.) DC. [= Wedelia biflora (L.) DC., Melanthera biflora (L.) Wild, Asteraceae]. After characterizing DMSP and glycine betaine accumulation in three diverse genotypes, a glycine betaine-free genotype was chosen for radiotracer and stable isotope-labeling studies. In discs from young leaves, label from [U-14C]methionine was readily incorporated into the dimethylsulfide and acrylate moieties of DMSP. This establishes that DMSP is derived from methionine by deamination, decarboxylation, oxidation, and methylation steps, without indicating their order. Five lines of evidence indicated that methylation is the first step in the sequence, not the last. (a) In pulse-chase experiments with [14C]methionine, S-methylmethionine (SMM) had the labeling pattern expected of a pathway intermediate, whereas 3-methylthiopropionate (MTP) did not. (b) [14C]SMM was efficiently converted to DMSP but [14C]MTP was not. (c) The addition of unlabeled SMM, but not of MTP, reduced the synthesis of [14C]DMSP from [14C]methionine. (d) The dimethylsulfide group of [13CH3,C2H3]SMM was incorporated as a unit into DMSP. (e) When [C2H3,C2H3]SMM was given together with [13CH3]methionine, the main product was [C2H3,C2H3]DMSP, not [13CH3,C2H3]DMSP or [13CH3,13CH3]DMSP. The stable isotope labeling results also show that the SMM cycle does not operate at a high level in W. biflora leaves.  相似文献   

4.
The osmoprotectant 3-dimethylsulfoniopropionate (DMSP) occurs in Gramineae and Compositae, but its synthesis has been studied only in the latter. The DMSP synthesis pathway was therefore investigated in the salt marsh grass Spartina alterniflora Loisel. Leaf tissue metabolized supplied [35S]methionine (Met) to S-methyl-l-Met (SMM), 3-dimethylsulfoniopropylamine (DMSP-amine), and DMSP. The 35S-labeling kinetics of SMM and DMSP-amine indicated that they were intermediates and, consistent with this, the dimethylsulfonium moiety of SMM was shown by stable isotope labeling to be incorporated as a unit into DMSP. The identity of DMSP-amine, a novel natural product, was confirmed by both chemical and mass-spectral methods. S. alterniflora readily converted supplied [35S]SMM to DMSP-amine and DMSP, and also readily converted supplied [35S]DMSP-amine to DMSP; grasses that lack DMSP did neither. A small amount of label was detected in 3-dimethylsulfoniopropionaldehyde (DMSP-ald) when [35S]SMM or [35S]DMSP-amine was given. These results are consistent with the operation of the pathway Met → SMM → DMSP-amine → DMSP-ald → DMSP, which differs from that found in Compositae by the presence of a free DMSP-amine intermediate. This dissimilarity suggests that DMSP synthesis evolved independently in Gramineae and Compositae.  相似文献   

5.
Angiosperms synthesize S-methylmethionine (SMM) from methionine (Met) and S-adenosylmethionine (AdoMet) in a unique reaction catalyzed by Met S-methyltransferase (MMT). SMM serves as methyl donor for Met synthesis from homocysteine, catalyzed by homocysteine S-methyltransferase (HMT). MMT and HMT together have been proposed to constitute a futile SMM cycle that stops the free Met pool from being depleted by an overshoot in AdoMet synthesis. Arabidopsis and maize have one MMT gene, and at least three HMT genes that belong to two anciently diverged classes and encode enzymes with distinct properties and expression patterns. SMM, and presumably its cycle, must therefore have originated before dicot and monocot lineages separated. Arabidopsis leaves, roots and developing seeds all express MMT and HMTs, and can metabolize [35S]Met to [35S]SMM and vice versa. The SMM cycle therefore operates throughout the plant. This appears to be a general feature of angiosperms, as digital gene expression profiles show that MMT and HMT are co-expressed in leaves, roots and reproductive tissues of maize and other species. An in silico model of the SMM cycle in mature Arabidopsis leaves was developed from radiotracer kinetic measurements and pool size data. This model indicates that the SMM cycle consumes half the AdoMet produced, and suggests that the cycle serves to stop accumulation of AdoMet, rather than to prevent depletion of free Met. Because plants lack the negative feedback loops that regulate AdoMet pool size in other eukaryotes, the SMM cycle may be the main mechanism whereby plants achieve short-term control of AdoMet level.  相似文献   

6.
Organic sulfur compounds are present in all aquatic systems, but their use as sources of sulfur for bacteria is generally not considered important because of the high sulfate concentrations in natural waters. This study investigated whether dimethylsulfoniopropionate (DMSP), an algal osmolyte that is abundant and rapidly cycled in seawater, is used as a source of sulfur by bacterioplankton. Natural populations of bacterioplankton from subtropical and temperate marine waters rapidly incorporated 15 to 40% of the sulfur from tracer-level additions of [(35)S]DMSP into a macromolecule fraction. Tests with proteinase K and chloramphenicol showed that the sulfur from DMSP was incorporated into proteins, and analysis of protein hydrolysis products by high-pressure liquid chromatography showed that methionine was the major labeled amino acid produced from [(35)S]DMSP. Bacterial strains isolated from coastal seawater and belonging to the alpha-subdivision of the division Proteobacteria incorporated DMSP sulfur into protein only if they were capable of degrading DMSP to methanethiol (MeSH), whereas MeSH was rapidly incorporated into macromolecules by all tested strains and by natural bacterioplankton. These findings indicate that the demethylation/demethiolation pathway of DMSP degradation is important for sulfur assimilation and that MeSH is a key intermediate in the pathway leading to protein sulfur. Incorporation of sulfur from DMSP and MeSH by natural populations was inhibited by nanomolar levels of other reduced sulfur compounds including sulfide, methionine, homocysteine, cysteine, and cystathionine. In addition, propargylglycine and vinylglycine were potent inhibitors of incorporation of sulfur from DMSP and MeSH, suggesting involvement of the enzyme cystathionine gamma-synthetase in sulfur assimilation by natural populations. Experiments with [methyl-(3)H]MeSH and [(35)S]MeSH showed that the entire methiol group of MeSH was efficiently incorporated into methionine, a reaction consistent with activity of cystathionine gamma-synthetase. Field data from the Gulf of Mexico indicated that natural turnover of DMSP supplied a major fraction of the sulfur required for bacterial growth in surface waters. Our study highlights a remarkable adaptation by marine bacteria: they exploit nanomolar levels of reduced sulfur in apparent preference to sulfate, which is present at 10(6)- to 10(7)-fold higher concentrations.  相似文献   

7.
8.
All flowering plants produce S-methylmethionine (SMM) from Met and have a separate mechanism to convert SMM back to Met. The functions of SMM and the reasons for its interconversion with Met are not known. In this study, by using the aphid stylet collection method together with mass spectral and radiolabeling analyses, we established that l-SMM is a major constituent of the phloem sap moving to wheat ears. The SMM level in the phloem ( approximately 2% of free amino acids) was 1.5-fold that of glutathione, indicating that SMM could contribute approximately half the sulfur needed for grain protein synthesis. Similarly, l-SMM was a prominently labeled product in phloem exudates obtained by EDTA treatment of detached leaves from plants of the Poaceae, Fabaceae, Asteraceae, Brassicaceae, and Cucurbitaceae that were given l-(35)S-Met. cDNA clones for the enzyme that catalyzes SMM synthesis (S-adenosylMet:Met S-methyltransferase; EC 2.1.1.12) were isolated from Wollastonia biflora, maize, and Arabidopsis. The deduced amino acid sequences revealed the expected methyltransferase domain ( approximately 300 residues at the N terminus), plus an 800-residue C-terminal region sharing significant similarity with aminotransferases and other pyridoxal 5'-phosphate-dependent enzymes. These results indicate that SMM has a previously unrecognized but often major role in sulfur transport in flowering plants and that evolution of SMM synthesis in this group involved a gene fusion event. The resulting bipartite enzyme is unlike any other known methyltransferase.  相似文献   

9.
The fraction of planktonic heterotrophic bacteria capable of incorporating dissolved dimethylsulfoniopropionate (DMSP) and leucine was determined at two coastal sites by microautoradioagraphy (AU). In Gulf of Mexico seawater microcosm experiments, the proportion of prokaryotes that incorporated sulfur from [35S]DMSP ranged between 27 and 51% of 4′,6-diamidino-2-phenylindole (DAPI)-positive cells, similar to or slightly lower than the proportion incorporating [3H]leucine. In the northwest Mediterranean coast, the proportion of cells incorporating sulfur from [35S]DMSP increased from 5 to 42% from January to March, coinciding with the development of a phytoplankton bloom. At the same time, the proportion of cells incorporating [3H]leucine increased from 21 to 40%. The combination of AU and fluorescence in situ hybridization (FISH) revealed that the Roseobacter clade (α-proteobacteria) accounted for 13 to 43% of the microorganisms incorporating [35S]DMSP at both sampling sites. Significant uptake of sulfur from DMSP was also found among members of the γ-proteobacteria and Cytophaga-Flavobacterium groups. Roseobacter and γ-proteobacteria exhibited the highest percentage of DAPI-positive cells incorporating 35S from DMSP (around 50%). Altogether, the application of AU with [35S]DMSP combined with FISH indicated that utilization of S from DMSP is a widespread feature among active marine bacteria, comparable to leucine utilization. These results point toward DMSP as an important substrate for a broad and diverse fraction of marine bacterioplankton.  相似文献   

10.
The fraction of planktonic heterotrophic bacteria capable of incorporating dissolved dimethylsulfoniopropionate (DMSP) and leucine was determined at two coastal sites by microautoradioagraphy (AU). In Gulf of Mexico seawater microcosm experiments, the proportion of prokaryotes that incorporated sulfur from [(35)S]DMSP ranged between 27 and 51% of 4',6-diamidino-2-phenylindole (DAPI)-positive cells, similar to or slightly lower than the proportion incorporating [(3)H]leucine. In the northwest Mediterranean coast, the proportion of cells incorporating sulfur from [(35)S]DMSP increased from 5 to 42% from January to March, coinciding with the development of a phytoplankton bloom. At the same time, the proportion of cells incorporating [(3)H]leucine increased from 21 to 40%. The combination of AU and fluorescence in situ hybridization (FISH) revealed that the Roseobacter clade (alpha-proteobacteria) accounted for 13 to 43% of the microorganisms incorporating [(35)S]DMSP at both sampling sites. Significant uptake of sulfur from DMSP was also found among members of the gamma-proteobacteria and Cytophaga-Flavobacterium groups. Roseobacter and gamma-proteobacteria exhibited the highest percentage of DAPI-positive cells incorporating (35)S from DMSP (around 50%). Altogether, the application of AU with [(35)S]DMSP combined with FISH indicated that utilization of S from DMSP is a widespread feature among active marine bacteria, comparable to leucine utilization. These results point toward DMSP as an important substrate for a broad and diverse fraction of marine bacterioplankton.  相似文献   

11.
Dimethylsulphoniopropionate (DMSP) is produced in high concentrations in many marine algae, but in higher plants only in a few salt marsh grasses of the genus Spartina, in sugar canes (Saccharum spp.), and in the Pacific strand plant Wollastonia biflora (L.) DC. The high concentrations found in higher plants (up to 250 micromol g(-1) dry weight) suggest an important role, but though many functions have been suggested (including methylating agent, detoxification of excess sulphur, salt tolerance, and herbivore deterrent), its actual functions remain unclear. The fact that the ability to produce DMSP in high concentrations is found in species that have no taxonomic or ecological relationship suggests that the compound evolved independently and serves different functions in different plants. This is supported by observations that DMSP in W. biflora behaves differently from that in Spartina species. While DMSP concentrations in W. biflora have been found to increase with increasing salinity, suggesting a role in osmotic control, such a relationship has not been found for DMSP in Spartina species. Recent observations on tissue culture showed that, while undifferentiated tissue of W. biflora produced DMSP, such material of Spartina alterniflora Loisel. did not. Ongoing studies with tissue culture of both species have opened up new avenues of research on DMSP in higher plants, ultimately to elucidate the functions of this enigmatic compound.  相似文献   

12.
An antibody that inhibits over 95% of the cytosolic NADP+-dependent gamma-hydroxybutyrate (GHB) dehydrogenase activity of either rat brain or kidney was found to inhibit only approximately 50% of the conversion of [1-14C]GHB to 14CO2 by rat kidney homogenate. A similar result was obtained with sodium valproate, a potent inhibitor of GHB dehydrogenase. The mitochondrial fraction from rat brain and kidney was found to catalyze the conversion of [1-14C]GHB to 14CO2. The dialyzed mitochondrial fraction also catalyzed the oxidation of GHB to succinic semialdehyde (SSA) in a reaction that did not require added NAD+ or NADP+ and which was not inhibited by sodium valproate. The enzyme from the mitochondrial fraction which converts GHB to SSA appears to be distinct from the NADP+-dependent cytosolic oxidoreductase which catalyzes this reaction.  相似文献   

13.
Phorbol 12-myristate 13-acetate (PMA) induces time-dependent changes in protein kinase C subcellular distribution and enzymatic activity in the human osteosarcoma cell line SaOS-2. Short (less than 60 min) incubations with PMA caused decreased cytosolic enzyme activity and a concomitant increase in particulate protein kinase; after 3 h, particulate protein kinase C activity also declined to reach less than 10% of basal activity by 24 h (Krug, E., and Tashjian, Jr., A. H., (1987) Cancer Res. 47, 2243-2246). In order to determine whether the loss in enzyme activity was due to decreased enzyme protein, Western blot analyses were performed using a polyclonal antibody against protein kinase C raised in rabbits. This approach confirmed the previously reported time-related changes: 80-kDa immunoreactive protein kinase C initially translocated from the cytosol to the particulate cell fraction and later disappeared completely from the particulate fraction. Loss of protein kinase C enzymatic activity thus results from actual loss of the 80-kDa protein; we found no evidence for generation of a calcium/phospholipid-independent protein kinase C-like form of the enzyme. Membrane association was confirmed by immunoprecipitation experiments using [35S]methionine-labeled cells. Brief exposure to PMA caused a marked loss in the [35S]methionine-labeled cytosolic protein kinase C band and an increase in the labeled particulate band. Protein kinase C immunoprecipitated from cells treated with PMA for 14 h displayed an increase in [35S]methionine label despite a greater than 80% loss of enzyme activity. The high specific radioactivity of the remaining 80-kDa protein leads us to conclude that long term treatment with PMA causes an increase in the rate of protein kinase C synthesis accompanied by a still greater increase in the rate of enzyme degradation in SaOS-2 cells.  相似文献   

14.
Plants synthesize S-methylmethionine (SMM) from S-adenosylmethionine (AdoMet), and methionine (Met) by a unique reaction and, like other organisms, use SMM as a methyl donor for Met synthesis from homocysteine (Hcy). These reactions comprise the SMM cycle. Two Arabidopsis cDNAs specifying enzymes that mediate the SMM --> Met reaction (SMM:Hcy S-methyltransferase, HMT) were identified by homology and authenticated by complementing an Escherichia coli yagD mutant and by detecting HMT activity in complemented cells. Gel blot analyses indicate that these enzymes, AtHMT-1 and -2, are encoded by single copy genes. The deduced polypeptides are similar in size (36 kDa), share a zinc-binding motif, lack obvious targeting sequences, and are 55% identical to each other. The recombinant enzymes exist as monomers. AtHMT-1 and -2 both utilize l-SMM or (S,S)-AdoMet as a methyl donor in vitro and have higher affinities for SMM. Both enzymes also use either methyl donor in vivo because both restore the ability to utilize AdoMet or SMM to a yeast HMT mutant. However, AtHMT-1 is strongly inhibited by Met, whereas AtHMT-2 is not, a difference that could be crucial to the control of flux through the HMT reaction and the SMM cycle. Plant HMT is known to transfer the pro-R methyl group of SMM. This enabled us to use recombinant AtHMT-1 to establish that the other enzyme of the SMM cycle, AdoMet:Met S-methyltransferase, introduces the pro-S methyl group. These opposing stereoselectivities suggest a way to measure in vivo flux through the SMM cycle.  相似文献   

15.
R R Yassin  S N Murthy 《Peptides》1991,12(5):925-927
We examined the potential role of protein kinase C in signal transduction induced by gastrin's stimulation of rat colonic epithelium. Protein synthesis ([35S]methionine incorporation into protein) and enzyme activity (decrease in the cytosolic activity) were measured following epithelial stimulation with gastrin. Gastrin (10 nM) increased [35S]methionine incorporation into protein to 265% above maintenance level. The effect of gastrin was comparable to the stimulation induced by phorbol 12-myristate, 13-acetate (PMA), a strong activator of protein kinase C. The increase in protein synthesis induced by gastrin was totally abolished by 1-(5-isoquinolinyl)-2-methylpiperazine, an inhibitor of protein kinase C activity. Gastrin also decreased the cytosolic activity of the enzyme, an index of its activation and subsequent translocation to other cellular compartments. Therefore, we conclude that gastrin may be acting through a protein kinase C mechanism.  相似文献   

16.
The rate of increase of isocitrate lyase activity was measured in darkened Chlorella fusca var. vaculoata cultures in the presence and absence of acetate and compared with the rate of incorporation of [35S]methionine into isocitrate lyase enzyme protein under the same conditions. Isocitrate lyase enzyme protein was isolated for this purpose by specific immunoprecipitation and sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. After 4h in the dark, in the presence of acetate the rate of increase of isocitrate lyase activity was 75 times that in the absence of acetate. Incorporation of [35S]methionine into isocitrate lyase was 140 times greater in the presence of acetate. Incorporation of [35S]methionine into the trichloroacetic acid-insoluble fraction overall was about five times as fast in the presence of acetate. These data are not consistent with an increased turnover of isocitrate lyase enzyme molecules, sufficient to account for the low rate of increase of isocitrate lyase activity in the absence of acetate. The greater rate of enzyme synthesis in the presence of acetate must therefore be due to some effect of this metabolite on the processing or translation of isocitrate lyase mRNA.  相似文献   

17.
Lipoamide dehydrogenase (LADase) was purified to homogeneity from rat liver mitochondria, and the intracellular distribution and biosynthesis of the LADase were investigated with antibody prepared against the purified enzyme. 1) LADase activity was mostly found in mitochondria; the activity in cytosol was about one-tenth of that in mitochondria. 2) LADase in the crude mitochondrial and cytosolic extracts and the purified LADase were immunologically identical as judged from the Ouchterlony double diffusion test. These LADases were indistinguishable from each other on immunochemical titration; i.e., the amount of LADase precipitated by a fixed amount of the anti-LADase antibody was the same for all the preparations. However, cytosolic LADase activity was inhibited by the antibody more strongly than mitochondrial LADase activity. 3) Two min after intravenous injection of [35S]methionine, more radioactivity was incorporated into cytosolic LADase than into the mitochondrial enzyme in the liver. This result suggests that localization of LADase in the cytosolic fraction is not an artifact due to leakage from mitochondria during homogenization of rat liver. 4) LADase was synthesized predominantly on free ribosomes, which indicates that LADase is synthesized on cytoplasmic ribosomes and translocated into mitochondria just as other mitochondrial proteins are. 5) After cell-free protein synthesis with post-mitochondrial supernatant, radioactivity immunoprecipitated with anti-LADase antibody was detected as a major peak with the same molecular weight as the purified LADase.  相似文献   

18.
Respiratory chain-linked NADH dehydrogenase. Mechanisms of assembly   总被引:1,自引:0,他引:1  
The assembly of mitochondrially and cytoplasmically translated subunits of NADH dehydrogenase in the inner mitochondrial membrane was studied in rat hepatoma cultures. A polyclonal antibody to the purified bovine heart holoenzyme, which reacted with comigrating proteins of both rat liver and hepatoma mitochondria on immunoblots, precipitated 25-30 [35S]methionine-labeled proteins from hepatoma cell lysates. Six of these were sensitive to an inhibitor of mitochondrial translation (chloramphenicol), resistant to an inhibitor of cytosolic translation (cycloheximide), and were not present in cytochrome oxidase. By these criteria, six NADH dehydrogenase subunits are identified as being translated on mitochondrial ribosomes. The metabolic properties of the three most prominent of these at 51, 43, and 11 kDa were studied in more detail. Mitochondrial and nuclear-coded polypeptides assemble into NADH dehydrogenase at different rates as measured by incorporation of pulse-labeled proteins into immunoprecipitable enzyme. Nuclear-coded, imported polypeptides appear immediately after a pulse with [35S]methionine and retain constant stoichiometry. Mitochondrially coded proteins, although rapidly translated, appear at peak levels at different times between 0 and 12 h of chase in the immunoprecipitated enzyme. Ongoing synthesis and import of nuclear-coded proteins is necessary for mitochondrially coded proteins to be assembled. Excess, unassembled mitochondrially translated subunits are degraded in an oligomycin-sensitive manner. These data are consistent with a model in which a scaffold of imported proteins forms the inner core of the enzyme, and later arriving mitochondrially translated proteins attach to the scaffold in a time-dependent manner.  相似文献   

19.
The capacity of castor-bean endosperm tissue to incorporate [35S]methionine into proteins of the total particulate fraction increased during the first 3 days of germination and subsequently declined. At the onset of germination 66% of the incorporated 35S was found in the separated endoplasmic-reticulum fraction, with the remainder in mitochondria, whereas at later developmental stages an increasing proportion of 35S was recovered in glyoxysomes. The kinetics of [35S]methionine incorporation into the major organelle fractions of 3-day-old endosperm tissue showed that the endoplasmic reticulum was immediately labelled, whereas a lag period preceded the labelling of mitochondria and glyoxysomes. When kinetic experiments were interrupted by the addition of an excess of unlabelled methionine, incorporation of [35S]methionine into the endoplasmic reticulum rapidly ceased, but incorporation into mitochondia and glyoxysomes continued for a further 1h. Examination of isolated organelle membranes during this period showed that the addition of unlabelled methionine resulted in a stimulated incorporation of [35S]no methionine into the endoplasmic-reticulum membrane for 30 min, after which time the 35S content of this fraction declined, whereas that of the glyoxysomal membranes continued to increase slowly. The 35S-labelling kinetics of organelles and fractions derived therefrom are discussed in relation to the role of the endoplasmic reticulum in protein synthesis during glyoxysome biogenesis.  相似文献   

20.
A simple and rapid procedure is described for purification of carbamyl phosphate synthetase from the matrix fraction of rat liver mitochondria. Antibodies to the enzyme were raised in sheep and purified from antiserum by affinity chromatography on enzyme-bound Sepharose columns. When membrane-free polyribosomes, isolated from a cytosolic fraction of rat liver, were incubated in a messenger-dependent rabbit reticulocyte protein-synthesizing system in the presence of [35S]methionine, the purified antibody precipitated a product of translation representing 0.2% of total trichloroacetic acid-insoluble radioactivity. It demonstrated mobility characteristics in sodium dodecyl sulfate-polyacrylamide gels expected for a polypeptide of molecular mass approximately 5500 daltons larger than the mature mitochondrial form of the enzyme (160,000 daltons). Proteolysis of both the mature and presumptive in vitro precursor forms of the enzyme yielded respective sets of peptide fragments which gave similar patterns upon gel electrophoresis. Excess mitochondrial enzyme effectively competed with the in vitro product for interaction with anti-carbamyl phosphate synthetase antibody.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号