首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effect of carnosine on the activation of soluble guanylate cyclase by sodium nitroprusside and protoporphyrin IX was studied using human platelet 105000 g supernatants and partially purified heme-deficient guanylate cyclase preparations. In experiments with 105000 g supernatants, carnosine (1 mM) inhibited the enzyme activation by nitroprusside by about 70%. With the partially purified heme-deficient guanylate cyclase, the enzyme activation by nitroprusside was lowered by 86%, and the remaining insignificant stimulatory effect remained unchanged upon carnosine addition. The stimulatory effect of protoporphyrin IX on the partially purified heme-deficient enzyme preparation did not differ from that observed with the 105000 g supernatant; carnosine addition had no effect on activation of guanylate cyclase by protoporphyrin IX. It was concluded that the inhibitory effect of carnosine on the ability of the enzyme to be activated by nitroprusside is due to the interaction of carnosine with guanylate cyclase, and that it is heme directed.  相似文献   

2.
The effect of carnosine on activation of human platelet soluble guanylate cyclase has been studied in 105,000 g supernatants and partially purified haem-deficient enzyme preparations. In the 105,000 g supernatant carnosine (1 mM) inhibited (by about 70%) the enzyme activation caused by sodium nitroprusside. In partially purified haem-deficient guanylate cyclase preparations the inhibition of enzyme activation by sodium nitroprusside was 86%; further addition of carnosine had no effect on the enzyme activity. The strength of the activating effect of protoporphyrin IX on partially purified haem-deficient guanylate cyclase did not differ from that for the 105,000 g supernatant; this stimulating effect did not change after carnosine addition. A conclusion is drawn that the inhibiting effect of carnosine on the ability of guanylate cyclase to be activated by sodium nitroprusside is due to the dipeptide interaction with the guanylate cyclase haem.  相似文献   

3.
Peptide hormones can stimulate cyclic GMP synthesis through either of two general mechanisms: some peptides activate the cytoplasmic form of guanylate cyclase via a coupling factor called EDRF (endothelium-derived relaxation factor), while others activate the membrane form by interacting directly with an extracellular binding domain of the cyclase molecule itself. We have investigated the mechanism(s) by which crustacean hyperglycemic hormone (CHH), a neuropeptide that regulates energy metabolism in crustaceans, elevates cyclic GMP levels in lobster muscle. Phosphodiesterase inhibitors potentiate the response in intact tissue. This indicates that the primary effect of the peptide is to activate a cyclase rather than inhibit a phosphodiesterase. Methylene blue, a specific inhibitor of the EDRF pathway, does not block the actions of CHH. In addition, nitroprusside, an agent that directly activates the EDRF pathway in vertebrate animals, does not activate guanylate cyclase either in intact or homogenized lobster muscle. This indicates that the EDRF pathway, although prominent in vertebrate muscle, is not found in crustaceans and further suggests that the membrane cyclase is the most likely target of CHH. Membrane and soluble cyclases can be isolated from homogenates of lobster muscle (in a 3.5:1 ratio), and both are stimulated by Mn2+ and inhibited by Ca2+. CHH has no effect on the soluble enzyme. Coupling of CHH receptors to the particulate cyclase, however, remains intact in isolated membranes, thus providing a new model system for the study of receptor/cyclase interactions.  相似文献   

4.
R K Sharma  R B Marala  T M Duda 《Steroids》1989,53(3-5):437-460
The original concept that cyclic GMP is one of the mediators of the hormone-dependent process of steroidogenesis has been strengthened by the characterization of a 180-kDa protein from rat adrenocortical carcinoma and rat and mouse testes. This protein appears to have an unusual characteristic of containing both the atrial natriuretic factor (ANF)-binding and guanylate cyclase activities, and appears to be intimately involved in the ANF-dependent steroidogenic signal transduction. In rat adrenal glands we now demonstrate: 1) the direct presence of a 180-kDa ANF-binding protein in GTP-affinity purified membrane fraction as evidenced by affinity cross-linking technique and by the Western blot analysis of the partially purified enzyme; 2) that the enzyme is biochemically and immunologically different from the soluble guanylate cyclase as there is no antigenic cross-reactivity of 180-kDa guanylate cyclase antibody with soluble guanylate cyclase; 3) in contrast to the soluble guanylate cyclase, the particulate enzyme is not stimulated by nitrite-generating compounds and hemin; and 4) protein kinase C inhibits both the basal and ANF-dependent guanylate cyclase activity and phosphorylates the 180-kDa guanylate cyclase. These results reveal the presence of a 180-kDa protein in rat adrenal glands and support the contention that: (a) this protein contains both the guanylate cyclase and ANF receptor; (b) the 180-kDa enzyme is coupled with the ANF-dependent cyclic GMP production; (c) the 180-kDa enzyme is biochemically distinct from the nonspecific soluble guanylate cyclase; and (d) there is a protein kinase C-dependent negative regulatory loop for the operation of ANF-dependent cyclic GMP signal pathway which acts via the phosphorylation of 180-kDa guanylate cyclase.  相似文献   

5.
B Mayer  E B?hme 《FEBS letters》1989,256(1-2):211-214
In a fraction of cytosolic proteins from bovine lung, soluble guanylyl cyclase was concentration-dependently stimulated by L-arginine but not by D-arginine. Stimulation was up to 20-fold with an EC50 of about 3 x 10(-5) M. Activation of guanylyl cyclase by L-arginine was dependent on NADPH (EC50 about 5 x 10(-7) M) and Ca2+ (EC50 about 1.4 x 10(-6) M). The activation by L-arginine was inhibited by NG-monomethyl-L-arginine and hemoglobin. The effect of L-arginine was dependent on the protein concentration and was not observed in preparations of purified gyanylyl cyclase. These results suggest that bovine lung contains a Ca2+-regulated enzyme or enzyme system which converts L-arginine into an activator of soluble guanylyl cyclase.  相似文献   

6.
Several thiol blocking agents inhibit basal guanylate cyclase activity of 100 000 X g hepatic supernatant fractions and the stimulation of enzyme activity by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), NaN3, NaNO2 and nitroprusside. The relative potency of the thiol blockers as inhibitors was CdCl2 greater than p-hydroxymercuribenzoate greater than N-ethylmaleimide greater than arsenite greater than iodoacetamide. Inhibition of basal and MNNG-responsive soluble guanylate cyclase activities by arsenite was markedly potentiated by an equimolar concentration of 2,3-dimercaprol, but not by mercaptoethanol. Inhibition of soluble guanylate cyclase by either arsenite or CdCl2 was completely reversed by excess 2,3-dimercaprol. Qualitatively similar effects were observed with DE-52 cellulose purified soluble hepatic guanylate cyclase, and suggested an involvement of closely juxtaposed thiol groups in the regulation of enzyme activity. For several reasons inhibition by thiol blockers appeared to be mediated through multiple mechanisms and/or sites of interaction: (1) Concentrations of the thiol inhibitors which had no effect on basal activity strikingly inhibited the responsiveness of the enzyme to a submaximal concentration of MNNG. (2) CdCl2 abolished the action of excess MnCl2 to stimulate purified guanylate cyclase, but was a relatively ineffective inhibitor when MnCl2 and GTP were present in equimolar concentrations. By contrast, arsenite-2,3-dimercaprol was uniformly effective in inhibiting guanylate cyclase activity in the presence or absence of excess MnCl2. (3) Arsenite-2,3-dimercaprol increased the Km for MnGTP (control, 0.13 +/- 0.02 mM; 0.2 mM arsenite-2,3-dimercaprol, 0.31 +/- 0.03 mM), whereas CdCl2 had no effect on this parameter. (4) Hepatic particulate guanylate cyclase activity was significantly inhibited by arsenite 2,3-dimercaprol but not by CdCl2. Thus, the data not only indicate that vicinal dithiol groups are required for expression of basal guanylate cyclase activity and enzyme responses to agonists, but strongly suggest the involvement of more than one interacting site containing free thiol residues.  相似文献   

7.
The mechanism by which arachidonic acid activates soluble guanylate cyclase purified from bovine lung is partially elucidated. Unlike enzyme activation by nitric oxide (NO), which required the presence of enzyme-bound heme, enzyme activation by arachidonic acid was inhibited by heme. Human but not bovine serum albumin in the presence of NaF abolished activation of heme-containing guanylate cyclase by NO and nitroso compounds, whereas enzyme activation by arachidonic acid was markedly enhanced. Addition of heme to enzyme reaction mixtures restored enzyme activation by NO but inhibited enzyme activation by arachidonic acid. Whereas heme-containing guanylate cyclase was activated only 4- to 5-fold by arachidonic or linoleic acid, both heme-deficient and albumin-treated heme-containing enzymes were activated over 20-fold. Spectrophotometric analysis showed that human serum albumin promoted the reversible dissociation of heme from guanylate cyclase. Arachidonic acid appeared to bind to the hydrophobic heme-binding site on guanylate cyclase but the mechanism of enzyme activation was dissimilar to that for NO or protoporphyrin IX. Enzyme activation by arachidonic acid was insensitive to Methylene blue or KCN, was inhibited competitively by metalloporphyrins, and was abolished by lipoxygenase. Whereas NO and protoporphyrin IX lowered the apparent Km and Ki for MgGTP and uncomplexed Mg2+, arachidonic and linoleic acids failed to alter these kinetic parameters. Thus, human serum albumin can promote the reversible dissociation of heme from soluble guanylate cyclase and thereby abolish enzyme activation by NO but markedly enhance activation by polyunsaturated fatty acids. Arachidonic acid activates soluble guanylate cyclase by heme-independent mechanisms that are dissimilar to the mechanism of enzyme activation caused by protoporphyrin IX.  相似文献   

8.
Bovine lung soluble guanylate cyclase was purified to apparent homogeneity in a form that was deficient in heme. Heme-deficient guanylate cyclase was rapidly and easily reconstituted with heme by reacting enzyme with hematin in the presence of excess dithiothreitol, followed by removal of unbound heme by gel filtration. Bound heme was verified spectrally and NO shifted the absorbance maximum in a manner characteristic of other hemoproteins. Heme-deficient and heme-reconstituted guanylate cyclase were compared with enzyme that had completely retained heme during purification. NO and S-nitroso-N-acetylpenicillamine only marginally activated heme-deficient guanylate cyclase but markedly activated both heme-reconstituted and heme-containing forms of the enzyme. Restoration of marked activation of heme-deficient guanylate cyclase was accomplished by including 1 microM hematin in enzyme reaction mixtures containing dithiothreitol. Preformed NO-heme activated all forms of guanylate cyclase in the absence of additional heme. Guanylate cyclase activation was observed in the presence of either MgGTP or MnGTP, although the magnitude of enzyme activation was consistently greater with MgGTP. The apparent Km for GTP in the presence of excess Mn2+ or Mg2+ was 10 microM and 85-120 microM, respectively, for unactivated guanylate cyclase. The apparent Km for GTP in the presence of Mn2+ was not altered but the Km in the presence of Mg2+ was lowered to 58 microM with activated enzyme. Maximal velocities were increased by enzyme activators in the presence of either Mg2+ or Mn2+. The data reported in this study indicate that purified guanylate cyclase binds heme and the latter is required for enzyme activation by NO and nitroso compounds.  相似文献   

9.
Hydroxylamine actived guanylate cyclase in particulate fraction of cerebral cortex of rat. Activation was most remarkable in crude mitochondrial fraction. When the crude mitochondrial fraction was subjected to osmotic shock and fractionated, guanylate cyclase activity recovered in the subfractions as assayed with hydroxylamine was only one-third of the starting material. Recombination of the soluble and the particulate fractions, however, restored guanylate cyclase activity to the same level as that of the starting material. When varying quantities of the particulate and soluble fractions were combined, enzyme activity was proportional to the quantity of the soluble fraction. Heating of the soluble or particulate fraction at 55 degrees for 5 min inactivated guanylate cyclase. The heated particulate fraction markedly activated guanylate cyclase activity in the native soluble fraction, while the heated soluble fraction did not stimulate enzyme activity in the particulate. The particulate fraction preincubated with hydroxylamine at 37 degrees for 5 min followed by washing activated guanylate cyclase activity in the soluble fraction in the absence of hydroxylamine. Further fractionation of the crude mitochondrial fraction revealed that the factor(s) needed for the activation by hydroxylamine is associated with the mitochondria. The mitochondrial fraction of cerebral cortex activated guanylate cyclase in supernatant of brain, liver, or kidney in the presence of hydroxylamine. The mitochondrial fraction prepared from liver or kidney, in turn, activated soluble guanylate cyclase in brain. Activation of guanylate cyclase by hydroxylamine was compared with that of sodium azide. Azide activated guanylate cyclase in the synaptosomal soluble fraction, while hydroxylamine inhibited it. The particulate fraction preincubated with azide followed by washing did not stimulate guanylate cyclase activity in the absence of azide. The activation of guanylate cyclase by hydroxylamine is not due to a change in the concentration of the substrate GTP, Addition of hydroxylamine did not alter the apparent Km value of guanylate cyclase for GTP. Guanylate cyclase became less dependent on manganese in the presence of hydroxylamine. Thus the activation of guanylate cyclase by hydroxylamine is due to the change in the Vmax of the reaction.  相似文献   

10.
Sodium azide, hydroxylamine, and phenylhydrazine at concentrations of 1 mM increased the activity of soluble guanylate cyclase from rat liver 2- to 20-fold. The increased accumulation of guanosine 3':5'-monophosphate in reaction mixtures with sodium azide was not due to altered levels of substrate, GTP, or altered hydrolysis of guanosine 3':5'-monophosphate by cyclic nucleotide phosphodiesterase. The activation of guanylate cyclase was dependent upon NaN3 concentration and temperature; preincubation prevented the time lag of activation observed during incubation. The concentration of NaN3 that resulted in half-maximal activation was 0.04 mM. Sodium azide increased the apparent Km for GTP from 35 to 113 muM. With NaN3 activation the enzyme was less dependent upon the concentration of free Mn2+. Activation of enzyme by NaN3 was irreversible with dilution or dialysis of reaction mixtures. The slopes of Arrhenius plots were altered with sodium azide-activated enzyme, while gel filtration of the enzyme on Sepharose 4B was unaltered by NaN3 treatment. Triton X-100 increased the activity of the enzyme, and in the presence of Triton X-100 the activation by NaN3 was not observed. Trypsin treatment decreased both basal guanylate cyclase activity and the responsiveness to NaN3. Phospholipase A, phospholipase C, and neuraminidase increased basal activity but had little effect on the responsiveness to NaN3. Both soluble and particulate guanylate cyclase from liver and kidney were stimulated with NaN3. The particulate enzyme from cerebral cortex and cerebellum was also activated with NaN3, whereas the soluble enzyme from these tissues was not. Little or no effect of NaN3 was observed with preparations from lung, heart, and several other tissues. The lack of an effect with NaN3 on soluble GUANYLATE Cyclase from heart was probably due to the presence of an inhibitor of NaN3 activation in heart preparations. The effect of NaN3 was decreased or absent when soluble guanylate cyclase from liver was purified or stored at -20degrees. The activation of guanylate cyclase by NaN3 is complex and may be the result of the nucleophilic agent acting on the enzyme directly or what may be more likely on some other factor in liver preparations.  相似文献   

11.
The activity of soluble guanylate cyclase can be increased by exposure of the enzyme to arachidonic acid or to some oxidized metabolites of the fatty acid. We have tried to determine whether activation of the enzyme by arachidonate requires that the fatty acid be converted to an oxidized metabolite, either by a possible trace contaminant of a lipoxygenase or by guanylate cyclase itself, which contains a heme moiety. Soluble guanylate cyclase purified from bovine lung was activated 4-6-fold by arachidonic acid. This activation was not dependent on the presence of oxygen in the incubation medium. No detectable metabolites of arachidonic acid were formed during incubation with soluble guanylate cyclase. Addition of soybean lipoxygenase to the incubation did not increase activation by arachidonic acid. The inhibitors of lipoxygenase activity, nordihydroguaiaretic acid and eicosatetraynoic acid, had direct effects on soluble guanylate cyclase and interfered with its activation by arachidonate, whereas another lipoxygenase inhibitor, BW 755 C, did not. The data suggest that arachidonic acid increases the activity of guanylate cyclase by direct interaction with the enzyme rather than by being converted to an active metabolite.  相似文献   

12.
Various thiols exert non-specific effects on the activity of soluble guanylate cyclase under aerobic conditions. We studied the effects of thiols under anaerobic conditions (pO2 less than 6 Torr) on soluble guanylate cyclase, purified from bovine lung. Reduced glutathione stimulated the enzyme concentration-dependently with half-maximal enzyme stimulation at a concentration of about 0.5 mM. The extend of maximal enzyme stimulation (up to 80-fold) was comparable with the activation by NO-containing substances. The activation by glutathione was additive with the effect of sodium nitroprusside. Cysteine and various other thiols increased the enzyme activity 20-fold and 2- to 5-fold, respectively. The stimulatory effect of these thiols was not related to their reducing potency. Activation of soluble guanylate cyclase by glutathione was dose-dependently reduced in the presence of other thiols (cysteine greater than oxidized glutathione greater than S-methyl glutathione). Under aerobic conditions or with Mn-GTP as substrate, the effect of glutathione on soluble guanylate cyclase was suppressed. The results suggest a specific role for glutathione in the regulation of soluble guanylate cyclase activity and a modulation of this effect by redox reactions and other intracellular thiols.  相似文献   

13.
The mechanism of activation of soluble guanylate cyclase purified from bovine lung by high molecular weight, nitrosyl-hemoprotein complexes is reported. Heme-containing, heme-deficient, and heme-reconstituted forms of guanylate cyclase were studied. Nitric oxide (NO) and nitroso compounds activated heme-containing and heme-reconstituted enzymes (over 50-fold), with an accompanying shift in the Soret absorption peak from 431 to 398 nm, but failed to activate or alter the spectral characteristics of heme-deficient enzyme. In contrast, preformed NO-hemoprotein complexes as well as low molecular weight NO-heme activated all forms of guanylate cyclase. Heme-deficient guanylate cyclase was first reacted with excess amounts of NO-hemoglobin, NO-myoglobin, or NO-catalase and then rapidly separated from the NO-hemoprotein by column chromatography. Spectrophotometric analysis indicated that the NO-heme moiety was transferred from each of the NO-hemoproteins to heme-deficient guanylate cyclase. Approximately 1 mol of NO-heme was bound per mol of holoenzyme and the specific activity of this enzyme form was over 50-fold greater than that of unreacted, heme-deficient enzyme. NO-heme was tightly bound to guanylate cyclase as no transfer of enzyme-bound NO-heme to apohemoglobin was evident. Enzyme activated by NO-hemoproteins closely resembled, kinetically, that activated by NO or NO-heme. In contrast, reactions between heme-deficient guanylate cyclase and hemoproteins did not result in heme transfer, whereas heme alone rapidly reconstituted the enzyme. These observations indicate that soluble guanylate cyclase can be readily reconstituted with, and thereby activated by, NO-heme through an exchange reaction with NO-hemoproteins.  相似文献   

14.
Catecholamine-Sensitive Guanylate Cyclase from Human Caudate Nucleus   总被引:3,自引:1,他引:2  
Abstract: Partial purification of soluble guanylate cyclase on DEAE-Sephacel yields two separate peaks of guanylate cyclase activity. After 10-fold purification of the soluble enzyme, guanylate cyclase is markedly inhibited by micromolar concentrations of dopamine (I50= 0.2 μm). Dopamine inhibition is observed whether the reaction is conducted with Mn21 or with Mg2+, under atmosphere or N2(g), and using enzyme from either peak from the DEAESephacel column. Other catecholamines also inhibit partially purified guanylate cyclase with an order of potency at 1 μm of: dopamine =l -DOPA > norepinephrine = isoproterenol = adrenochrome > epinephrine. The structural requirements for inhibition are two free hydroxyl groups on the phenyl ring and an ethylamine side chain. Dopamine also inhibits the Triton X-100-solubilized microsomal guanylate cyclase after partial purification on DEAESephacel. Neither chlorpromazine, propranolol, nor phentolamine at 20 μm effectively block the dopamine inhibition of partially purified soluble guanylate cyclase. Micromolar concentrations of the reducing agents dithiothreitol and glutathione also inhibit partially purified guanylate cyclase, but unlike these agents, catecholamines can inhibit whether added in the reduced or the oxidized forms. Inhibition of enzyme activity by micromolar concentrations of dopamine, adrenochrome, or dithiothreitol is rapidly reversed by dilution and the dopamine inhibition is competitive with MgGTP. Inhibition does not appear to involve covalent binding or to result from the ability of catecholamines to reduce the concentrations of oxygen or free radicals in solution.  相似文献   

15.
Guanylate cyclase was purified 12,700-fold from bovine brain supernatant, and the purified enzyme exhibited essentially a single protein band on polyacrylamide gel electrophoresis. Repeated injection of the purified enzyme into rabbits produced an antibody to guanylate cyclase. The immunoglobulin G fraction from the immunized rabbit gave only one precipitin line against the purified guanylate cyclase and the crude supernatant of bovine brain on double immunodiffusion and immunoelectrophoreis. The antibody completely inhibited the soluble guanylate cyclase activity from bovine brain, various tissues of rat and mouse and neuroblastoma N1E 115 cells, whereas the Triton-dispersed particulate guanylate cyclase from these tissues was not inhibited by the antibody.  相似文献   

16.
The partially purified soluble guanylate cyclase (GTP pyrophosphatelyase(cyclizing), EC 4.6.1.2) from human caudate nucleus is stimulated from 2 to 4-fold by metal chelating agents. EDTA (K 1/2 - 4.8 microM) is more potent than CDTA (K 1/2 = 13.2 microM) or EGTA (K 1/2 = 21.8 microM) at stimulating activity. Stimulation by chelating agents is apparently not due to removal of inhibitory divalent cations which contaminate the enzyme or reaction mixture. EDTA increases guanylate cyclase activity in part by increasing the affinity of the enzyme for the substrate (MgGTP) 10-fold. Dopamine inhibits partially purified guanylate cyclase in the presence or absence of EDTA. Dopamine increases the Ka of guanylate cyclase for the activator, free Mn2+, more than 50-fold, from 3 to 150 microM.  相似文献   

17.
Soluble guanylate cyclase from rat lung exists as a heterodimer   总被引:8,自引:0,他引:8  
The soluble form of guanylate cyclase (EC 4.6.1.2) from rat lung has been purified to homogeneity by a one-step immunoaffinity chromatographic procedure. The purified soluble guanylate cyclase has specific activities of 432 and 49.1 nmol of cyclic GMP formed per min/mg protein with manganese and magnesium ions as a cofactor, respectively. This represents a purification of approximately 2,000-fold with a 50% recovery. The native enzyme has a molecular weight of 150,000 and a Stokes radius of 4.8 nm as determined on Spherogel TSK-G3000SW gel permeation chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis results in two protein-staining bands with molecular weights of 82,000 and 70,000. The purified soluble guanylate cyclase was also subjected to native polyacrylamide gel electrophoresis, isoelectric focusing electrophoresis, ion exchange chromatography, and GTP-agarose affinity chromatography. These additional purification procedures confirmed the presence of a single protein peak coincident with enzyme activity. The two subunits separated on sodium dodecyl sulfate-polyacrylamide gel electrophoresis were shown to have different primary structures by immunoblotting with monoclonal and polyclonal antibodies prepared against purified soluble guanylate cyclase and by peptide mapping with papain or Staphylococcus aureus V8 protease treatment. These data demonstrate that soluble guanylate cyclase purified from rat lung is a heterodimer composed of 82,000- and 70,000-dalton subunits with different primary structures.  相似文献   

18.
Sodium nitroprusside, a potent activator of soluble guanylate cyclase, potentiated mixed disulfide formation between cystine, a potent inhibitor of the cyclase, and enzyme purified from rat lung. Incubation of soluble guanylate cyclase with nitroprusside and [35S]cystine resulted in a twofold increase in protein-bound radioactivity compared to incubations in the absence of nitroprusside. Purified enzyme preincubated with nitroprusside and then gel filtered (activated enzyme) was activated 10- to 20-fold compared to guanylate cyclase preincubated in the absence of nitroprusside and similarly processed (nonactivated enzyme). This activation was completely reversed by subsequent incubation at 37 degrees C (activation-reversed enzyme). Incorporation of [35S]cystine into guanylate cyclase was increased twofold with activated enzyme, while no difference was observed with activation-reversed enzyme, compared to nonactivated enzyme. Cystine decreased the activity of nonactivated and activation-reversed enzyme about 40% while it completely inhibited activated guanylate cyclase. Mg+2- or Mn+2-GTP inhibited the incorporation of [35S]cystine into nonactivated or activated guanylate cyclase. Also, diamide, a potent thiol oxidant that converts juxtaposed sulfhydryls to disulfides, completely blocked incorporation of [35S]cystine into nonactivated or activated guanylate cyclase. These data indicate that activation of soluble guanylate cyclase by nitroprusside results in an increased availability of protein sulfhydryl groups for mixed disulfide formation with cystine. Protection against mixed disulfide formation with diamide or substrate suggests that these groups exist as two or more juxtaposed sulfhydryl groups at the active site or a site on the enzyme that regulates catalytic activity. Differential inhibition by mixed disulfide formation of nonactivated and activated enzyme suggests a mechanism for amplification of the on-off signal for soluble guanylate cyclase within cells.  相似文献   

19.
Guanylate cyclase (GTP pyrophosphate-lyase (cyclizing), EC 4.6.1.2) was purified 2250-fold from the synaptosomal soluble fraction of rat brain. The specific activity of the purified enzyme reached 41 nmol cyclic GMP formed per min per mg protein at 37 degrees C. In the purified preparation, GTPase activity was not detected and cyclic GMP phosphodiesterase activity was less than 4% of guanylate cyclase activity. The molecular weight was approx. 480 000. Lubrol PX, hydroxylamine, or NaN3 activated the guanylate cyclase in crude preparations, but had no effect on the purified enzyme. In contrast, NaN3 plus catalase, N-methyl-N'-nitro-N-nitrosoguanidine or sodium nitroprusside activated the purified enzyme. The purified enzyme required Mn2+ for its activity; the maximum activity was observed at 3-5 mM. Cyclic GMP activated guanylate cyclase activity 1.4-fold at 2 mM, whereas inorganic pyrophosphate inhibited it by about 50% at 0.2 mM. Guanylyl-(beta,gamma-methylene)-diphosphonate and guanylyl-imidodiphosphate, analogues of GTP, served as substrates of guanylate cyclase in the purified enzyme preparation. NaN3 plus catalase or N-methyl-N'-nitro-N-nitrosoguanidine also remarkably activated guanylate cyclase activity when the analogues of GTP were used as substrates.  相似文献   

20.
Guanylate cyclase activity (GTP pyrophosphate-lyase (cyclizing), EC 4.6.1.2.), measured in purified rat liver plasma membranes, was markedly increased by treatment with various purified proteases. The effect was maximal with trypsin, alpha-chymotrypsin, papain, and thermolysin (6- to 8-fold increase with 5 to 20 microgram of protease/ml) and lower with subtilisin and elastase (3- to 4-fold increase). The activation was due to an increase in the maximal velocity of the cyclizing reaction. No modification was observed either in the apparent affinity for the substrate MnGTP or in the cooperative behavior of the enzyme kinetics which displayed Hill coefficients of 1.6 for both basal and activated states. The Triton X-100-dispersed guanylate cyclase remained sensitive to papain, which suggests that the action of proteases was not restricted to an indirect action upon the membranous environment of the guanylate cyclase. In contrast, the cytosolic soluble guanylate cyclase, assayed in the presence or absence of sodium azide, was absolutely insensitive to papain. Thus, proteolysis represents a previously undescribed mechanism for activating membranous guanylate cyclase systems, which might be of importance in the physiological regulation of this enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号