首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
GrpE is the nucleotide exchange factor for the Escherichia coli molecular chaperone DnaK, the prokaryotic homologue of Hsp70. Thermodynamic properties of GrpE structural domains were characterized by examining a number of structural and point mutants using circular dichroism, differential scanning calorimetry and analytical ultracentrifugation. These structural domains are the long paired N-terminal helices, the central four-helix bundle, and the C-terminal compact beta-domains. We show that the central four-helix bundle (t(m) approximately 75 degrees C) provides a stable platform for the association of the long paired N-terminal helices (t(m) approximately 50 degrees C), which can then function as a temperature sensor. The stability of the N-terminal helices is linked to the presence of the C-terminal compact beta-domains of GrpE, providing a potential mechanism for coupling of DnaK-binding activity of GrpE with temperature. On the basis of our thermodynamic analysis of E.coli GrpE, we present a structure-based model for the melting properties of the nucleotide exchange factor, wherein the long paired helices function as a molecular thermocouple.  相似文献   

2.
The nucleotide binding and release cycle of the molecular chaperone DnaK is regulated by the accessory proteins GrpE and DnaJ, also called co-chaperones. The concerted action of the nucleotide exchange factor GrpE and the ATPase-stimulating factor DnaJ determines the ratio of the two nucleotide states of DnaK, which differ in their mode of interaction with unfolded proteins. In the Escherichia coli system, the stimulation by these two antagonists is comparable in magnitude, resulting in a balance of the two nucleotide states of DnaK(Eco) in the absence and the presence of co-chaperones.The regulation of the DnaK chaperone system from Thermus thermophilus is apparently substantially different. Here, DnaJ does not stimulate the DnaK-mediated ATP hydrolysis and thus does not appear to act as an antagonist of the nucleotide exchange factor GrpE(Tth). This raises the question of whether T. thermophilus GrpE stimulates nucleotide exchange to a smaller degree as compared to the E. coli system and how the corresponding rates relate to intrinsic ATPase and ATP binding as well as luciferase refolding kinetics of T. thermophilus DnaK.We determined dissociation constants as well as kinetic constants that describe the interactions between the T. thermophilus molecular chaperone DnaK, its nucleotide exchange factor GrpE and the fluorescent ADP analogue N8-(4-N'-methylanthraniloylaminobutyl)-8-aminoadenosine-5'-diphosphate by isothermal equilibrium titration calorimetry and stopped-flow kinetic experiments and investigated the influence of T. thermophilus DnaJ on the DnaK nucleotide cycle.The interaction of GrpE with the DnaK.ADP complex versus nucleotide-free DnaK can be described by a simple equilibrium system, where GrpE reduces the affinity of DnaK for ADP by a factor of about 10. Kinetic experiments indicate that the maximal acceleration of nucleotide release by GrpE is 80,000-fold at a saturating GrpE concentration.Our experiments show that in T. thermophilus, although the thermophilic DnaK system displays no stimulation of the DnaK-ATPase activity by DnaJ, nucleotide exchange is still efficiently stimulated by GrpE. This indicates that two counteracting factors are not absolutely necessary to maintain a functional and regulated chaperone cycle. This conclusion is corroborated by data that show that the slower ATPase cycle of the DnaK system as well as of heterologous T. thermophilus DnaK/E. coli DnaK systems is directly reflected in altered refolding kinetics of firefly luciferase but not necessarily in refolding yields.  相似文献   

3.
GrpE acts as a nucleotide exchange factor for DnaK, the main Hsp70 protein in bacteria, accelerating ADP/ATP exchange by several orders of magnitude. GrpE is a homodimer, each subunit containing three structural domains: a N-terminal unordered segment, two long coils and a C-terminal globular domain formed by a four-helix bundle, and a β-subdomain. GrpE association to DnaK nucleotide-binding domain involves side-chain and backbone interactions located within the “headpiece” of the cochaperone, which consists of the C-terminal half of the coils, the four-helix bundle and the β-subdomain. However, the role of the GrpE N-terminal region in the interaction with DnaK and the activity of the cochaperone remain controversial. In this study we explore the contribution of this domain to the binding reaction, using the wild-type proteins, two deletion mutants of GrpE (GrpE34-197 and GrpE69-197) and the isolated DnaK nucleotide-binding domain. Analysis of the thermodynamic binding parameters obtained by isothermal titration calorimetry shows that both GrpE N-terminal segments, 1-33 and 34-68, contribute to the binding reaction. Partial proteolysis and substrate dissociation kinetics also suggest that the N-terminal half of GrpE coils (residues 34-68) interacts with DnaK interdomain linker, regulates the nucleotide exchange activity of the cochaperone and is required to stabilize DnaK-substrate complexes in the ADP-bound conformation.  相似文献   

4.
DnaK, the prokaryotic Hsp70 molecular chaperone, requires the nucleotide exchange factor and heat shock protein GrpE to release ADP. GrpE and DnaK are tightly associated molecules with an extensive protein-protein interface, and in the absence of ADP, the dissociation constant for GrpE and DnaK is in the low nanomolar range. GrpE reduces the affinity of DnaK for ADP, and the reciprocal linkage is also true: ADP reduces the affinity of DnaK for GrpE. The energetic contributions of GrpE side-chains to GrpE-DnaK binding were probed by alanine-scanning mutagenesis. Sedimentation velocity (SV) analytical ultracentrifugation (AUC) was used to measure the equilibrium constants (Keq) for GrpE binding to the ATPase domain of DnaK in the presence of ADP. ADP-bound DnaK is the natural target of GrpE, and the addition of ADP (final concentration of 5 microM) to the preformed GrpE-DnaK(ATPase) complexes allowed the equilibrium association constants to be brought into an experimentally accessible range. Under these experimental conditions, the substitution of one single GrpE amino acid residue, arginine 183 with alanine, resulted in a GrpE-DnaK(ATPase) complex that was weakly associated (Keq =9.4 x 10(4) M). This residue has been previously shown to be part of a thermodynamic linkage between two structural domains of GrpE: the thermosensing long helices and the C-terminal beta-domains. Several other GrpE side-chains were found to have a significant change in the free energy of binding (DeltaDeltaG approximately 1.5 to 1.7 kcal mol(-1)), compared to wild-type GrpE.DnaK(ATPase) in the same experimental conditions. Overall, the strong interactions between GrpE and DnaK appear to be dominated by electrostatics, not unlike barnase and barstar, another well-characterized protein-protein interaction. GrpE, an inherent thermosensor, exhibits non-Arrhenius behavior with respect to its nucleotide exchange function at bacterial heat shock temperatures, and mutation of several solvent-exposed side-chains located along the thermosensing indicated that these residues are indeed important for GrpE-DnaK interactions.  相似文献   

5.
In addition to the sigma(32)-mediated heat shock response, the DnaK/DnaJ/GrpE molecular chaperone system of Escherichia coli directly adapts to elevated temperatures by sequestering a higher fraction of substrate. This immediate heat shock response is due to the differential temperature dependence of the activity of DnaJ, which stimulates the hydrolysis of DnaK-bound ATP, and the activity of GrpE, which facilitates ADP/ATP exchange and converts DnaK from its high-affinity ADP-liganded state into its low-affinity ATP-liganded state. GrpE acts as thermosensor with its ADP/ATP exchange activity decreasing above 40 degrees C. To assess the importance of this reversible thermal adaptation for the chaperone action of the DnaK/DnaJ/GrpE system during heat shock, we used glucose-6-phosphate dehydrogenase and luciferase as substrates. We compared the performance of wild-type GrpE as a component of the chaperone system with that of GrpE R40C. In this mutant, the thermosensing helices are stabilized with an intersubunit disulfide bond and its nucleotide exchange activity thus increases continuously with increasing temperature. Wild-type GrpE with intact thermosensor proved superior to GrpE R40C with desensitized thermosensor. The chaperone system with wild-type GrpE yielded not only a higher fraction of refolding-competent protein at the end of a heat shock but also protected luciferase more efficiently against inactivation during heat shock. Consistent with their differential thermal behavior, the protective effects of wild-type GrpE and GrpE R40C diverged more and more with increasing temperature. Thus, the direct thermal adaptation of the DnaK chaperone system by thermosensing GrpE is essential for efficient chaperone action during heat shock.  相似文献   

6.
GrpE proteins act as co-chaperones for DnaK heat-shock proteins. The dimeric protein unfolds under heat stress conditions, which results in impaired interaction with a DnaK protein. Since interaction of GrpE with DnaK is crucial for the DnaK chaperone activity, GrpE proteins act as a thermosensor in bacteria. Here we have analyzed the thermostability and function of two GrpE homologs of the mesophilic cyanobacterium Synechocystis sp. PCC 6803 and of the thermophilic cyanobacterium Thermosynechococcus elongatus BP1. While in Synechocystis an N-terminal helix pair of the GrpE dimer appears to be the thermosensing domain and mainly mediates GrpE dimerization, the C-terminal four-helix bundle is involved in additional stabilization of the dimeric structure. The four-helix bundle domain has a key role in the thermophilic cyanobacterium, since dimerization of the Thermosynechococcus protein appears to be mediated by the four-helix bundle domain, and melting of this domain is linked to monomerization of the GrpE protein. Thus, in two related cyanobacteria the GrpE thermosensing function might be mediated by different protein domains.  相似文献   

7.
ClpB is a heat-shock protein from Escherichia coli with an unknown function. We studied a possible molecular chaperone activity of ClpB in vitro. Firefly luciferase was denatured in urea and then diluted into the refolding buffer (in the presence of 5 mM ATP and 0.1 mg/ml bovine serum albumin). Spontaneous reactivation of luciferase was very weak (less than 0.02% of the native activity) because of extensive aggregation. Conventional chaperone systems (GroEL/GroES and DnaK/DnaJ/GrpE) or ClpB alone did not reactivate luciferase under those conditions. However, ClpB together with DnaK/DnaJ/GrpE greatly enhanced the luciferase activity regain (up to 57% of native activity) by suppressing luciferase aggregation. This coordinated function of ClpB and DnaK/DnaJ/GrpE required ATP hydrolysis, although the ClpB ATPase was not activated by native or denatured luciferase. When the chaperones were added to the luciferase refolding solutions after 5-25 min of refolding, ClpB and DnaK/DnaJ/GrpE recovered the luciferase activity from preformed aggregates. Thus, we have identified a novel multi-chaperone system from E. coli, which is analogous to the Hsp104/Ssa1/Ydj1 system from yeast. ClpB is the only known bacterial Hsp100 protein capable of cooperating with other heat-shock proteins in suppressing and reversing protein aggregation.  相似文献   

8.
GrpE proteins function as nucleotide exchange factors for DnaK-type Hsp70s. We have previously identified a chloroplast homolog of GrpE in Chlamydomonas reinhardtii, termed CGE1. CGE1 exists as two isoforms, CGE1a and CGE1b, which are generated by temperature-dependent alternative splicing. CGE1b contains additional valine and glutamine residues in its extreme NH2-terminal region. Here we show that CGE1a is predominant at lower temperatures but that CGE1b becomes as abundant as CGE1a at elevated temperatures. Coimmunoprecipitation experiments revealed that CGE1b had a approximately 25% higher affinity for its chloroplast chaperone partner HSP70B than CGE1a. Modeling of the structure of CGE1b revealed that the extended alpha-helix formed by GrpE NH2 termini is 34 amino acids longer in CGE1 than in Escherichia coli GrpE and appears to contain a coiled coil motif. Progressive deletions of this coiled coil increasingly impaired the ability of CGE1 to form dimers, to interact with DnaK at elevated temperatures, and to complement temperature-sensitive growth of a DeltagrpE E. coli strain. In contrast, deletion of the four-helix bundle required for dimerization of E. coli GrpE did not affect CGE1 dimer formation. Circular dichroism measurements revealed that CGE1, like GrpE, undergoes two thermal transitions, the first of which is in the physiologically relevant temperature range (midpoint approximately 45 degrees C). Truncating the NH2-terminal coiled coil shifted the second transition to lower temperatures, whereas removal of the four-helix bundle abolished the first transition. Our data suggest that bacterial GrpE and chloroplast CGE1 share similar structural and biochemical properties, but some of these, like dimerization, are realized by different domains.  相似文献   

9.
Temperature directly controls functional properties of the DnaK/DnaJ/GrpE chaperone system. The rate of the high to low affinity conversion of DnaK shows a non-Arrhenius temperature dependence and above approximately 40 degrees C even decreases. In the same temperature range, the ADP/ATP exchange factor GrpE undergoes an extensive, fully reversible thermal transition (Grimshaw, J. P. A., Jelesarov, I., Sch?nfeld, H. J., and Christen, P. (2001) J. Biol. Chem. 276, 6098-6104). To show that this transition underlies the thermal regulation of the chaperone system, we introduced an intersubunit disulfide bond into the paired long helices of the GrpE dimer. The transition was absent in disulfide-linked GrpE R40C but was restored by reduction. With disulfide-stabilized GrpE, the rate of ADP/ATP exchange and conversion of DnaK from its ADP-liganded high affinity R state to the ATP-liganded low affinity T state continuously increased with increasing temperature. With reduced GrpE R40C, the conversion became slower at temperatures >40 degrees C, as observed with wild-type GrpE. Thus, the long helix pair in the GrpE dimer acts as a thermosensor that, by decreasing its ADP/ATP exchange activity, induces a shift of the DnaK.substrate complexes toward the high affinity R state and in this way adapts the DnaK/DnaJ/GrpE system to heat shock conditions.  相似文献   

10.
The cochaperone GrpE functions as a nucleotide exchange factor to promote dissociation of adenosine 5'-diphosphate (ADP) from the nucleotide-binding cleft of DnaK. GrpE and the DnaJ cochaperone act in concert to control the flux of unfolded polypeptides into and out of the substrate-binding domain of DnaK by regulating the nucleotide-bound state of DnaK. DnaJ stimulates nucleotide hydrolysis, and GrpE promotes the exchange of ADP for adenosine triphosphate (ATP) and also augments peptide release from the DnaK substrate-binding domain in an ATP-independent manner. The eukaryotic cytosol does not contain GrpE per se because GrpE-like function is provided by the BAG1 protein, which acts as a nucleotide exchange factor for cytosolic Hsp70s. GrpE, which plays a prominent role in mitochondria, chloroplasts, and bacterial cytoplasms, is a fascinating molecule with an unusual quaternary structure. The long alpha-helices of GrpE have been hypothesized to act as a thermosensor and to be involved in the decrease in GrpE-dependent nucleotide exchange that is observed in vitro at temperatures relevant to heat shock. This review describes the molecular biology of GrpE and focuses on the structural and kinetic aspects of nucleotide exchange, peptide release, and the thermosensor hypothesis.  相似文献   

11.
GrpE is the nucleotide-exchange factor of the DnaK chaperone system. Escherichia coli cells with the classical temperature-sensitive grpE280 phenotype do not grow under heat-shock conditions and have been found to carry the G122D point mutation in GrpE. To date, the molecular mechanism of this defect has not been investigated in detail. Here, we examined the structural and functional properties of isolated GrpE(G122D) in vitro. Similar to wild-type GrpE, GrpE(G122D) is an elongated dimer in solution. Compared to wild-type GrpE, GrpE(G122D) catalyzed the ADP/ATP exchange in DnaK only marginally and did not compete with wild-type GrpE in interacting with DnaK. In the presence of ADP, GrpE(G122D) in contrast to wild-type GrpE, did not form a complex with DnaK detectable by size-exclusion chromatography with on-line static light-scattering and differential refractometry. Apparently, GrpE(G122D) in the presence of ADP binds to DnaK only with much lower affinity than wild-type GrpE. GrpE(G122D) could not substitute for wild-type GrpE in the refolding of denatured proteins by the DnaK/DnaJ/GrpE chaperone system. In the crystal structure of a (Delta1-33)GrpE(G122D).DnaK-ATPase complex, which as yet is the only available structure of a GrpE variant, Asp122 does not interact directly with neighboring residues of GrpE or DnaK. The far-UV circular dichroism spectra of mutant and wild-type GrpE proved slightly different. Possibly, a discrete change in conformation impairs the formation of the complex with DnaK and renders GrpE(G122D) virtually inactive as a nucleotide exchange factor. In view of the drastically reduced ADP/ATP-exchange activity of GrpE(G122D), the heat sensitivity of grpE280 cells might be explained by the ensuing slowing of the chaperone cycle and the increased sequestering of target proteins by high-affinity, ADP-liganded DnaK, both effects being incompatible with efficient chaperone action required for cell growth.  相似文献   

12.
Aromatic clusters in the core of proteins are often involved in imparting structural stability to proteins. However, their functional importance is not always clear. In this study, we investigate the thermosensing role of a phenylalanine cluster present in the GrpE homodimer. GrpE, which acts as a nucleotide exchange factor for the molecular chaperone DnaK, is well known for its thermosensing activity resulting from temperature-dependent structural changes that allow control of chaperone function. Using mutational analysis, we show that an interchain phenylalanine cluster in a four-helix bundle of the GrpE homodimer assists in the thermosensing ability of the co-chaperone. Substitution of aromatic residues with hydrophobic ones in the core of the four-helix bundle reduces the thermal stability of the bundle and that of a connected coiled-coil domain, which impacts thermosensing. Cell growth assays and SEM images of the mutants show filamentous growth of Escherichia coli cells at 42°C, which corroborates with the defect in thermosensing. Our work suggests that the interchain edge-to-face aromatic cluster is important for the propagation of the structural signal from the coiled-coil domain to the four-helical bundle of GrpE, thus facilitating GrpE-mediated thermosensing in bacteria.  相似文献   

13.
The DnaK chaperone of Escherichia coli assists protein folding by an ATP-dependent interaction with short peptide stretches within substrate polypeptides. This interaction is regulated by the DnaJ and GrpE co-chaperones, which stimulate ATP hydrolysis and nucleotide exchange by DnaK, respectively. Furthermore, GrpE has been claimed to trigger substrate release independent of its role as a nucleotide exchange factor. However, we show here that GrpE can accelerate substrate release from DnaK exclusively in the presence of ATP. In addition, GrpE prevented the association of peptide substrates with DnaK through an activity of its N-terminal 33 amino acids. A ternary complex of GrpE, DnaK, and a peptide substrate could be observed only when the peptide binding to DnaK precedes GrpE binding. Furthermore, we demonstrate that GrpE slows down the release of a protein substrate, sigma(32), from DnaK in the absence of ATP. These findings suggest that the ATP-triggered dissociation of GrpE and substrates from DnaK occurs in a concerted fashion.  相似文献   

14.
Groemping Y  Seidel R  Reinstein J 《FEBS letters》2005,579(25):5713-5717
The DnaK system from Thermus thermophilus (DnaK(Tth)) exhibits pronounced differences in organisation and regulation to its mesophile counterpart from Escherichia coli (DnaK(Eco)). While the ATPase cycle of DnaK(Eco) is tightly regulated by the concerted action of the two cofactors DnaJ(Eco) and GrpE(Eco), the DnaK(Tth) system features an imbalance in this cochaperone mediated regulation. GrpE(Tth) considerably accelerates the ATP/ADP exchange, but DnaJ(Tth) only slightly stimulates ATPase activity, believed to be a key step for chaperone activity of DnaK(Eco). By in vitro complementation assays, we could not detect significant ATPase-stimulation of orthologous DnaJ(Tth) . DnaKEco or DnaJ(Eco). DnaK(Tth)-complexes as compared to the DnaK(Eco) system, although they were nevertheless active in luciferase refolding experiments. Assistance of protein recovery by DnaK thus seems to be uncoupled of the magnitude of DnaJ mediated ATPase-stimulation.  相似文献   

15.
Peptidyl prolyl cis-trans isomerases can enzymatically assist protein folding, but these enzymes exclusively target the peptide bond preceding proline residues. Here we report the identification of the Hsp70 chaperone DnaK as the first member of a novel enzyme class of secondary amide peptide bond cis-trans isomerases (APIases). APIases selectively accelerate the cis-trans isomerization of nonprolyl peptide bonds. Results from independent experiments support the APIase activity of DnaK: (i) exchange crosspeaks between the cis-trans conformers appear in 2D (1)H NMR exchange spectra of oligopeptides (ii) the rate constants for the cis-trans isomerization of various dipeptides increase and (iii) refolding of the RNase T1 P39A variant is catalyzed. The APIase activity shows both regio and stereo selectivity and is stimulated two-fold in the presence of the complete DnaK/GrpE/DnaJ/ATP refolding system. Moreover, known DnaK-binding oligopeptides simultaneously affect the APIase activity of DnaK and the refolding yield of denatured firefly luciferase in the presence of DnaK/GrpE/DnaJ/ATP. These results suggest a new role for the chaperone as a regioselective catalyst for bond rotation in polypeptides.  相似文献   

16.
H Schrder  T Langer  F U Hartl    B Bukau 《The EMBO journal》1993,12(11):4137-4144
Members of the conserved Hsp70 chaperone family are assumed to constitute a main cellular system for the prevention and the amelioration of stress-induced protein damage, though little direct evidence exists for this function. We investigated the roles of the DnaK (Hsp70), DnaJ and GrpE chaperones of Escherichia coli in prevention and repair of thermally induced protein damage using firefly luciferase as a test substrate. In vivo, luciferase was rapidly inactivated at 42 degrees C, but was efficiently reactivated to 50% of its initial activity during subsequent incubation at 30 degrees C. DnaK, DnaJ and GrpE did not prevent luciferase inactivation, but were essential for its reactivation. In vitro, reactivation of heat-inactivated luciferase to 80% of its initial activity required the combined activity of DnaK, DnaJ and GrpE as well as ATP, but not GroEL and GroES. DnaJ associated with denatured luciferase, targeted DnaK to the substrate and co-operated with DnaK to prevent luciferase aggregation at 42 degrees C, an activity that was required for subsequent reactivation. The protein repair function of DnaK, GrpE and, in particular, DnaJ is likely to be part of the role of these proteins in regulation of the heat shock response.  相似文献   

17.
A key feature to the dimeric structure for the GrpE heat shock protein is the pair of long helices at the NH(2)-terminal end followed by a presumable extended segment of about 30 amino acids from each monomer. We have constructed a GrpE deletion mutant protein that contains only the unique tail portion (GrpE1-89) and another that is missing this region (GrpE88-197). Circular dichroism analysis shows that the GrpE1-89 mutant still contains one-third percent alpha-helical secondary structure. Using an assay that measures bound peptide to DnaK we show that the GrpE1-89 is able to lower the amount of bound peptide, whereas GrpE88-197 has no effect. Additionally, when the same peptide binding assay is carried out with the COOH-terminal domain of DnaK, the full-length GrpE and the two GrpE deletion mutants show little to no effect on peptide release. Furthermore, the GrpE88-197 mutant is able to enhance the off-rate of nucleotide from DnaK and the 1-89 mutant has no effect on the nucleotide release. Similar results of nucleotide release are observed with the NH(2)-terminal ATPase domain mutant of DnaK. The results presented show directly that there is interaction between the GrpE protein's "tail" region and the substrate COOH-terminal peptide binding domain of DnaK, although the effect is only fully manifest with an intact full-length DnaK molecule.  相似文献   

18.
Molecular chaperones of the Hsp70 family (bacterial DnaK, DnaJ, and GrpE) were shown to be strictly required for refolding of firefly luciferase from a denatured state and thus for effective restoration of its activity. At the same time the luciferase was found to be synthesized in an Escherichia coli cell-free translation system in a highly active state in the extract with no chaperone activity. The addition of the chaperones to the extract during translation did not raise the activity of the enzyme. The abrupt arrest of translation by the addition of a translational inhibitor led to immediate cessation of the enzyme activity accumulation, indicating the cotranslational character of luciferase folding. The results presented suggest that the chaperones of the Hsp70 family are not required for effective cotranslational folding of firefly luciferase.  相似文献   

19.
The GrpE heat shock protein from Escherichia coli has a homodimeric structure. The dimer interface encompasses two long alpha-helices at the NH(2)-terminal end from each monomer (forming a "tail"), which lead into a small four-helix bundle from which each monomer contributes two short sequential alpha-helices in an antiparallel topological arrangement. We have created a number of different deletion mutants of GrpE that have portions of the dimer interface to investigate requirements for dimerization and to study four-helix bundle formation. Using chemical crosslinking and analytical ultracentrifugation techniques to probe for multimeric states, we find that a mutant containing only the long alpha-helical tail portion (GrpE1-88) is unable to form a dimer, most likely due to a decrease in alpha-helical content as determined by circular dichroism spectroscopy, thus one reason for a dimeric structure for the GrpE protein is to support the tail region. Mutants containing both of the short alpha-helices (GrpE1-138 and GrpE88-197) are able to form a dimer and presumably the four-helix bundle at the dimer interface. These two mutants have equilibrium constants for the monomer-dimer equilibrium that are very similar to the full-length protein suggesting that the tail region does not contribute significantly to the stability of the dimer. Interestingly, one mutant that contains just one of the short alpha-helices (GrpE1-112) exists as a tetrameric species, which presumably is forming a four-helix bundle structure. A proposed model is discussed for this mutant and its relevance for factors influencing four-helix bundle formation.  相似文献   

20.
Hsp70 proteins like DnaK bind unfolded polypeptides in a nucleotide-dependent manner. The switch from high-affinity ADP-state to low- affinity ATP-state with concomitant substrate release is accelerated significantly by GrpE proteins. GrpE thus fulfils an important role in regulation of the chaperone cycle. Here, we analysed the thermal stability of GrpE from Thermus thermophilus using differential scanning calorimetry and CD-spectroscopy. The protein exhibits unusual unfolding characteristics with two observable thermal transitions. The first transition is CD-spectroscopically silent with a transition midpoint at 90 degrees C. The second transition, mainly constituting the CD-signal, ranges between 100 and 105 degrees C depending on the GrpE(Tth) concentration, according to the model N(2) <==> I(2) <==> 2U. Using a C-terminally truncated version of GrpE(Tth) it was possible to assign the second thermal transition to the dimerisation of GrpE(Tth), while the first transition represents the completely reversible unfolding of the globular C-terminal domain. The unfolding of this domain is accompanied by a distinct decrease in nucleotide exchange rates and impaired binding to DnaK(Tth). Under heat shock conditions, the DnaK-ADP-protein-substrate complex is thus stabilised by a reversibly inactivated GrpE-protein that refolds under permissive conditions. In combination with studies on GrpE from Escherichia coli presented recently by Christen and co-workers, it thus appears that the general role of GrpE is to function as a thermosensor that modulates nucleotide exchange rates in a temperature-dependent manner to prevent substrate dissociation at non-permissive conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号