首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
External genitalia development occurs through a combination of hormone independent, hormone dependent, and endocrine pathways. Perturbation of these pathways can lead to abnormal external genitalia development. We review human and animal mechanisms of normal and abnormal external genitalia development, and we evaluate abnormal mechanisms that lead to hypospadias. We also discuss recent laboratory findings that further our understanding of animal models of hypospadias.  相似文献   

2.
3.
Cellular and molecular mechanisms of development of the external genitalia   总被引:7,自引:0,他引:7  
The limb and external genitalia are appendages of the body wall. Development of these structures differs fundamentally in that masculine development of the external genitalia is androgen dependent, whereas development of the limb is not. Despite this fundamental difference in developmental regulation, epithelial-mesenchymal interactions play key roles in the development of both structures, and similar regulatory molecules are utilized as mediators of morphogenetic cell-cell interactions during development of both the limb and external genitalia. Given the relatively high incidence of hypospadias, a malformation of penile development, it is appropriate and timely to review the morphological, endocrine, and molecular mechanisms of development of the genital tubercle (GT), the precursor of the penis in males and the clitoris in females. Morphological observations comparing development of the GT in humans and mouse emphasize the validity of the mouse as an animal model of GT development and validate the results of experimental studies. Accordingly, the use of mutant mice provides important insights into the roles of specific regulatory molecules in development of the external genitalia. While our current understanding of the morphological and molecular mechanisms of mammalian external genitalia development is still rudimentary, this review summarizes the current state of our knowledge and whenever possible draws from the rich experimental embryology literature on other relevant organs such as the developing limb. Future research on the hormonal and molecular mechanisms of GT development may yield strategies to prevent or reduce the incidence of hypospadias and to elucidate the molecular genetic mechanisms of GT morphogenesis, especially in relation to common organogenetic pathways utilized in other organ systems.  相似文献   

4.
Spermatogenesis is a process of terminal differentiation that results in the formation of mature sperm. In the first wave of this differentiation in the mouse testis, different cell types appear in the seminiferous epithelium at specific times. These cytological changes must be accompanied by changes in protein expression patterns. The aim of the present study was the comparative analysis of proteomic profiles of the soluble proteins expressed at different stages of mouse testis development (8, 18 and 45 postnatal days). Conspicuous variations in their accumulation (representing up or downregulation) were detected over the course of development. Using mass spectrometry (MALDI-TOF), 44 proteins or variant forms were identified. Proteins with redox or antioxidant activity were identified in high proportions; others involved in lipid and carbohydrate metabolic pathways, as well as a number of proteins or isoforms not previously characterized in testis were also detected. These results contribute to identify changes in soluble protein associated to the complex process of male germ cell differentiation.  相似文献   

5.
An accurate solvation model is essential for computer modeling of protein folding and other biomolecular self-assembly processes. Compared to explicit solvent models, implicit solvent models, such as the Poisson-Boltzmann (PB) with solvent accessible surface area model (PB/SA), offer a much faster speed—the most compelling reason for the popularity of these implicit solvent models. Since these implicit solvent models typically use empirical parameters, such as atomic radii and the surface tensions, an optimal fit of these parameters is crucial for the final accuracy of properties such as solvation free energy and folding free energy. In this paper, we proposed a combined approach, namely SD/GA, which takes the advantage of both local optimization with the steepest descent (SD), and global optimization with the genetic algorithm (GA), for parameters optimization in multi-dimensional space. The SD/GA method is then applied to the optimization of solvation parameters in the non-polar cavity term of the PB/SA model. The results show that the newly optimized parameters from SD/GA not only increase the accuracy in the solvation free energies for ~200 organic molecules, but also significantly improve the free energy landscape of a β-hairpin folding. The current SD/GA method can be readily applied to other multi-dimensional parameter space optimization as well.  相似文献   

6.
Regulation of testicular descent is hormonally regulated, but the reasons for maldescent remain unknown in most cases. The main regulatory hormones are Leydig cell-derived testosterone and insulin-like factor 3 (INSL3). Luteinizing hormone (LH) stimulates the secretion of these hormones, but the secretory responses to LH are different: INSL3 secretion increases slowly and may reflect the LH dependent differentiated status of Leydig cells, whereas testosterone response to LH is immediate. Testosterone contributes to the involution of the suspensory ligament and to the inguinoscrotal phase of the descent, while INSL3 acts mainly in transabdominal descent by stimulating the growth of the gubernaculum. INSL3 acts through a G-protein coupled receptor LGR8. In the absence of either INSL3 or LGR8 mice remain cryptorchid. In humans only few INSL3 mutations have been described, whereas LGR8 mutations may cause some cases of undescended testis. Similarly, androgen insensitivity or androgen deficiency can cause cryptorchidism. Estrogens have been shown to down regulate INSL3 and thereby cause maldescent. Thus, a reduced androgen–estrogen ratio may disturb testicular descent. Environmental effects changing the ratio can thereby influence cryptorchidism rate. Estrogens and anti-androgens cause cryptorchidism in experimental animals. In our cohort study we found higher LH/testosterone ratios in 3-month-old cryptorchid boys than in normal control boys, suggesting that cryptorchid testes are not cabable of normal hormone secretion without increased gonadotropin drive. This may be either the cause or consequence of cryptorchidism. Some phthalates act as anti-androgens and cause cryptorchidism in rodents. In our human material we found an association of a high phthalate exposure with a high LH/testosterone ratio. We hypothesize that an exposure to a mixture of chemicals with anti-androgenic or estrogenic properties (either their own activity or their effect on androgen–estrogen ratio) may be involved in cryptorchidism.  相似文献   

7.
Summary Histology and ultrastructure of the connexion of seminiferous and straight testicular tubules were studied in 58 bovine testes of 29 animals ranging from 4 to 52 weeks of postnatal development. In the 4th and 8th week seminiferous tubules are solid. Their non-germinal supporting cells possess spherical nuclei in a basal location and a great amount of granular endoplasmic reticulum. The straight tubules have a narrow lumen and a stratified epithelium rich in intercellular canaliculi. Between 20 and 25 weeks the seminiferous tubules acquire a lumen and develop a terminal segment, the tip of which (terminal plug) protrudes into the cup-shaped modification of the adjacent straight tubule. At 30 weeks the structural differentiation between seminiferous tubule proper and its terminal segment has proceeded: in the former spermatocytes and spermatids make their first appearance, and the supporting cells have transformed to Sertoli cells. In the latter the morphology of the supporting cell preserves a more primitive state. Starting from the 16th week and proceeding through the 30th week and further, the epithelium of the tubulus rectus close to the connexion with the seminiferous tubule becomes monolayered by rearrangement of its cells and advances along the basal lamina into the area of the seminiferous tubule. Those cells of the seminiferous tubule that are cut off from the basal lamina by invading rectus cells degenerate. Between 40 and 52 weeks the adult situation is principally achieved. The terminal segment of the seminiferous tubule is tripartite consisting of transitional region, intermediate portion, and terminal plug. The terminal segment is surrounded by a vascular plexus. The straight testicular tubule adjacent to the terminal segment is modified into a cup region encompassing the terminal plug, followed by a narrow stalk region, which is lined by simple columnar epithelium. Mononuclear free cells are a constant feature of the tubulus rectus epithelium in all stages of postnatal development.Supported by grant Wr 7/6-6 from the Deutsche Forschungsge-meinschaft  相似文献   

8.
Genebank seed accessions of predominantly self-pollinating species may be stored either as bulked (mixed) seed lines or as pure line cultivars. If seed lines are bulked in storage then when considered over several regeneration cycles, loss of genetic diversity within heterogeneous self pollinating genebank accessions is shown to be severe. This within-accession loss of diversity represents opportunities foregone through the random loss of individual genotypes. Amongst working collections, the utility and repeatability of genebank accessions is paramount in the justification of the germ plasm resource. Therefore, the only practical solution to the management of predominantly self-pollinating species is to preserve individual accessions as pure lines.  相似文献   

9.
Summary The postnatal development of intertubular cells and vessels and of the tubular lamina propria was studied in three locations of perfusion-fixed bovine testes from 31 animals ranging from 4 to 78 weeks. The postnatal morphological differentiation of the testis is not uniform, regional differences have to be considered. The intertubular cell population is composed of mesenchyme-like cells, fibrocytes, Leydig cells, peritubular cells and mononuclear cells. In 4 and 8-week-old testes mesenchyme-like cells are the dominating element. These pluripotent cells proliferate by frequent mitoses and are the precursors of Leydig cells, contractile peritubular cells and fibrocytes. Morphologically differentiated Leydig cells are encountered throughout the entire period of postnatal development. In 4-week-old testes degenerating fetal and newly formed postnatal Leydig cells are seen in juxtaposition to each other. From the 8th week on, only postnatal Leydig cells are present. Between 16 and 30 weeks large-scale degeneration of prepuberal Leydig cells is observed. The Leydig cells that survive this degenerative phase constitute the long-lasting adult population. 20–30% (numerically) of all intertubular cells at all ages are free mononuclear cells. These are found as lymphocytes, plasma cells, monocytes, macrophages and light intercalated cells (LIC). The latter are monocyte-derived, Leydig cell-associated typical cells of the bovine testis. The differentiation of the two main components of the tubular lamina propria, (i) basal lamina and (ii) peritubular cell sheath, seems to be effected rather independent from each other and also from hormonal signals important for the development of the germinal cells. The laminated basal lamina reaches nearly 3 m at 16 weeks and is later on continuously reduced. At 25 weeks the peritubular cells have transformed into contractile myofibroblasts. At this period the germinal epithelium is still in a prepuberal state.To Dr. E. Schilling, Mariensee, on the occasion of his 65th birthday  相似文献   

10.
Molecular markers are useful for determining relationships and similarity among inbreds, especially if the proportion of marker loci with alleles common to inbreds i and j is partitioned into: (1) the probability that marker alleles are identical by descent (Mfij); and (2) the conditional probability that marker alleles are alike in state, given that they are not identical by descent ( ij). Our objectives were to: develop a method, based on tabular analysis of restriction fragment length polymorphism marker data, for estimating Mfij, ij, and the parental contribution to inbred progeny; validate the accuracy of the method with a simulated data set; and compare the pedigree-based coefficient of coancestry (fij) and Mfij among a set of maize (Zea mays L.) inbreds. Banding patterns for 73 probeenzyme combinations were determined among 13 inbreds. Iterative estimation of Mfij, ij, and the parental contribution to progeny was performed with procedures similar to a tabular analysis of pedigree data. Deviations of Mfij from pedigree-based fij ranged from 0.002 to 0.288, indicating large effects of selection and/or drift during inbreeding for some inbreds. Differences between marker-based estimates and expected values of parental contribution to inbred progeny were as large as 0.205. Results for a simulated set of inbreds indicated that tabular analysis of marker data provides more accurate estimates of Mfij and ij than other methods described in the literature. Tabular analysis requires the availability of marker data for all the progenitors of each inbred. When marker data are not available for the parents of a given inbred, Mfij and ij may still be calculated if parental contributions to the inbred are assumed equal to their expectations.  相似文献   

11.
Apomixis is defined as the asexual plant reproduction through seeds that results in the production of genetically uniform progeny. In fact, apomixis could be considered as a natural way of cloning. Currently there are more than 400 plant species known to use apomixis as a strategy for their propagation. The primary fundamental aspects of apomixis are the bypassing of meiosis and parthenogenetic development of the embryo without fertilization Apomixis attracts special attention because of its potential value for agriculture, as it could be harnessed for plant breeding programs enabling the permanent fixation of heterosis in crop plants. A better understanding of the molecular and genetic regulation of apomixis is important for developmental and evolutionary perspectives but also for implementation of engineering of apomixis traits into agricultural crop plants. Despite apomixis is considered as one of the key technologies for the improving agriculture, it is currently not fully known how the genetic and molecular regulation of this important trait occurs. In this review, an up to date information on the biology of apomixis and the known genes and genetic loci associated with regulation of different components of apomixis is provided.  相似文献   

12.
13.
14.
15.
Basal activity and cellular localization of cAMP response element-binding protein (CREB) was examined in mouse testis during postnatal development and spermatogenesis. Testes of ICR mice sampled on postnatal day (PND) 3, 7, 14, 21, 28, 35, 42, and 49 were analyzed using Western blotting. Basal CREB activity was significantly higher in early phase (PND 3–7) developing testes than in intermediate- and late-phase developing (PND 14–42) and adult testes (PND 49). Furthermore, immunohistochemical analysis demonstrated the change of CREB phosphorylation in various testicular cell types during postnatal development. In particular, CREB phosphorylation in seminiferous tubules of the adult testis varied according to the spermatogenic cycle, while phosphorylation was evident in spermatogonia during all stages. Phosphorylation was moderate in pachytene spermatocytes of stages I–III and intense in round and elongate spermatids of spermiogenesis in stages XII–IX. These results suggest that CREB plays an important role in cell proliferation and differentiation in the early phase of postnatal development and spermatogenesis of mouse testis.  相似文献   

16.
One of the fastest growing areas of biotechnology research today is marker-assisted breeding of crops. As a prerequisite to marker assisted breeding, genetic linkage maps are currently being developed for many species. For many purposes gene-based markers are the marker type of choice. The biggest problem in genetic linkage mapping using gene-based markers is the identification of polymorphisms between the parents of the population. To improve the efficiency of marker generation, we have developed a simple, and reasonable-cost method of polymorphism detection termed dideoxy polymorphism scanning. Since most of the time required to develop a gene-based linkage map is spent in identification of useful polymorphisms, this method will significantly shorten the time required for map generation and therefore reduce the overall cost.  相似文献   

17.
18.
Glutaredoxins (GRXs) are small, ubiquitous oxidoreductases that have been intensively studied in E. COLI, yeast and humans. They are involved in a large variety of cellular processes and exert a crucial function in the response to oxidative stress. GRXs can reduce disulfides by way of conserved cysteines, located in conserved active site motifs. As in E. COLI, yeast, and humans, GRXs with active sites of the CPYC and CGFS type are also found in lower and higher plants, however, little has been known about their function. Surprisingly, 21 GRXs from ARABIDOPSIS THALIANA contain a novel, plant-specific CC type motif. Lately, information on the function of CC type GRXs and redox regulation, in general, is accumulating. This review focuses on recent findings indicating that GRXs, glutathione and redox regulation, in general, seem to be involved in different processes of development, so far, namely in the formation of the flower. Recent advances in EST and genome sequencing projects allowed searching for the presence of the three different types of the GRX subclasses in other evolutionary informative plant species. A comparison of the GRX subclass composition from PHYSCOMITRELLA, PINUS, ORYZA, POPULUS, and ARABIDOPSIS is presented. This analysis revealed that only two CC type GRXs exist in the bryophyte PHYSCOMITRELLA and that the CC type GRXs group expanded during the evolution of land plants. The existence of a large CC type subclass in angiosperms supports the assumption that their capability to modify target protein activity posttranslationally has been integrated into crucial plant specific processes involved in higher plant development.  相似文献   

19.
植物分子生态学进展(Ⅰ)—遗传结构和杂交   总被引:2,自引:0,他引:2  
从物种遗传结构和杂交的角度介绍了当前植物分子生态学研究的新进展。对于物种遗传结构,文章分析了物种生物学特性、生态因子对它的影响,强调了种群不同世代遗传结构研究的重要性。而在杂交研究领域,文章揭示了分子生物学手段有着比传统形态分析方法更多的优越性。  相似文献   

20.
Sry and the hesitant beginnings of male development   总被引:5,自引:0,他引:5  
In mammals, Sry (sex-determining region Y gene) is the master regulator of male sex determination. The discovery of Sry in 1990 was expected to provide the key to unravelling the network of gene regulation underlying testis development. Intriguingly, no target gene of SRY protein has yet been discovered, and the mechanisms by which it mediates its developmental functions are still elusive. What is clear is that instead of the robust gene one might expect as the pillar of male sexual development, Sry function hangs by a thin thread, a situation that has profound biological, medical and evolutionary implications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号