首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The genes encoding the lipase (LipA) and lipase chaperone (LipB) from Acinetobacter calcoaceticus RAG-1 were cloned and sequenced. The genes were isolated from a genomic DNA library by complementation of a lipase-deficient transposon mutant of the same strain. Transposon insertion in this mutant and three others was mapped to a single site in the chaperone gene. The deduced amino acid (aa) sequences for the lipase and its chaperone were found to encode mature proteins of 313 aa (32.5 kDa) and 347 aa (38.6 kDa), respectively. The lipase contained a putative leader sequence, as well as the conserved Ser, His, and Asp residues which are known to function as the catalytic triad in other lipases. A possible trans-membrane hydrophobic helix was identified in the N-terminal region of the chaperone. Phylogenetic comparisons showed that LipA, together with the lipases of A. calcoaceticus BD413, Vibrio cholerae El Tor, and Proteus vulgaris K80, were members of a previously described family of Pseudomonas and Burkholderia lipases. This new family, which we redefine as the Group I Proteobacterial lipases, was subdivided into four subfamilies on the basis of overall sequence homology and conservation of residues which are unique to the subfamilies. LipB, moreover, was found to be a member of an analogous family of lipase chaperones. We propose that the lipases produced by P. fluorescens and Serratia marcescens, which comprise a second sequence family, be referred to as the Group II Proteobacterial lipases. Evidence is provided to support the hypothesis that both the Group I and Group II families have evolved from a combination of common descent and lateral gene transfer.  相似文献   

2.
Han SJ  Back JH  Yoon MY  Shin PK  Cheong CS  Sung MH  Hong SP  Chung IY  Han YS 《Biochimie》2003,85(5):501-510
A novel lipase gene, lipase A, of Acinetobacter species SY-01 (A. species SY-01) was cloned, sequenced, and expressed in Bacillus subtilis 168. The deduced amino acid (aa) sequences for the lipase A and its chaperone, lipase-specific chaperone, were found to encode mature proteins of 339 aa (37.2 kDa) and 347 aa (38.1 kDa), respectively. The aa sequence of lipase A and lipase-specific chaperone shared high homology 82 and 67% identity with the lipase A and the lipase B of A. species RAG-1. This new lipase was defined as a group I Proteobacterial lipase family. The expressed lipase A was purified through sequential treatment with Q-Sepharose, Resource Q, and Superdex-S75 columns. The maximal activity was observed at 50 degrees C for hydrolysis of p-nitrophenyl monoesters and found to be stable at pH 9-11, with optimal activity at pH 10. Lipase A hydrolyzed wide range of fatty acid esters of p-nitrophenyl, but preferentially hydrolyzed short length acyl chains (C2 and C4). Moreover, lipase A from A. species SY-01 catalyzed hydrolysis of the two acetate isomers of cis-(+/-)-2-(bromomethyl)-2-(2,4-dichloro phenyl)-1,3-dioxolane-4-methyl acetate, an intermediate required for the synthesis of Itraconazole which was an anti-fungal drug, at different rate and yielded cis-(-)-isomer in 81.5% conversion with 91.9% enantiomeric excess.  相似文献   

3.
4.
The lipA gene, a structural gene encoding for protein of molecular mass 48 kDa, and lipB gene, encoding for a lipase-specific chaperone with molecular mass of 35 kDa, of Pseudomonas aeruginosa B2264 were co-expressed in heterologous host Escherichia coli BL21 (DE3) to obtain in vivo expression of functional lipase. The recombinant lipase was expressed with histidine tag at its N terminus and was purified to homogeneity using nickel affinity chromatography. The amino acid sequence of LipA and LipB of P. aeruginosa B2264 was 99–100% identical with the corresponding sequence of LipA and LipB of P. aeruginosa LST-03 and P. aeruginosa PA01, but it has less identity with Pseudomonas cepacia (Burkholderia cepacia) as it showed only 37.6% and 23.3% identity with the B. cepacia LipA and LipB sequence, respectively. The molecular mass of the recombinant lipase was found to be 48 kDa. The recombinant lipase exhibited optimal activity at pH 8.0 and 37°C, though it was active between pH 5.0 and pH 9.0 and up to 45°C. K m and V max values for recombinant P. aeruginosa lipase were found to be 151.5 ± 29 μM and 217 ± 22.5 μmol min−1 mg−1 protein, respectively.  相似文献   

5.
The gene (lipA) encoding the extracellular lipase and its downstream gene (lipB) from Vibrio vulnificus CKM-1 were cloned and sequenced. Nucleotide sequence analysis and alignments of amino acid sequences suggest that Lip Ais a member of bacterial lipase family I.1 and that LipB is a lipase activator of LipA. The active LipA was produced in recombinant Escherichia coli cells only in the presence of the lipB. In the hydrolysis of p-nitrophenyl esters and triacylglycerols, using the reactivated LipA, the optimum chain lengths for the acyl moiety on the substrate were C14 for ester hydrolysis and C10 to C12 for triacylglycerol hydrolysis.  相似文献   

6.
X Wu  J Xu  P You  B Gao  E Su  D Wei 《BMC biotechnology》2012,12(1):58
ABSTRACT: BACKGROUND: Microbial lipases particularly Pseudomonas lipases are widely used for biotechnological applications. It is a meaningful work to design experiments to obtain high-level active lipase. There is a limiting factor for functional overexpression of the Pseudomonas lipase that a chaperone is necessary for effective folding. As previously reported, several methods had been used to resolve the problem. In this work, the lipase (LipA) and its chaperone (LipB) from a screened strain named AB which belongs to Pseudomonas aeruginosa were overexpressed in E.coli with two dual expression plasmid systems to enhance the production of the active lipase LipA without in vitro refolding process. RESULTS: In this work, we screened a lipase-produced strain named AB through the screening procedure, which was identified as P. aeruginosa on the basis of 16S rDNA. Genomic DNA obtained from the strain was used to isolate the gene lipA (936 bp) and lipase specific foldase gene lipB (1023 bp). One single expression plasmid system E.coli BL21/pET28a-lipAB and two dual expression plasmid systems E.coli BL21/pETDuet-lipA-lipB and E.coli BL21/pACYCDuet-lipA-lipB were successfully constructed. The lipase activities of the three expression systems were compared to choose the optimal expression method. Under the same cultured condition, the activities of the lipases expressed by E.coli BL21/pET28a-lipAB and E.coli BL21/pETDuet-lipA-lipB were 1300U/L and 3200U/L, respectively, while the activity of the lipase expressed by E.coli BL21/pACYCDuet-lipA-lipB was up to 8500U/L. The lipase LipA had an optimal temperature of 30[degree sign]C and an optimal pH of 9 with a strong pH tolerance. The active LipA could catalyze the reaction between fatty alcohols and fatty acids to generate fatty acid alkyl esters, which meant that LipA was able to catalyze esterification reaction. The most suitable fatty acid and alcohol substrates for esterification were octylic acid and hexanol, respectively. CONCLUSIONS: The effect of different plasmid system on the active LipA expression was significantly different. pACYCDuet-lipA-lipB was more suitable for the expression of active LipA than pET28a-lipAB and pETDuet-lipA-lipB. The LipA showed obvious esterification activity and thus had potential biocatalytic applications. The expression method reported here can give reference for the expression of those enzymes that require chaperones.  相似文献   

7.
8.
Lipase LipA from Serratia marcescens is a 613-amino acid enzyme belonging to family I.3 of lipolytic enzymes that has an important biotechnological application in the production of a chiral precursor for the coronary vasodilator diltiazem. Like other family I.3 lipases, LipA is secreted by Gram-negative bacteria via a type I secretion system and possesses 13 copies of a calcium binding tandem repeat motif, GGXGXDXUX (U, hydrophobic amino acids), in the C-terminal part of the polypeptide chain. The 1.8-A crystal structure of LipA reveals a close relation to eukaryotic lipases, whereas family I.1 and I.2 enzymes appear to be more distantly related. Interestingly, the structure shows for the N-terminal lipase domain a variation on the canonical alpha/beta hydrolase fold in an open conformation, where the putative lid helix is anchored by a Ca(2+) ion essential for activity. Another novel feature observed in this lipase structure is the presence of a helical hairpin additional to the putative lid helix that exposes a hydrophobic surface to the aqueous medium and might function as an additional lid. The tandem repeats form two separated parallel beta-roll domains that pack tightly against each other. Variations of the consensus sequence of the tandem repeats within the second beta-roll result in an asymmetric Ca(2+) binding on only one side of the roll. The analysis of the properties of the beta-roll domains suggests an intramolecular chaperone function.  相似文献   

9.
Bacillus subtilis secretes the lipolytic enzymes LipA and LipB. We show here that they are differentially expressed depending on the composition of the growth medium: LipA is produced in rich and in minimal medium, whereas LipB is present only in rich medium. A comparison of biochemical characteristics revealed that LipB is thermostable at pH 11 but becomes thermolabile at pH 5. However, construction of a variant carrying the substitution A76G in the conserved lipase pentapeptide reversed these effects. The atomic coordinates from the LipA crystal structure were used to build a three-dimensional structural model of LipB, which revealed that 43 out of 45 residues different from LipA are surface-located allowing to rationalize the differences observed in the substrate preferences of the two enzymes.  相似文献   

10.
低温脂肪酶在低温条件下仍具有较高活性,在食品添加剂、洗涤添加剂及有机合成等产业具有非常独特的应用前景。从低温菌株中分离低温脂肪酶基因是开发新的低温脂肪酶的有效手段。首先利用油脂同化平板与三丁酸甘油酯-维多利亚蓝平板从冰川土样中筛选分离获得一株具有较高脂肪酶活性的真菌,18S rDNA鉴定其属于青霉属,命名为Penicillium sp.XMZ-9。根据真菌脂肪酶多序列比对获得的保守区,设计简并引物,利用降落PCR与染色体步移的方法从Penicillium sp.XMZ-9中克隆到2个完整的脂肪酶基因,分别记为LipA与LipB。LipA全长1 014 bp,无内含子,编码337个氨基酸。而LipB全长1 232 bp,cDNA长1 122 bp,含有2个内含子,编码373个氨基酸。将两基因的cDNA序列克隆到pET30a(+)载体上,转化大肠杆菌Escherichiacoli BL21(DE3)。经低温诱导表达后,LipA大部分表达为包涵体,包涵体经复性后具有脂肪酶活性,并表现出低温适应性;LipB则大部分表达为可溶性蛋白,Ni-亲和层析柱纯化后,其亦具有低温脂肪酶活性。青霉菌株XMZ-9的获得与低温脂肪酶的克隆表达研究,为研究低温菌株与低温酶的适冷机制提供了宝贵的资源,也为进一步开发利用低温脂肪酶奠定了基础。  相似文献   

11.
Two thermostable lipases were isolated and characterized from Thermosyntropha lipolytica DSM 11003, an anaerobic, thermophilic, alkali-tolerant bacterium which grows syntrophically with methanogens on lipids such as olive oil, utilizing only the liberated fatty acid moieties but not the glycerol. Lipases LipA and LipB were purified from culture supernatants to gel electrophoretic homogeneity by ammonium sulfate precipitation and hydrophobic interaction column chromatography. The apparent molecular masses of LipA and LipB determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis were 50 and 57 kDa, respectively. The temperature for maximal activity of LipA and LipB was around 96°C, which is, so far as is known, the highest temperature for maximal activity among lipases, and the pH optima for growth determined at 25°C (pH25°C optima) were 9.4 and 9.6, respectively. LipA and LipB at 100°C and pH25°C 8.0 retained 50% activity after 6 and 2 h of incubation, respectively. Both enzymes exhibited high activity with long-chain fatty acid glycerides, yielding maximum activity with trioleate (C18:1) and, among the p-nitrophenyl esters, with p-nitrophenyl laurate. Hydrolysis of glycerol ester bonds occurred at positions 1 and 3. The activities of both lipases were totally inhibited by 10 mM phenylmethylsulfonyl fluoride and 10 mM EDTA. Metal analysis indicated that both LipA and LipB contain 1 Ca2+ and one Mn2+ ion per monomeric enzyme unit. The addition of 1 mM MnCl2 to dialyzed enzyme preparations enhanced the activities at 96°C of both LipA and LipB by threefold and increased the durations of their thermal stability at 60°C and 75°C, respectively, by 4 h.  相似文献   

12.
P Sommer  C Bormann    F Gtz 《Applied microbiology》1997,63(9):3553-3560
Streptomyces cinnamomeus Tü89 secretes a 30-kDa esterase and a 50-kDa lipase. The lipase-encoding gene, lipA, was cloned from genomic DNA into Streptomyces lividans TK23 with plasmid vector pIJ702. Two lipase-positive clones were identified; each recombinant plasmid had a 5.2-kb MboI insert that contained the complete lipA gene. The two plasmids differed in the orientation of the insert and the degree of lipolytic activity produced. The lipA gene was sequenced; lipA encodes a proprotein of 275 amino acids (29,213 Da) with a pI of 5.35. The LipA signal peptide is 30 amino acids long, and the mature lipase sequence is 245 amino acids long (26.2 kDa) and contains six cysteine residues. The conserved catalytic serine residue of LipA is in position 125. Sequence similarity of the mature lipases (29% identity, 60% similarity) was observed mainly in the N-terminal 104 amino acids with the group II Pseudomonas lipases; no similarity to the two Streptomyces lipase sequences was found. lipA was also expressed in Escherichia coli under the control of lacZ promoter. In the presence of the inducer isopropyl-beta-D-thiogalactopyranoside (IPTG), growth of the E. coli clone was severely affected, and the cells lysed in liquid medium. Lipase activity in the E. coli clone was found mainly in the pellet fraction. In sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis, three additional protein bands of 50, 29, and 27 kDa were visible. The 27-kDa protein showed lipolytic activity and represents the mature lipase; the 29- and 50-kDa forms showed no activity and very probably represent the unprocessed form and a dimeric misfolded form, respectively. For higher expression of lipA in S. lividans, the gene was cloned next to the strong aphII promoter. In contrast to the lipA-expressing E. coli clone, S. cinnamomeus and the corresponding S. lividans clone secreted only an active protein of 50 kDa. The lipase showed highest activity with C6 and C18 triglycerides; no activity was observed with phospholipids, Tween 20, or p-nitrophenylesters. Upstream of lipA and in the same orientation, an open reading frame, orfA, is found whose deduced protein sequence (519 amino acids) shows similarity to various membrane-localized transporters. Downstream of lipA and in the opposite orientation, an open reading frame, orfB (encoding a 199-amino-acid protein) is found, which shows no conspicuous sequence similarity to known proteins, other than an NAD and flavin adenine dinucleotide binding-site sequence.  相似文献   

13.
A novel gene lipB, which encodes an extracellular lipolytic enzyme, was identified in the Bacillus subtilis genomic DNA sequence. We have cloned and overexpressed lipB in B. subtilis and Escherichia coli and have also purified the enzyme from a B. subtilis culture supernatant to electrophoretic homogeneity. Four different lipase assays were used to determine its catalytic activity: pH-stat, spectrophotometry, fluorimetry and the monomolecular film technique. LipB preferentially hydrolysed triacylglycerol-esters and p-nitrophenyl-esters of fatty acids with short chain lengths of 相似文献   

14.
Microorganisms associated with marine sponges are potential resources for marine enzymes. In this study, culture-independent metagenomic approach was used to isolate lipases from the complex microbiome of the sponge Ircinia sp. obtained from the South China Sea. A metagenomic library was constructed, containing 6568 clones, and functional screening on 1 % tributyrin agar resulted in the identification of a positive lipase clone (35F4). Following sequence analysis 35F4 clone was found to contain a putative lipase gene lipA. Sequence analysis of the predicted amino acid sequence of LipA revealed that it is a member of subfamily I.1 of lipases, with 63 % amino acid similarity to the lactonizing lipase from Aeromonas veronii (WP_021231793). Based on the predicted secondary structure, LipA was predicted to be an alkaline enzyme by sequence/structure analysis. Heterologous expression of lipA in E. coli BL21 (DE3) was performed and the characterization of the recombinant enzyme LipA showed that it is an alkaline enzyme with high tolerance to organic solvents. The isolated lipase LipA was active in the broad alkaline range, with the highest activity at pH 9.0, and had a high level of stability over a pH range of 7.0–12.0. The activity of LipA was increased in the presence of 5 mM Ca2+ and some organic solvents, e.g. methanol, acetone and isopropanol. The optimum temperature for the activity of LipA is 40 °C and the molecular weight of LipA was determined to be ~30 kDa by SDS-PAGE. LipA is an alkaline lipase and shows good tolerance to some organic solvents, which make it of potential utility in the detergent industry and enzyme mediated organic synthesis. The result of this study has broadened the diversity of known lipolytic genes and demonstrated that marine sponges are an important source for new enzymes.  相似文献   

15.
The X-ray structure of the lipase LipA from Bacillus subtilis has been determined at 1.5 A resolution. It is the first structure of a member of homology family 1.4 of bacterial lipases. The lipase shows a compact minimal alpha/beta hydrolase fold with a six-stranded parallel beta-sheet flanked by five alpha-helices, two on one side of the sheet and three on the other side. The catalytic triad residues, Ser77, Asp133 and His156, and the residues forming the oxyanion hole (backbone amide groups of Ile12 and Met78) are in positions very similar to those of other lipases of known structure. However, no lid domain is present and the active-site nucleophile Ser77 is solvent-exposed. A model of substrate binding is proposed on the basis of a comparison with other lipases with a covalently bound tetrahedral intermediate mimic. It explains the preference of the enzyme for substrates with C8 fatty acid chains.  相似文献   

16.
The lipase gene family   总被引:1,自引:0,他引:1  
Development of the lipase gene family spans the change in science that witnessed the birth of contemporary techniques of molecular biology. Amino acid sequencing of enzymes gave way to cDNA cloning and gene organization, augmented by in vitro expression systems and crystallization. This review traces the origins and highlights the functional significance of the lipase gene family, overlaid on the background of this technical revolution. The gene family initially consisted of three mammalian lipases [pancreatic lipase (PL), lipoprotein lipase, and hepatic lipase] based on amino acid sequence similarity and gene organization. Family size increased when several proteins were subsequently added based on amino acid homology, including PL-related proteins 1 and 2, phosphatidylserine phospholipase A1, and endothelial lipase. The physiological function of each of the members is discussed as well as the region responsible for lipase properties such as enzymatic activity, substrate binding, heparin binding, and cofactor interaction. Crystallization of several lipase gene family members established that the family belongs to a superfamily of enzymes, which includes esterases and thioesterases. This superfamily is related by tertiary structure, rather than amino acid sequence, and represents one of the most populous families found in nature.  相似文献   

17.
Burkholderia sp. HY-10 isolated from the digestive tracts of the longicorn beetle, Prionus insularis, produced an extracellular lipase with a molecular weight of 33.5 kDa estimated by SDS-PAGE. The lipase was purified from the culture supernatant to near electrophoretic homogenity by a one-step adsorption-desorption procedure using a polypropylene matrix followed by a concentration step. The purified lipase exhibited highest activities at pH 8.5 and 60 degrees . A broad range of lipase substrates, from C4 to C18 rho-nitrophenyl esters, were hydrolyzed efficiently by the lipase. The most efficient substrate was rho-nitrophenyl caproate (C6). A 2485 bp DNA fragment was isolated by PCR amplification and chromosomal walking which encoded two polypeptides of 364 and 346 amino acids, identified as a lipase and a lipase foldase, respectively. The N-terminal amino acid sequence of the purified lipase and nucleotide sequence analysis predicted that the precursor lipase was proteolytically modified through the secretion step and produced a catalytically active 33.5 kDa protein. The deduced amino acid sequence for the lipase shared extensive similarity with those of the lipase family I.2 of lipases from other bacteria. The deduced amino acid sequence contained two Cystein residues forming a disulfide bond in the molecule and three, well-conserved amino acid residues, Ser131, His330, and Asp308, which composed the catalytic triad of the enzyme.  相似文献   

18.
Pseudomonas glumae PG1 is able to secrete lipase into the extracellular medium. The lipase is produced as a precursor protein, with an N-terminal signal sequence. A second open reading frame (ORF) was found immediately downstream of the lipase structural gene, lip A, a situation found for the lipases of some other Pseudomonas species. Inactivation of this ORF resulted in a lipase-negative phenotype, indicating its importance in the production of active extracellular lipase. The ORF, lipB, potentially encodes a protein of 353-amtno-acid residues, having a hydrophobic N-terminal (amino acids 1 to 90) and a hydrophilic C-terminal part. As a first step in determining the role of LipB, its subcellular location was determined. The protein was found to fractionate with the inner membranes. The expression of fusions of lipB fragments with phoA revealed an Nin–Cout topology for the LipB protein, which was confirmed by protease accessibility studies on EDTA-permeabilized cells and on inverted inner membrane vesicles. These and other results indicate that most of the LipB polypeptide is located in the periplasm and anchored to the inner membrane by an an N-terminal transmembrane helix, located between amino acids 19 and 40.  相似文献   

19.
AIMS: The aim of this study was to perform the isolation, cloning and characterization of a lipase from Bacillus sp. BP-6 bearing the features of a biotechnologically important group of enzymes. METHODS AND RESULTS: Strain Bacillus sp. BP-6, showing activity on tributyrin plates, was used for isolation of lipase-coding gene lipA by means of inverse and direct PCR. The complete 633 nucleotide ORF isolated was cloned in Escherichia coli for further characterization. The amino acid sequence of the cloned protein was 98% identical to B. subtilis and B. megaterium lipases, the enzyme also showing similar molecular and biochemical features. CONCLUSIONS: The gene coding for Bacillus sp. BP-6 LipA was found in all mesophilic Bacillus species assayed, indicating its ubiquity in the genus. The cloned enzyme displayed the same properties as those of homologous lipases. SIGNIFICANCE AND IMPACT OF THE STUDY: The overall profile of Bacillus sp. BP-6 LipA was found to be that of a ubiquitous and highly conserved subfamily I.4 bacterial lipase. Previously described lipases within this family have shown to be well suited for biotechnological applications, suggesting that the cloned enzyme could be used accordingly.  相似文献   

20.
Bacterial lipases constitute the most important group of biocatalysts for synthetic organic chemistry. Accordingly, there is substantial interest in developing new valuable lipases. Considering the lack of information concerning the lipases of the genus Rhodococcus and taking into account the interest raised by the enzymes produced by actinomycetes, a search for putative lipase-encoding genes from Rhodococcus sp. strain CR-53 was performed. We isolated, cloned, purified, and characterized LipR, the first lipase described from the genus Rhodococcus. LipR is a mesophilic enzyme showing preference for medium-chain-length acyl groups without showing interfacial activation. It displays good long-term stability and high tolerance for the presence of ions and chemical agents in the reaction mixture. Amino acid sequence analysis of LipR revealed that it displays four unique amino acid sequence motifs that clearly separate it from any other previously described family of bacterial lipases. Using bioinformatics tools, LipR could be related only to several uncharacterized putative lipases from different bacterial origins, all of which display the four blocks of consensus amino acid sequence motifs that contribute to define a new family of bacterial lipases, namely, family X. Therefore, LipR is the first characterized member of the new bacterial lipase family X. Further confirmation of this new family of lipases was performed after cloning Burkholderia cenocepacia putative lipase, bearing the same conserved motifs and clustering in family X. Interestingly, all lipases grouping in the new bacterial lipase family X display a Y-type oxyanion hole, a motif conserved in the Candida antarctica lipase clan but never found among bacterial lipases. This observation contributes to confirm that LipR and its homologs belong to a new family of bacterial lipases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号