首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Dissolved organic carbon (DOC) is an important component in the terrestrial carbon cycle. Yet, the relative importance of different inputs of DOC to the soil solution remains uncertain. Here, we used a large-scale forest girdling experiment to examine how the supply of recent photosynthate to tree roots and their mycorrhizal fungi affects DOC, in particular low-molecular weight organic acids (LMWOA). We also studied effects of tree girdling on non-structural carbohydrates in microorganism, and examined the effects of freezing of soil and the presence of roots in the soil samples on soil solution DOC and LMWOA in this experiment. The concentration of DOC was reduced by 40%, while citrate was reduced by up to 90% in the soil solution by the girdling treatment. Other LMWOA such as oxalate, succinate, formate and propionate were unaffected by the girdling. We also found that girdling reduced the concentrations of trehalose (by 50%), a typical fungal sugar, and of monosaccharides (by 40%) in microorganisms in root-free soil. The effect of freezing on DOC concentrations was marked in samples from control plots, but insignificant in samples from girdled plots. Release of DOC from cell lysis after freezing was attributed equally to roots and to microorganisms. Our observations suggest a direct link from tree photosynthesis through roots and their mycorrhizal fungi to soil solution chemistry. This direct link should impact solute transport and speciation, mineral weathering and C dynamics in the soil compartment. Importantly, our finding of a substantial photosynthate driven production of DOC challenges the paradigm that DOC is mainly the result of decomposition of organic matter.  相似文献   

2.
3.
4.
AIMS: Naphthenic acids (NAs) are naturally occurring, linear and cyclic carboxylic surfactants associated with the acidic fraction of petroleum. NAs account for most of the acute aquatic toxicity of oil sands process-affected water (OSPW). The toxicity of OSPW can be reduced by microbial degradation. The aim of this research was to determine the extent of NA degradation by sediment microbial communities exposed to varying amounts of OSPW. METHODS AND RESULTS: Eleven wetlands, both natural and process-affected, and one tailings settling pond in Northern Alberta were studied. The natural wetlands and process-affected sites fell into two distinct groups based on their water chemistry. The extent of degradation of a 14C-labelled monocyclic NA surrogate [14C-cyclohexane carboxylic acid (CCA)] was relatively uniform in all sediments (approximately 30%) after 14 days. In contrast, degradation of a bicyclic NA surrogate [14C-decahydronaphthoic acid (DHNA)] was significantly lower in non process-affected sediments. Enrichment cultures, obtained from an active tailings settling pond, using commercially available NAs as the sole carbon source, resulted in the isolation of a co-culture containing Pseudomonas putida and Pseudomonas fluorescens. Quantitative GC-MS analysis showed that the co-culture removed >95% of the commercial NAs, and partially degraded the process NAs from OSPW with a resulting NA profile similar to that from 'aged wetlands'. CONCLUSIONS: Exposure to NAs induced and/or selected micro-organisms capable of more effectively degrading bicyclic NAs. Native Pseudomonas spp. extensively degraded fresh, commercial NA. The recalcitrant NAs resembled those found in process-affected wetlands. SIGNIFICANCE AND IMPACT OF THE STUDY: These results suggest that it may be possible to manipulate the existing environmental conditions to select for a microbial community exhibiting higher rates of NA degradation. This will have significant impact on the design of artificial wetlands for water treatment.  相似文献   

5.
An experiment was carried out to study the colonization of soil microorganisms on cotton roots buried in the soil.Fusarium culmorum, F. solani, F. oxysporum, Macrophomina phaseoli andBacillus sp. were found to be the predominant colonizers followed byBotryodiplodia theobromae, Fusarium acuminatum, Aspergillus niger, A. flavus, Stachybotrys atra, Tilachlidium humicola andRhizopus sp. The practice of leaving cotton roots in the soil would therefore add to the building up of the inoculum potential of the soil inhabiting fungi several of which are serious root pathogens.  相似文献   

6.
7.
8.
Under oxygen deprivation, aerobic Corynebacterium glutamicum produce organic acids from glucose at high yields in mineral medium even though their proliferation is arrested. To develop a new, high-productivity bioprocess based on these unique features, characteristics of organic acid production by C. glutamicum under oxygen deprivation were investigated. The main organic acids produced from glucose under these conditions were lactic acid and succinic acid. Addition of bicarbonate, which is a co-substrate for anaplerotic enzymes, increased the glucose consumption rate, leading to increased organic acid production rates. With increasing concentration of bicarbonate, the yield of succinic acid increased, whereas that of lactic acid decreased. There was a direct correlation between cell concentration and organic acid production rates even at elevated cell densities, and productivities of lactic acid and succinic acid were 42.9 g l−1 h−1 and 11.7 g l−1 h−1, respectively, at a cell concentration of 60 g dry cell l−1. This cell-recycling continuous reaction demonstrated that rates of organic acid production by C. glutamicum could be maintained for at least 360 h.  相似文献   

9.
10.
In a 2-yr study, predators were shown to inflict heavy mortality on the eggs of codling moth, Cydia pomonella, placed in a cider-apple orchard where no insecticidal sprays were applied. Predatory Heteroptera sucked out 35 and 57 % of the eggs in the 2 yr respectively, and smaller numbers of eggs (16 %) disappeared, probably consumed by earwigs, Forficula auricularia. The potential of these predators for an integrated control system is briefly discussed.  相似文献   

11.
Fish meat was easily liquefied by hydrolysis under subcritical conditions without oxidants, and aqueous phase and water-insoluble phase containing oil and fat-like solid were formed. Lactic acid found in the raw fish meat (about 0.03 g/g-dry meat) was stable up to the reaction temperature 513 K (3.35 MPa). Pyroglutamic acid was produced with a yield of 0.095 kg/kg of dry meat by 30 min reaction at 553 K (6.42 MPa). Amino acids such as cystine, alanine, glycine, and leucine were produced in the temperature range 513-623 K with a maximum peak at 543 K. Amounts of cystine, alanine, glycine, and leucine produced in 5 min at 543 K (5.51 MPa) were 0.024, 0.013, 0. 009, and 0.004 kg/kg of dry meat, respectively. The oil extracted with hexane contained useful fatty acids such as eicosapentanoic acid (EPA) and docosahexianoic acid (DHA). Thus, subcritical water hydrolysis would be an efficient process for recovering useful substances from organic waste such as fish waste discarded from fish market.  相似文献   

12.
13.
J. M. Lynch 《Plant and Soil》1983,70(3):415-420
Summary Treatment of arable soils with antibacterial (novobiocin) and antifungal (cycloheximide) agents had no effect on ethylene accumulation. Novobiocin had a very small effect on the growth ofMucor hiemalis and cycloheximide decreased its maximum specific growth rate but neither agent impaired the capacity of the fungal culture to produce ethylene. Caution must therefore be exercised when using antibiotics to establish the source of soil metabolic processes.  相似文献   

14.
15.
The bacteria studied released into the medium ten to eleven organic acids. Soil organisms excreted mainly pyruvic and alpha-ketoglutaric acids, while strains from the root zone--gluconic acid and unidentified uronic acid (y2). Mean indices of total production of the organic acids by bacteria were in the following order: rhizosphere less than soil less than mycorrizosphere. Bacteria from the root zone released into the medium very large amounts of pyruvic, gluconic, and uronic (y2) acids--in some instances several times higher than bacterial dry mass.  相似文献   

16.
Soil structural aspects of decomposition of organic matter by micro-organisms   总被引:15,自引:0,他引:15  
Soil architecture is the dominant control over microbially mediated decomposition processes in terrestrial ecosystems. Organic matter is physically protected in soil so that large amounts of well-decomposable compounds can be found in the vicinity of largely starving microbial populations. Among the mechanisms proposed to explain the phenomena of physical protection in soil are adsorption of organics on inorganic clay surfaces and entrapment of materials in aggregates or in places inaccessible to microbes. Indirect evidence for the existence of physical protection in soil is provided by the occurrence of a burst of microbial activity and related increased decomposition rates following disruption of soil structures, either by natural processes such as the remoistening of a dried soil or by human activities such as ploughing. In contrast, soil compaction has only little effect on the transformation of 14C-glucose. Another mechanism of control by soil structure and texture on decomposition in terrestrial ecosystems is through their impact on microbial turnover processes. The microbial population is not only the main biological agent of decomposition in soil, it is also an important, albeit small, pool through which most of the organic matter in soil passes. Estimates on the relative importance of different mechanisms controlling decomposition in soil could be derived from results of combined tracer and modelling studies. However, suitable methodology to quantify the relation between soil structure and biological processes as a function of different types and conditions of soils is still lacking.  相似文献   

17.
18.
Summary Isogenic strains ofEscherichia coli were grown aerobically in minimal medium in a 2-liter airlift fermentor to determine whether appc (phosphoenolpyruvate carboxylase) mutation had the effect of directing glucose carbon into phenylalanine synthesis. Two host strains, YMC9 (ppc +) and KB285 (ppc ) were used, either with (Phec) or without (Phe0) a plasmid which determines constitutive phenylalanine production. Carbon consumption and metabolic products were monitored. Phenylalanine production occurred only in strains carrying the Phec plasmid.ppc strains produced less cell mass and more acetate, pyruvate, and phenylalanine (in the Phec strains) than did isogenicppc + strains. Lactate and ethanol production were not detected in any of the strains. Phec strains produced less acetate and pyruvate than their Phe0 homologs. Importantly,ppc /Phec produced at least six times as much phenylalanine (0.32 g phenylalanine/g dry weight cells) asppc +/Phec. Even in this case, however, phenylalanine was produced at ten-fold lower levels than acetate. Thus, although theppc mutation stimulates phenylalanine production, it also stimulates the production of unwanted by-products such as acetate and pyruvate.  相似文献   

19.
A starch ingredient with antioxidative activity, as measured by the DPPH method, was produced by baking corn starch with an organic acid; it has been named ANOX sugar (antioxidative sugar). The baking temperature and time were fixed at 170 °C and 60 min, and the organic acid used was selected from preliminary trials of various kinds of acid. The phytic acid ANOX sugar preparation showed the highest antioxidative activity, but the color of the preparation was almost black; we therefore selected L-tartaric acid which had the second highest antioxidative activity. The antioxidative activity of the L-tartaric acid ANOX sugar preparation was stable against temperature, light, and enzyme treatments (α-amylase and glucoamylase). However, the activity was not stable against variations in water content and pH value. The antioxidative activity of ANOX sugar was stabilized by treating with boiled water or nitrogen gas, or by pH adjustment.  相似文献   

20.
Production of PHA from starchy wastewater via organic acids   总被引:8,自引:0,他引:8  
Polyhydroxyalkanoate (PHA) was produced from a starchy wastewater in a two-step process of microbial acidogenesis and acid polymerization. The starchy organic waste was first digested in a thermophilic upflow anaerobic sludge blanket (UASB) reactor to form acetic (60-80%), propionic (10-30%) and butyric (5-40%) acids. The total volatile fatty acids reached 4000 mg l(-1) at a chemical oxygen demand (COD) loading rate of 25-35 g l(-1) day(-1). A carbon balance indicates that up to 43% of the organic carbon in the starchy waste went to the organic acids and the rest to biogas, volatile suspended solids and residual sludge accumulated in the reactor. The acid composition profile was affected by COD loading rate: a medium rate around 9 g l(-1) day(-1) gave a high propionic acid content (29% wt) and a high rate around 26 g l(-1) day(-1) led to a high butyric acid content (34% wt). The acids in the effluent solution after microfiltration were utilized and polymerized into PHA by bacterium Alcaligenes eutrophus in a second reactor. Fifty grams of PHA was produced from 100 g total organic carbon (TOC) utilized, a yield of 28% based on TOC, which is comparable with 55 g PHA per 100 g TOC of pure butyric and propionic acids used. PHA formation from individual acids was further investigated in a semi-batch reactor with three acid feeding rates. With a limited nitrogen source (80-100 mg NH(3) per liter), the active biomass of A. eutrophus, not including the accumulated PHA in cells, was maintained at a constant level (8-9 g l(-1)) while PHA content in the cell mass increased continuously in 45 h; 48% PHA with butyric acid and 53% PHA with propionic acid, respectively. Polyhydroxybutyrate was formed from butyric acid and poly(hydroxybutyrate-hydroxyvalerate) formed from propionic acid with 38% hydroxyvalerate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号