首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The potential importance of the beet ringspot strain of tomato black-ring, a soil-borne virus, was assessed by growing stocks of Kerr's Pink potato for 1 year on infested land and subsequently on uninfested land. The incidence of infection in two stocks was 39 and 8% in the first year on uninfested land, and 29 and 5% after 2 years.
The virus was usually restricted to the roots of plants in the first year of infection, but a few plants showed black rings and spots in their leaves. In the second year, 20–55% of the plants grown from tubers set by symptomless, but infected, mother plants were infected: many of these showed leaf necrosis, others had stunted shoots, and cupped and distorted leaves; some were symptomless although systemically infected. In the third and fourth years, most of the progeny from plants which had symptoms or which were symptomless but systemically infected, contained the virus: nearly all such infected plants were stunted and distorted or were symptomless. Infection decreased the weight of tubers produced by plants with severe necrotic spotting but not the yield of plants with less necrosis. The number and weight of tubers per plant were decreased by 15 and 20% respectively, in symptomless systemically infected plants, and by 20 and 30% in stunted plants.  相似文献   

2.
Mixed infections with two or three viruses - bean leaf roll (BLRV), pea early-browning (PEBV) and pea enation mosaic (PEMV) - were detected in plants showing leaf curling, stunting and necrosis in a crop of field beans grown for seed in 1980. In glasshouse tests, field bean plants infected with any one of these viruses showed no necrosis, and plants infected with PEBV and PEMV together showed symptoms of PEMV only. However, mixed infection with BLRV and PEMV almost invariably induced severe stunting and leaf necrosis, and infection with BLRV and PEBV often induced both leaf and stem necrosis and sometimes caused early death. Thus it seems that the necrotic symptoms seen in the field were induced by interactions between BLRV and the other viruses. No transmission of PEBV was detected through seed harvested from the crop, but up to 5% transmission was detected through seed from experimentally-infected plants. The infected seedlings were symptomless.  相似文献   

3.
Two experiments were conducted to assess nutrient partitioning in coffee (Coffea arabica cv. Typica land race Guatemala) infected with Meloidogyne konaensis. Nutrient levels were quantified from soil, roots, and leaves. In the first experiment, 500-cm3 aliquants of a Kealakekua Andisol were infested with four initial population densities of M. konaensis ranging from 0 to 1,500 freshly hatched second-stage juveniles. Coffee plants (~3 months old) were transplanted into the soil and grown for 25 weeks. Plants responded to nematode infection with decreases (P < 0.05) in concentrations of Ca, Mg, P, and B and increases (P < 0.05) in concentrations of Mn, Cu, Zn, and Ca/B in the roots. Mn and Cu uptake by roots was decreased (P < 0.05) by nematode infection even though concentrations of Mn and Cu increased (P < 0.05) in the roots. Concentrations of Ca and Mg also decreased (P < 0.05) in the leaves, whereas the concentration of Zn increased (P < 0.05). In the second experiment, the soil was amended with Zn at 0 or 5 mg/kg soil and infested with M. konaensis at 0, 100, 1,000 or 10,000 eggs/1,200 cm3 soil. Three-month-old coffee seedlings of similar height were weighed and transplanted into pots and then placed in a greenhouse and grown under 50% shade for 23 weeks. Concentrations of P, K, Ca, Mg, Mn, B, and Zn increased in roots of nematode-free plants growing in Zn-amended soil. The beneficial effects due to the Zn amendment were not apparent in nematode-infected plants. Mn, B, and Zn uptake by coffee roots and P and B concentrations in coffee leaves responded similarly. Management of M. konaensis is necessary to achieve optimal nutrient management in coffee.  相似文献   

4.
Grafting symptomless scions, derived from petunia asteroid mosaic virus (PeAMV)-infected trees, to healthy rootstocks resulted in only 3.3% infection in the resulting trees. Up to 90% of seeds from infected sweet cherries contained high quantities of PeAMV, but the virus was not transmitted to the seedlings apparently because of low virus content in the embryo and loss of infectivity during seed maturation and storage. Replanting healthy cherry trees cv. Sam, grafted to different rootstocks, into contaminated soils resulted in new infections. Eight of 13 trees on rootstocks derived from Prunus avium (F 12/1 and cv. Sam on its own roots) were infected with PeAMV within a period of four years but only one of 16 trees on Weiroot-rootstocks (selections from Prunus cerasus) became infected. The detection of PeAMV in naturally contaminated soil samples by the bait plant procedure, using Nicotiana clevelandii, was superior to testing soil eluates by enzyme-linked immunosorbent assay (ELISA) and immuno electron microscopy (IEM). Wild plants may contribute to virus propagation and maintenance of virus contamination of the soil as 25 of 310 samples from 712 herbaceous plants growing in the vicinity of infected trees contained PeAMV; the contaminated samples represented 12 species. The perpetuation of PeAMV by infected scion wood is probably of minor significance, and infection via the soil probably represents the most important means of spread of viral twig necrosis in northern Bavaria.  相似文献   

5.
The transmission of Pseudomonas phaseolicola from plant to seed was mainly by the penetration of bacteria from external pod lesions to the underlying seeds. There was no evidence for translocation of bacteria from other parts of the plant to the seed, and symptomless pods contained only healthy seeds. Although a small proportion of infected seeds showed obvious symptoms of infection, the majority showed either slight symptoms, which could be detected only by careful observation, or were symptomless. In tests of disease transmission from seed to seedling, seeds with slight symptoms, or those which were symptomless were responsible for 35% and 52% respectively of the total disease transmission compared to 13% for obviously infected seeds. The viability of bacteria in seed stored under relatively uncontrolled conditions (10–27 C) declined by a factor of 250 per annum over the first 3 yr with extrapolation predicting effective extinction after c . 5 yr. The pathogen survived longer under controlled conditions (7–10 C and 45–50% r.h.) but no viable bacteria were detected in seed stocks which were 10-yr-old and with one exception 6-yr-old stocks were also free of the pathogen.  相似文献   

6.
Inoculation of barley seed with the saprophytic fungus Idriella bolleyi caused systemically improved resistance on both leaves and roots of young plants to subsequent infection with the necrotrophic fungus Bipolaris sorokiniana . Lesion sizes were reduced by up to 50% as a result of the seed treatment. Seed and root inoculation with I. bolleyi induced biochemical defence responses in the plants as shown by slight accumulation of pathogenesis-related (PR) proteins, but the accumulation was not as great as when the roots were inoculated with B. sorokinina . Conidia of I. bolleyi applied to seed survived well during storage, with no significant reduction in colony forming units (CFUs) occurring at 15°C after 2 months. However, storage at 28°C decreased the viability of the applied conidia. The fungus colonized the seed and roots during field conditions as indicated by high numbers of CFUs. Two months after sowing, frequencies of I. bolleyi were higher on plants treated with the fungus than on control plants where colonization occurred naturally from field soil. The implications of the results are discussed in relation to earlier reports of biological control of cereal root diseases by I. bolleyi and induced resistance.  相似文献   

7.
Field and glasshouse experiments on the control of potato mop-top virus   总被引:2,自引:0,他引:2  
Field observations during 3 yr on a stock of potato cv. Red Craigs Royal partially infected with potato mop-top virus (PMTV) confirmed that the virus was passed by an infected mother plant to only a proportion of its progeny tubers, and showed that in this cultivar symptomless plants gave rise only to symptomless progeny. The elimination of PMTV from stocks can therefore be greatly accelerated by removing symptom-bearing plants. Infected potato tubers were not freed from PMTV by treating them at 37 °C for up to 8 wk. Treating ‘seed’ tubers bearing powdery scabs that contain PMTV-carrying resting spores of Spongospora subterranea with formaldehyde or organo-mercurial fungicide greatly decreased PMTV establishment when the tubers were planted in previously uninfective soil, but fumigation with 2-aminobutane was ineffective. Decreasing the pH of infective soil to 5-0 by applying sulphur greatly decreased the infection of potato cv. Arran Pilot with PMTV and S. subterranea in field experiments, but this treatment did not eliminate either; when the pH of treated soil was raised the transmission of PMTV resumed. Treating infective soil with a range of fungicides greatly decreased the infection of Nicotiana debneyi bait seedlings in glasshouse experiments but only calomel at 75 kg/ha controlled spread of PMTV and 5. subterranea to potato in field experiments. In other field experiments, applying zinc frit, zinc sulphate or zinc oxide to infective soil greatly decreased the spread of both to potato. The amount of zinc required increased with increase in clay content of the soil. However, treatment with zinc compounds did not eliminate PMTV-carrying vectors from soil, and when treated soil was diluted with autoclaved soil many of the bait seedlings planted in the mixture became infected. The zinc frit was phytotoxic because of its boron content but zinc sulphate and zinc oxide caused little or no decrease in tuber yield. The zinc content of potato tubers was increased but not doubled in zinc-treated plots, and during the first year after treatment the zinc content of topsoil decreased greatly. The zinc content of ryegrass grown after potatoes was greater than of potato tubers but did not reach a level considered dangerous to livestock. Treatment of soil with sulphur, zinc oxide or calomel may be useful for small plots used in the early stages of propagation of virus-tested potato clones where there is risk of infection with PMTV.  相似文献   

8.
I. Jakobsen 《Plant and Soil》1987,98(3):407-415
Summary A field experiment was carried out to study the influence of vesicular-arbuscular mycorrhiza (VAM) on nutrient uptake and growth of pea at two levels of P fertilizer. Pea was grown in dazomet-fumigated and non-fumigated soil, either with or without addition of inoculum of VAM fungi. Dazomet efficiently eliminated infection by indigenous VAM fungi, whereas roots from untreated soil were extensively infected. Inoculation with VAM fungi increased P uptake by peas in fumigated plots, but had no significant effect on dry matter production in either soil treatment. However, VAM developed less in inoculated fumigated than in untreated plots. Seeds of uninfected plants in fumigated plots contained only 56 and 81%, respectively, of the P and dry matter content of seeds of infected plants in untreated plots. The addition of 60 kg P ha−1 also increased seed yields but to a smaller degree than VAM. The seed yield as a proportion of total shoot yield (harvest index) was higher in VAM infected than in uninfected peas but was unaffected by P fertilizer. The possible reasons for this are discussed.  相似文献   

9.
The severe strain of potato spindle tuber viroid (s-PSTV) as well as chrysanthemum stunt (CSV) and cucumber pale fruit (CPFV) viroids were found to be transmitted through seed and pollen of the tomato cvs. Rutgers and Najwcze?niejszy. Plants pollinated with a pollen infected with any of these three viroids became systematically infected. Plant, fruit and seed symptoms of viroid infection were noted on sap- and pollen-inoculated plants and the yield of these plants was reduced. Tomato cv. Rutgers plants grown from infected seeds were symptomless although all three viroids were detected in these plants by bioassay and by electrophoresis on 5% polyacrylamide gel. When DNA complementary to s-PSTV RNA was used for a direct viroid detection in seed samples by spot hybridization technique it hybridized not only with s-PSTV RNA but also with CSV RNA as well as with CPFV RNA.  相似文献   

10.
11.
Effects of skin spot (Oospora pustulans) on potatoes   总被引:1,自引:0,他引:1  
King Edward and Majestic seed potatoes selected as ‘clean’ (macroscopically symptomless), moderate and severe according to the extent of skin spot were planted in field experiments at Rothamsted between 1964 and 1968. Usually crops from ‘clean’ and moderately infected seed did not differ detectably in growth or yield. Plants from severely infected seed tubers emerged more slowly, had fewer stems and yielded less (King Edward 20 %, Majestic 13 %). Seed infection also affected tuber size distribution; severely infected seed of King Edward yielded almost 4 tons/acre less of 1 1/4-2 1/4 in tubers and Majestic, 1 ton/acre less of these and 2 tons/acre less 2 1/4-3 1/4 in tubers. However, the total yield from diseased seed stocks was only slightly less (King Edward, o-6 ton/acre and Majestic o-8 ton/acre) than the yields from the ‘clean’ tubers selected from them. Seed severely infected by Oospora pustulans often increased infection of the progeny tubers, and usually decreased their infection by Rhizoctonia solani and sometimes by Helmintho-sporium solani. Another series of experiments compared King Edward seed tubers classified according to the number of live eyes showing in March. Seed with one, two, three and more live eyes yielded equally. About half the tubers without live eyes in March eventually produced plants, but late, with few stems and giving only half the yield of seed with three or more live eyes. Surprisingly, the progeny tubers from seed without live eyes were least infected by O. pustulans, R. solani and H. solani. Progenies of King Edward and Majestic seed from a common source grown on seven widely separated farms were infected more in 1963 than in 1964, but in each year infection differed widely between farms. Often where O. pustulans was common, R. solani was scarce and vice versa. By contrast, when King Edward stocks very differently infected by O. pustulans were grown at Rothamsted their progenies were almost uniformly infected by O. pustulans and R. solani.  相似文献   

12.
Seedlings of Meloidogyne incognita-resistant (N.C. 95) and -susceptible (McNair 30) tobacco cultivars were grown aseptically for 55 days inside isolator chambers in autoclaved soil infested with 0 or 3,000 axenized eggs of M. im ognita per 500 cc of soil. Healthy and infected plants were compared. Dry root weights of infected plants of resistant and susceptible cultivars were 16% and 84%, respectively, less than the controls. Sixteen amino acids, including those precursors for nicotine, and nicotine, increased significantly in infected roots of both cultivars. Increases in amino acids in infected roots ranged from 28% for valine to 103% for tyrosine in the resistant N.C. 95, and from 30% for leucine to 148% for tyrosine in lhe susceptible McNair 30. Nicotine content (dry weight basis) increased 42% and 62% in infected roots of resistant and susceptible cultivars, respectively. Nematode infection increased nicotine by 112% in leaves of N.C. 95, and decreased it by 56% in leaves of McNair 30. Root damage by M. incognita probably decreased nicotine movement into leaves of McNair 30. In N.C. 95, nicotine movement into leaves apparently was not adversel b affected due to lack of significant root damage.  相似文献   

13.
Four isolates of pea seed-borne mosaic virus (PSbMV) representing pathotypes P1 (isolates US and Q) and P4 (isolates S4 and S6), and groups III (US and Q) and V (S4 and S6) have been used in a study of the survival and partitioning of PSbMV under conditions of continuous seed transmission in the commercial pea cultivar Dundale. Assays suitable for detecting virus in small tissue samples were developed, and included dot-immunobinding assay with antisera to both PSbMV and cytoplasmic inclusion body (CIB) protein, and dot hybridisation assay (DHA) with cDNA transcribed from virus RNA. Under the conditions of our experiments, seed transmission occurred at rates exceeding 90% for all virus isolates. Virus was detectable by serology and symptoms in inoculated plants, and in all vegetative tissue of second generation plants raised from seed of the inoculated plants. However, in the third, fourth and fifth sequential generations raised from seed, all plants were symptomless. Neither virus nor CIB were detectable in leaf, stem or roots by serology, but both were readily detectable in some floral parts, and in immature and mature seed. Mature seed contained virus and CIB antigen in the testa, cotyledon and embryo. Inoculum prepared from whole seeds was infectious. The testa was shown not to be involved in transmission between generations, thus implicating the embryo alone in vertical transmission. Virus antigen could not be detected in the emerging cotyledons of germinating seed and all true leaves by serology, but the leaves contained PSbMV RNA detectable by DHA. These results show that PSbMV infection can be transferred through the vegetative phase at a subliminal level, and reaches relatively high concentrations in floral parts and seeds. Thus PSbMV may be maintained at a high level of infection in seed in the absence of any apparent symptoms in the plant, and without a requirement for horizontal transmission between plants by vectors. Such a mechanism may explain the high levels of infection commonly reported in pea breeding lines.  相似文献   

14.
In plants, RNA silencing is part of a defense mechanism against virus infection but there is little information as to whether RNA silencing-mediated resistance functions similarly in roots and leaves. We have obtained transgenic Nicotiana benthamiana plants encoding the coat protein readthrough domain open reading frame (54 kDa) of Beet necrotic yellow vein virus (BNYVV), which either showed a highly resistant or a recovery phenotype following foliar rub-inoculation with BNYVV. These phenotypes were associated with an RNA silencing mechanism. Roots of the resistant plants that were immune to foliar rub-inoculation with BNYVV could be infected by viruliferous zoospores of the vector fungus Polymyxa betae, although virus multiplication was greatly limited. In addition, virus titer was reduced in symptomless leaves of the plants showing the recovery phenotype, but it was high in roots of the same plants. Compared with leaves of silenced plants, higher levels of transgene mRNAs and lower levels of transgene-derived small interfering RNAs (siRNAs) accumulated in roots. Similarly, in nontransgenic plants inoculated with BNYVV, accumulation level of viral RNA-derived siRNAs in roots was lower than in leaves. These results indicate that the RNA silencing-mediated resistance to BNYVV is less effective in roots than in leaves.  相似文献   

15.
Detection of the bacterial ring pot pathogen ( Clavibacter michiganensis subsp. spedonicus ) in seed potato lots by laboratory indexing complements visual inspection. The probability of detecting symptomless infections is a function of sample size and incidence of infection. We determined the incidence of asymptomatic stem and tuber infections in four potato cultivars at three levels of inoculum. At the high inoculum level, 51–93% of stems were infected at 80 days after planting, and 10–59% of the tubers were infected at harvest. The effect of the different percentages of infected stems and tubers on the probability of detection for simple random sampling was calculated for a constant sample size. The actual detection levels for two cultivars planted in field plots with predetermined incidence levels of ring rot infected plants were reasonably close to predicted probabilities.  相似文献   

16.
The mechanism responsible for phosphorus inhibition of vesicular-arbuscular mycorrhiza formation in sudangrass (Sorghum vulgare Pers.) was investigated in a phosphorus-deficient sandy soil (0.5 micrograms phosphorus per gram soil) amended with increasing levels of phosphorus as superphosphate (0, 28, 56, 228 micrograms per gram soil). The root phosphorus content of 4-week-old plants was correlated with the amount of phosphorus added to the soil. Root exudation of amino acids and reducing sugars was greater for plants grown in phosphorus-deficient soil than for those grown in the phosphorus-treated soils. The increase in exudation corresponded with changes in membrane permeability of phosphorus-deficient roots, as measured by K+ (86Rb) efflux, rather than with changes in root content of reducing sugars and amino acids. The roots of phosphorus-deficient plants inoculated at 4 weeks with Glomus fasciculatus were 88% infected after 9 weeks as compared to less than 25% infection in phosphorus-sufficient roots; these differences were correlated with root exudation at the time of inoculation. For plants grown in phosphorus-deficient soil, infection by vesicular-arbuscular mycorrhizae increased root phosphorus which resulted in a decrease in root membrane permeability and exudation compared to nonmycorrhizal plants. It is proposed that, under low phosphorus nutrition, increased root membrane permeability leads to net loss of metabolites at sufficient levels to sustain the germination and growth of the mycorrhizal fungus during pre- and postinfection. Subsequently, mycorrhizal infection leads to improvement of root phosphorus nutrition and a reduction in membrane-mediated loss of root metabolites.  相似文献   

17.
'Super Dwarf' wheat (Triticum aestivum L.) plants have been grown from seed to maturity in the Mir space station where they were periodically exposed, because of microgravity and other constraints, to water deficit, waterlogging, high CO2 levels, and low light intensities. The plants produced many tillers, but none of them produced viable seed. Studies have been initiated to determine why the plants responded in these ways. In the present study, effects of the listed stresses on abscisic acid (ABA), indole-3-acetic acid (IAA) and isopentenyl adenosine ([9R]iP) levels in roots and leaves of plants grown under otherwise near optimal conditions on earth were measured. Hormones were extracted, purified by HPLC, and quantified by noncompetitive indirect ELISA. In response to water deficit, ABA levels increased in roots and leaves, IAA levels decreased in roots and leaves, and [9R]iP levels increased in leaves but decreased in roots. In response to waterlogging, ABA, IAA and [9R]iP levels briefly increased in roots and leaves and then decreased. When portions of the root system were exposed to waterlogging and/or water deficit, ABA levels in leaves increased while [9R]iP and IAA levels decreased. These responses were correlated with the percentage of the root system stressed. At a low photosynthetic photon flux (100 micromoles m-2 s-1), plants grown in continuous light had higher leaf ABA levels than plants grown using an 18 or 21 h photoperiod.  相似文献   

18.
About 1000 blight-infected seed potato tubers, usually of the cultivar King Edward, were planted for 9 yr and the subsequent plants examined until the disease had developed in the plots. Haulm infection originated each year from the seed tubers and occurred first on basal leaves. When tubers were inoculated with a complex race of P. infestans this race was recovered from the leaves and from the soil near the seed tuber. Transmission of infection from soil to leaves was demonstrated by splash of artificially contaminated soil to leaves suspended above the soil. In 4 yr, plants were grown on flat rows as well as on ridges. In 2 yr, when emergence was almost complete, infected stems were observed on otherwise normal plants. In the first year 0.6% grew on ridges and 3.0% on the flat and in the second all grew on the flat (5.3%). Only seven of the 43 plants had more than one infected stem. Flat plots had a significantly higher number of stemdplant than ridge plots, but this bore no relation to numbers of infected stems. When flat plots which had developed affected plants had soil replaced as ridge plots, no further infected stems were observed. Such stems continued to develop on flat plots. No prematurely dead stems were observed below soil level when all plants were dug. Underground portions of most infected stems showed little evidence of P. infestans which was found only at about soil level. Infection appeared to occur first in this area.  相似文献   

19.
In eastern Scotland seed-borne infection with broad bean stain virus (BBSV) and/or Echtes Ackerbohnenmosaik-Virus (EAMV) was detected in five of 39 seed lots of field bean in 1975 and in four of 21 commercial crops of field bean or broad bean sampled in 1975 or 1976. Tests failed to detect the main weevil vector of these viruses, Apion vorax, in 1975 and 1976 but Sitona weevils were found in most crops and were numerous in many, reaching maximum numbers in August. No spread of BBSV and EAMV was detected in commercial crops containing seed-borne infection. In experimental field bean crops containing plants manually inoculated with virus, no virus spread was detected in 1975, and only 0–015% uninoculated plants became infected with EAMV in 1976. Sitona, therefore, was an inefficient vector. The percentage of virus infection in seed harvested from field bean plants manually inoculated 3, 5, 7 and 11 wk after emergence in the field was 1–5, 2–7, 0–4 and 0–06 for BBSV and 0–5, 2-1, 0–6 and 0 for EAMV respectively. Seed harvested from unrogued and rogued plots of field bean grown from seed containing 3–4% seed-borne infection produced 0–05% and no infected plants, respectively. Yield losses in field bean plants manually inoculated with virus before flowering were up to 20% but were much greater in plants infected through the seed. Loss in yield was largely caused by a decrease in number of seeds per pod. The absence of A. vorax, the late arrival of Sitona weevils in the crop and their inefficiency as vectors, and the smaller effects of BBSV and EAMV on crop yield than in southern England appear to make eastern Scotland very suitable for the production of bean seed free from BBSV and EAMV.  相似文献   

20.
Near infrared spectroscopy with aquaphotomics as a novel approach was assessed for the diagnosis of soybean plants (Glycine max) infected with soybean mosaic virus (SMV) at latent symptomless stage of the disease. Near infrared (NIR) leaf spectra (in the range of 730-1025 nm) acquired from soybean plants with and without the inoculation of SMV were used. Leaf samples from all plants were assayed with enzyme-linked immunosorbent assay (ELISA) to confirm the infection. Previously reported NIR band for water at 970 nm and two new bands at 910 nm and 936 nm in the water specific region of NIR were found to be markedly sensitive to the SMV infection 2 weeks prior to the appearance of visual symptoms on infected leaves. The spectral calibration model soft independent modeling of class analogy (SIMCA), predicted the disease with 91.6% sensitivity and 95.8% specificity when the second order derivative of the individual plant averaged spectra were used. The study shows the potential of NIR spectroscopy with its novel approach to elucidate latent biochemical and biophysical information of an infection as it allowed successful discrimination of SMV infected plant from healthy at the early symptomless stage of the disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号