首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Myosin binding protein C (MyBP-C) is a thick filament protein involved in the regulation of muscle contraction. Mutations in the gene for MyBP-C are the second most frequent cause of hypertrophic cardiomyopathy. MyBP-C binds to myosin with two binding sites, one at its C-terminus and another at its N-terminus. The N-terminal binding site, consisting of immunoglobulin domains C1 and C2 connected by a flexible linker, interacts with the S2 segment of myosin in a phosphorylation-regulated manner. It is assumed that the function of MyBP-C is to act as a tether that fixes the S1 heads in a resting position and that phosphorylation releases the S1 heads into an active state. Here, we report the structure and binding properties of domain C1. Using a combination of site-directed mutagenesis and NMR interaction experiments, we identified the binding site of domain C1 in the immediate vicinity of the S1-S2 hinge, very close to the light chains. In addition, we identified a zinc binding site on domain C1 in close proximity to the S2 binding site. Its zinc binding affinity (Kd of approximately 10-20 μM) might not be sufficient for a physiological effect. However, the familial hypertrophic cardiomyopathy-related mutation of one of the zinc ligands, glutamine 210 to histidine, will significantly increase the binding affinity, suggesting that this mutation may affect S2 binding. The close proximity of the C1 binding site to the hinge, the light chains and the S1 heads also provides an explanation for recent observations that (a) shorter fragments of MyBP-C unable to act as a tether still have an effect on the actomyosin ATPase and (b) as to why the myosin head positions in phosphorylated wild-type mice and MyBP-C knockout mice are so different: Domain C1 bound to the S1-S2 hinge is able to manipulate S1 head positions, thus influencing force generation without tether. The potentially extensive extra interactions of C1 are expected to keep it in place, while phosphorylation dislodges the C1-C2 linker and domain C2. As a result, the myosin heads would always be attached to a tether that has phosphorylation-dependent length regulation.  相似文献   

2.
Modulatory role of whole cardiac myosin binding protein-C (сMyBP-C) in regulation of cardiac muscle contractility was studied in the in vitro motility assay with rabbit cardiac myosin as a motor protein. The effects of cMyBP-C on the interaction of cardiac myosin with regulated thin filament were tested in both in vitro motility and ATPase assays. We demonstrate that the addition of cMyBP-C increases calcium regulated Mg-ATPase activity of cardiac myosin at submaximal calcium. The Hill coefficient for ‘pCa-velocity’ relation in the in vitro motility assay decreased and the calcium sensitivity increased when сMyBP-C was added. Results of our experiments testifies in favor of the hypothesis that сMyBP-C slows down cross-bridge kinetics when binding to actin.  相似文献   

3.
The ATP hydrolysis rate and shortening velocity of muscle are load-dependent. At the molecular level, myosin generates force and motion by coupling ATP hydrolysis to lever arm rotation. When a laser trap was used to apply load to single heads of expressed smooth muscle myosin (S1), the ADP release kinetics accelerated with an assistive load and slowed with a resistive load; however, ATP binding was mostly unaffected. To investigate how load is communicated within the motor, a glycine located at the putative fulcrum of the lever arm was mutated to valine (G709V). In the absence of load, stopped-flow and laser trap studies showed that the mutation significantly slowed the rates of ADP release and ATP binding, accounting for the ~270-fold decrease in actin sliding velocity. The load dependence of the mutant's ADP release rate was the same as that of wild-type S1 (WT) despite the slower rate. In contrast, load accelerated ATP binding by ~20-fold, irrespective of loading direction. Imparting mechanical energy to the mutant motor partially reversed the slowed ATP binding by overcoming the elevated activation energy barrier. These results imply that conformational changes near the conserved G709 are critical for the transmission of mechanochemical information between myosin's active site and lever arm.  相似文献   

4.
Myosin binding protein C (MyBP-C) is a multidomain accessory protein of striated muscle sarcomeres. Three domains at the N-terminus of MyBP-C (C1-m-C2) play a crucial role in maintaining and modulating actomyosin interactions. The cardiac isoform has an additional N-terminal domain (C0) that is postulated to provide a greater level of regulatory control in cardiac muscle. We have used small-angle X-ray scattering, ab initio shape restoration, and rigid-body modeling to determine the average shape and spatial arrangement of the four N-terminal domains of cardiac MyBP-C (C0C2) and a three-domain variant that is analogous to the N-terminus of the skeletal isoform (C1C2). We found that the domains of both proteins are tandemly arranged in a highly extended configuration that is sufficiently long to span the interfilament cross-bridge distances in vivo and, hence, be poised to modulate these interactions. The average spatial organization of the C1, m, and C2 domains is not significantly perturbed by the removal of the cardiac-specific C0 domain, suggesting that the interdomain interfaces, while relatively small in area, have a degree of rigidity. Modeling the C0C2 and C1C2 scattering data reveals that the structures of the C0 and m domains (also referred to as the ‘MyBP motif’) are compact and have dimensions that are consistent with the immunoglobulin fold superfamily of proteins. Sequence analysis, homology modeling, and circular dichroism experiments support the conclusion that the previously undetermined structures of these domains can be characterized as having an immunoglobulin-like fold. Atomic models using the known NMR structures for C1 and C2 as well as homology models for the C0 and m domains provide insights into the placement of conserved serine residues of the m domain that are phosphorylated in vivo and cause a change in muscle fiber contraction by abolishing interactions with myosin.  相似文献   

5.
The myosin filaments of striated muscle contain a family of enigmatic myosin-binding proteins (MyBP), MyBP-C and MyBP-H. These modular proteins of the intracellular immunoglobulin superfamily contain unique domains near their N termini. The N-terminal domain of cardiac MyBP-C, the MyBP-C motif, contains additional phosphorylation sites and may regulate contraction in a phosphorylation dependent way. In contrast to the C terminus, which binds to the light meromyosin portion of the myosin rod, the interactions of this domain are unknown. We demonstrate that fragments of MyBP-C containing the MyBP-C motif localise to the sarcomeric A-band in cardiomyocytes and isolated myofibrils, without affecting sarcomere structure. The binding site for the MyBP-C motif resides in the N-terminal 126 residues of the S2 segment of the myosin rod. In this region, several mutations in beta-myosin are associated with FHC; however, their molecular implications remained unclear. We show that two representative FHC mutations in beta-myosin S2, R870H and E924K, drastically reduce MyBP-C binding (Kd approximately 60 microM for R870H compared with a Kd of approximately 5 microM for the wild-type) down to undetectable levels (E924K). These mutations do not affect the coiled-coil structure of myosin. We suggest that the regulatory function of MyBP-C is mediated by the interaction with S2, and that mutations in beta-myosin S2 may act by altering the interactions with MyBP-C.  相似文献   

6.
In contrast to skeletal muscle isoforms of myosin binding protein C (MyBP-C), the cardiac isoform has 11 rather than 10 fibronectin or Ig modules (modules are identified as C0 to C10, NH2 to COOH terminus), 3 phosphorylation sites between modules C1 and C2, and 28 additional amino acids rich in proline in C5. Phosphorylation between C1 and C2 increases maximum Ca-activated force (Fmax), alters thick filament structure, and increases the probability of myosin heads on the thick filament binding to actin on the thin filament. Unphosphorylated C1C2 fragment binds to myosin, but phosphorylation inhibits the binding. MyBP-C also binds to actin. Using two types of immunoprecipitation and cosedimentation, we show that fragments of MyBP-C containing C0 bind to actin. In low concentrations C0-containing fragments bind to skinned fibers when the NH2 terminus of endogenous MyBP-C is bound to myosin, but not when MyBP-C is bound to actin. C1C2 fragments bind to skinned fibers when endogenous MyBP-C is bound to actin but not to myosin. Disruption of interactions of endogenous C0 with a high concentration of added C0C2 fragments produces the same effect on contractility as extraction of MyBP-C, namely decrease in Fmax and increase in Ca sensitivity. These results suggest that cardiac contractility can be regulated by shifting the binding of the NH2 terminus of MyBP-C between actin and myosin. This mechanism may have an effect on diastolic filling of the heart.  相似文献   

7.
While mutations in the myosin subfragment 1 motor domain can directly disrupt the generation and transmission of force along myofibrils and lead to myopathy, the mechanism whereby mutations in the myosin rod influences mechanical function is less clear. Here, we used a combination of various imaging techniques and molecular dynamics simulations to test the hypothesis that perturbations in the myosin rod can disturb normal sarcomeric uniformity and, like motor domain lesions, would influence force production and propagation. We show that disrupting the rod can alter its nanomechanical properties and, in vivo, can drive asymmetric myofilament and sarcomere formation. Our imaging results indicate that myosin rod mutations likely disturb production and/or propagation of contractile force. This provides a unifying theory where common pathological cascades accompany both myosin motor and specific rod domain mutations. Finally, we suggest that sarcomeric inhomogeneity, caused by asymmetric thick filaments, could be a useful index of myopathic dysfunction.  相似文献   

8.
Multiple-component regulatory protein systems function through a generalized mechanism where a single regulatory protein or ligand binds to a variety of receptors to modulate specific functions in a physiologically sensitive context. Muscle contraction is regulated by the interaction of actin with troponin I (TnI) or myosin in a Ca(2+)-sensitive manner. Actin utilizes a single binding domain (residues 1-28) to bind to residues 104-115 of TnI (Van Eyk JE, Sönnichsen FD, Sykes BD, Hodges RS, 1991, In: Rüegg JC, ed, Peptides as probes in muscle research, Heidelberg, Germany: Springer-Verlag, pp 15-31) and to myosin subfragment 1 (S1, an enzymatic fragment of myosin containing both the actin and ATP binding sites) (Van Eyk JE, Hodges RS, 1991, Biochemistry 30:11676-11682) in a Ca(2+)-sensitive manner. We have utilized an anti-TnI peptide (104-115) monoclonal antibody, Mab B4, that binds specifically to TnI, to image the common binding domain of actin and thus mimic the activity of actin including activation of the S1 ATPase activity and TnI-mediated regulation of the S1 ATPase. Mab B4 has also been utilized to identify a receptor binding domain on myosin (residues 633-644) that is recognized by actin. Interestingly, Mab B4 binds to the native protein receptors TnI and S1 with relative affinities of 100- and 25,000-fold higher than the binding affinity to the 12-residue peptide immunogen. Thus, anti-peptide monoclonal antibodies prepared against a receptor binding domain can mimic the ligand binding domain and be utilized as a powerful tool for the detailed analysis of complex multiple-component regulatory systems.  相似文献   

9.
It has been known that the phosphorylation of the regulatory light chain, residing at the head/rod junction of the molecule activates the motor activity of smooth muscle and non-muscle conventional myosin (myosin II), and triggers a large conformational change of the molecule from the inhibited folded conformation to the active extended conformation. Recent structural analysis has revealed the structural basis of the inhibition of the motor function of the two heads in the inhibited conformation. On the other hand, recent studies have revealed that a processive unconventional myosin, myosin V, also shows a large change in the conformation from the folded to an extended form and this explains the activation mechanism of myosin V motor activity. These findings suggest the presence of a common scenario for the regulation of motor protein functions.  相似文献   

10.
Subfragment 2 (S2), the segment that links the two myosin heads to the thick filament backbone, may serve as a swing-out adapter allowing crossbridge access to actin, as the elastic component of crossbridges and as part of a phosphorylation-regulated on-off switch for crossbridges in smooth muscle. Low-salt expansion increases interfilament spacing (from 52 nm to 67 nm) of rigor insect flight muscle fibers and exposes a tethering segment of S2 in many crossbridges. Docking an actoS1 atomic model into EM tomograms of swollen rigor fibers identifies in situ for the first time the location, length and angle assignable to a segment of S2. Correspondence analysis of 1831 38.7 nm crossbridge repeats grouped self-similar forms from which class averages could be computed. The full range of the variability in angles and lengths of exposed S2 was displayed by using class averages for atomic fittings of acto-S1, while S2 was modeled by fitting a length of coiled-coil to unaveraged individual repeats. This hybrid modeling shows that the average length of S2 tethers along the thick filament (except near the tapered ends) is approximately 10 nm, or 16% of S2's total length, with an angular range encompassing 90 degrees axially and 120 degrees azimuthally. The large range of S2 angles indicates that some rigor bridges produce positive force that must be balanced by others producing drag force. The short tethering segment clarifies constraints on the function of S2 in accommodating variable myosin head access to actin. We suggest that the short length of S2 may also favor intermolecular head-head interactions in IFM relaxed thick filaments.  相似文献   

11.
X. Liu  L. -F. Yen 《Protoplasma》1995,186(1-2):87-92
Summary Actin purified from maize pollen grains can be polymerized into F-actin which increased the ATPase activities of proteolytic fragments (HMM, S1) of rabbit muscle myosin. The values of Kapp is 232 M for HMM and 290 M for S1, which are six- and seven-fold higher than those of rabbit muscle F-actin under the same conditions. Pollen actin and rabbit muscle myosin form hybrid actomyosin showing increase in viscosity and turbidity of solution. Viscosity and turbidity of the actomyosin dropped and then increased again with addition of ATP. Polymerized pollen actin can be decorated in vitro with both rabbit muscle HMM and S1 to form an arrowhead-shaped structure like that observed in living plant cells. The results show that pollen actin is similar to muscle actin at a qualitative level. But there are differences between them at a quantitative level.Abbreviations HMM heavy meromyosin - S1 myosin subfragment 1 - ATP adenosine-5-triphosphate  相似文献   

12.
Julian Borejdo  Avraham Oplatka 《BBA》1976,440(1):241-258
Single glycerinated rabbit psoas muscle fibers were skinned by splitting them lengthwise. The fiber segments thus obtained were more easily accessible to solutes in the surrounding medium than the intact fibers. Using such segments, active tension could be fully abolished by adding N-ethylmaleimide under conditions which lead to inhibition of actin activation of the ATPase activity of myosin. Such muscles could, however, develop tension after irrigation with myosin or with the water-soluble active myosin fragments heavy meromyosin (HMM) or its subfragment 1 (HMM-S1). The induced tensions increased with increasing protein concentration in the irrigating solution. At any given protein concentration, the tension generated by myosin was larger than that produced by HMM which was, in turn, greater than that induced by HMM-S1 e.g. at 15 mg/ml protein the tensions produced by these three myosin moieties were 44.0, 14.0 and 2.8 g/cm2, respectively. The tension was found to be intimately associated with ATP splitting; thus, HMM and HMM-S1 which have been treated with reagents abolishing actin-activated ATPase failed to induce tension development. A contractile force may thus be generated through the interaction with actin of the water-soluble, enzymatically active, myosin subfragments involving the splitting of ATP.  相似文献   

13.
C-protein is a major component of skeletal and cardiac muscle thick filaments. Mutations in the gene encoding cardiac C-protein [cardiac myosin binding protein-C (cMyBP-C)] are one of the principal causes of hypertrophic cardiomyopathy. cMyBP-C is a string of globular domains including eight immunoglobulin-like and three fibronectin-like domains termed C0-C10. It binds to myosin and titin, and probably to actin, and may have both a structural and a regulatory role in muscle function. To help to understand the pathology of the known mutations, we have solved the structure of the immunoglobulin-like C1 domain of MyBP-C by X-ray crystallography to a resolution of 1.55 Å. Mutations associated with hypertrophic cardiomyopathy are clustered at one end towards the C-terminus, close to the important C1C2 linker, where they alter the structural integrity of this region and its interactions.  相似文献   

14.
In rat skeletal muscle the unloaded shortening velocity (Vo) is defined by the myosin isoform expressed in the muscle fibre. In 2001 we suggested that ADP release from actomyosin in solution (controlled by k(-AD)) was of the right size to limit Vo. However, to compare mechanical and solution kinetic data required a series of corrections to compensate for the differences in experimental conditions (0.5 M KCl, 22 degrees C for kinetic assays of myosin, 200 mM ionic strength, 12 degrees C to measure Vo). Here, a method was developed to prepare heavy meromyosin (HMM) from pure myosin isoforms isolated from single muscle fibres and to study k(-AD) (determined from the affinity of the acto-myosin complex for ADP, KAD) and the rate of ATP-induced acto-HMM dissociation (controlled by K1k+2) under the same experimental condition used to measure Vo). In fast-muscle myosin isolated from a wide range of mammalian muscles, k(-AD) was found to be too fast to limit Vo, whereas K1k+2 was of the right magnitude for ATP-induced dissociation of the cross-bridge to limit shortening velocity. The result was unexpected and prompted further experiments using the stopped-flow approach on myosin subfragment-1 (S1) and HMM obtained from bulk preparations of rabbit and rat muscle. These confirmed that the rate of cross-bridge dissociation by ATP limits the velocity of contraction for fast myosin II isoforms at 12 degrees C, while k(-AD) limits the velocity of slow myosin II isoforms. Extrapolating our data to 37 degrees C suggests that at physiological temperature the rate of ADP dissociation may limit Vo for both isoforms.  相似文献   

15.
Force generation in muscle results from binding of myosin to F-actin. ATP binding to myosin provides energy to dissociate actomyosin complex while the hydrolysis of ATP is needed for re-binding of myosin to F-actin. At the end of each cycle myosin and actin form a tight complex with a substantial interface area. We investigated the dynamics of formation of actomyosin interface in presence and absence of nucleotides by quenched flow cross-linking technique. We showed previously that myosin head (subfragment 1, S1) directly interacts with at least two monomers in the actin filament. The quenched flow cross-linking experiments revealed that the initial contact (in presence or absence of nucleotides) occurs between loop 635-647 of S1 and 1-12 N-terminal residues of one actin and, then, the second contact forms between loop 567-574 of S1 and the N terminus of the second actin. The distance between these two loops in S1 corresponds to the distance between N termini of two actins in the same strand (53 A) but is smaller than that between two actins from the different strands (102 A). The formation of the actomyosin complex proceeds in ordered sequence: S1 initially binds to one actin then binds with the second actin located in the same strand but probably closer to the barbed end of F-actin. The presence of nucleotides slows down the interaction of S1 with the second actin, which correlates with recently proposed cleft movement in a 50 kDa domain of S1. The sequential mechanism of formation of actomyosin interface starting from one end and developing towards the barbed end might be involved in force generation and directional movement in actin-myosin system.  相似文献   

16.
Myosin binding protein-C (MyBP-C) is a thick-filament protein whose precise function within the sarcomere is not known. However, recent evidence from cMyBP-C knock-out mice that lack MyBP-C in the heart suggest that cMyBP-C normally slows cross-bridge cycling rates and reduces myocyte power output. To investigate possible mechanisms by which cMyBP-C limits cross-bridge cycling kinetics we assessed effects of recombinant N-terminal domains of MyBP-C on the ability of heavy meromyosin (HMM) to support movement of actin filaments using in vitro motility assays. Here we show that N-terminal domains of cMyBP-C containing the MyBP-C "motif," a sequence of approximately 110 amino acids, which is conserved across all MyBP-C isoforms, reduced actin filament velocity under conditions where filaments are maximally activated (i.e. either in the absence of thin filament regulatory proteins or in the presence of troponin and tropomyosin and high [Ca2+]). By contrast, under conditions where thin filament sliding speed is submaximal (i.e. in the presence of troponin and tropomyosin and low [Ca2+]), proteins containing the motif increased filament speed. Recombinant N-terminal proteins also bound to F-actin and inhibited acto-HMM ATPase rates in solution. The results suggest that N-terminal domains of MyBP-C slow cross-bridge cycling kinetics by reducing rates of cross-bridge detachment.  相似文献   

17.
The N-terminal modules of cardiac myosin-binding protein C (cMyBP-C) play a regulatory role in mediating interactions between myosin and actin during heart muscle contraction. The so-called "motif," located between the second and third immunoglobulin modules of the cardiac isoform, is believed to modulate contractility via an "on-off" phosphorylation-dependent tether to myosin ΔS2. Here we report a novel Ca(2+)-dependent interaction between the motif and calmodulin (CaM) based on the results of a combined fluorescence, NMR, and light and x-ray scattering study. We show that constructs of cMyBP-C containing the motif bind to Ca(2+)/CaM with a moderate affinity (K(D) ~10 μm), which is similar to the affinity previously determined for myosin ΔS2. However, unlike the interaction with myosin ΔS2, the Ca(2+)/CaM interaction is unaffected by substitution with a triphosphorylated motif mimic. Further, Ca(2+)/CaM interacts with the highly conserved residues (Glu(319)-Lys(341)) toward the C-terminal end of the motif. Consistent with the Ca(2+) dependence, the binding of CaM to the motif is mediated via the hydrophobic clefts within the N- and C-lobes that are known to become more exposed upon Ca(2+) binding. Overall, Ca(2+)/CaM engages with the motif in an extended clamp configuration as opposed to the collapsed binding mode often observed in other CaM-protein interactions. Our results suggest that CaM may act as a structural conduit that links cMyBP-C with Ca(2+) signaling pathways to help coordinate phosphorylation events and synchronize the multiple interactions between cMyBP-C, myosin, and actin during the heart muscle contraction.  相似文献   

18.
Hypertrophic cardiomyopathy (HCM) is an inherited cardiovascular disorder primarily caused by mutations in the β-myosin heavy-chain gene. The proximal subfragment 2 region (S2), 126 amino acids of myosin, binds with the C0-C2 region of cardiac myosin-binding protein-C to regulate cardiac muscle contractility in a manner dependent on PKA-mediated phosphorylation. However, it is unknown if HCM-associated mutations within S2 dysregulate actomyosin dynamics by disrupting its interaction with C0-C2, ultimately leading to HCM. Herein, we study three S2 mutations known to cause HCM: R870H, E924K, and E930Δ. First, experiments using recombinant proteins, solid-phase binding, and isothermal titrating calorimetry assays independently revealed that mutant S2 proteins displayed significantly reduced binding with C0-C2. In addition, CD revealed greater instability of the coiled-coil structure in mutant S2 proteins compared with S2Wt proteins. Second, mutant S2 exhibited 5-fold greater affinity for PKA-treated C0-C2 proteins. Third, skinned papillary muscle fibers treated with mutant S2 proteins showed no change in the rate of force redevelopment as a measure of actin–myosin cross-bridge kinetics, whereas S2Wt showed increased the rate of force redevelopment. In summary, S2 and C0-C2 interaction mediated by phosphorylation is altered by mutations in S2, which augment the speed and force of contraction observed in HCM. Modulating this interaction could be a potential strategy to treat HCM in the future.  相似文献   

19.
The effect of binding the Trp-free motor domain mutant of Dictyostelium discoideum, rabbit skeletal muscle myosin S1, and tropomyosin on the dynamics and conformation of actin filaments was characterized by an analysis of steady-state tryptophan phosphorescence spectra and phosphorescence decay kinetics over a temperature range of 140-293 K. The binding of the Trp-free motor domain mutant of D. discoideum to actin caused red shifts in the phosphorescence spectrum of two internal Trp residues of actin and affected the intrinsic lifetime of each emitter, decreasing by roughly twofold the short phosphorescence lifetime components (tau(1) and tau(2)) and increasing by approximately 20% the longest component (tau(3)). The alteration of actin phosphorescence by the motor protein suggests that i), structural changes occur deep down in the core of actin and that ii), subtle changes in conformation appear also on the surface but in regions distant from the motor domain binding site. When actin formed complexes with skeletal S1, an extra phosphorescence lifetime component appeared (tau(4), twice as long as tau(3)) in the phosphorescence decay that is absent in the isolated proteins. The lack of this extra component in the analogous actin-Trp-free motor domain mutant of D. discoideum complex suggests that it should be assigned to Trps in S1 that in the complex attain a more compact local structure. Our data indicated that the binding of tropomyosin to actin filaments had no effect on the structure or flexibility of actin observable by this technique.  相似文献   

20.
Skeletal and cardiac muscle contraction are inhibited by the actin-associated complex of tropomyosin-troponin. Binding of Ca(2+) to troponin or binding of ATP-free myosin to actin reverses this inhibition. Ca(2+) and ATP-free myosin stabilize different tropomyosin-actin structural arrangements. The position of tropomyosin on actin affects the binding of ATP-free myosin to actin but does not greatly affect myosin-ATP binding. Ca(2+) and ATP-free myosin alter both the affinity of ATP-free myosin for actin and the kinetics of that binding. A parallel pathway model of regulation simulated the effects of Ca(2+) and ATP-free myosin binding on both equilibrium binding of myosin-nucleotide complexes to actin and the general features of ATPase activity. That model was recently shown to simulate the kinetics of myosin-S1 binding but the analysis was limited to a single condition because of the limited data available. We have now measured equilibrium binding and binding kinetics of myosin-S1-ADP to actin at a series of ionic strengths and free Ca(2+) concentrations. The parallel pathway model of regulation is consistent with those data. In that model the interaction between adjacent regulatory complexes fully saturated with Ca(2+) was destabilized and the inactive state of actin was stabilized at high ionic strength. These changes explain the previously observed change in binding kinetics with increasing ionic strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号