首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glutamate-induced neuronal damage is mainly caused by overactivation of N-methyl-D-aspartate (NMDA) receptors.Conversely,normal physiological brain function and neuronal survival require adequate activ...  相似文献   

2.
Current studies suggest that several distinct populations of nicotinic acetylcholine (ACh) receptors exist. One of these is the muscle-type nicotinic receptors with which neuromuscular nicotinic receptor ligands and the snake toxin alpha-bungarotoxin interact. alpha-Bungarotoxin potently binds to these nicotinic receptors and blocks their function, two characteristics that have made the alpha-toxin a very useful probe for the characterization of these sites. In neuronal tissues, several populations of nicotinic receptors have been identified which, although they share a nicotinic pharmacology, have unique characteristics. The alpha-bungarotoxin-insensitive neuronal nicotinic receptors, which may be involved in mediating neuronal excitability, bind nicotinic agonists with high affinity but do not interact with alpha-bungarotoxin. Subtypes of these alpha-toxin-insensitive receptors appear to exist, as evidenced by findings that some are inhibited by neuronal bungarotoxin whereas others are not. In addition to the alpha-bungarotoxin-insensitive sites, alpha-bungarotoxin-sensitive neuronal nicotinic receptors are also present in neuronal tissues. These latter receptors bind alpha-bungarotoxin with high affinity and nicotinic agonists with an affinity in the microM range. The function of the nicotinic alpha-bungarotoxin receptors are as yet uncertain. Thymopoietin, a polypeptide linked to immune function, appears to interact specifically with nicotinic receptor populations that bind alpha-bungarotoxin. Thus, in muscle tissue where alpha-bungarotoxin both binds to the receptor and blocks activity, thymopoietin also potently binds to the receptor and inhibits nicotinic receptors-mediated function. In neuronal tissues, thymopoietin interacts only with the nicotinic alpha-bungarotoxin site and not the alpha-bungarotoxin-insensitive neuronal nicotinic receptor population. These observations that thymopoietin potently and specifically interacts with nicotinic alpha-bungarotoxin-sensitive receptors in neuronal and muscle tissue, together with findings that thymopoietin is an endogenously occurring agent, could suggest that this immune-related polypeptide represents a ligand for the alpha-bungarotoxin receptors. The function of thymopoietin at the alpha-bungarotoxin receptor is as yet uncertain; however, a potential trophic, as well as other roles are suggested.  相似文献   

3.
Nicotine receptors in the mammalian brain   总被引:12,自引:0,他引:12  
Nicotine is a drug of abuse that presumably exerts its psychoactive effect through its interactions with nicotine binding sites in the central nervous system. Among its potential sites of action are the neuronal nicotinic acetylcholine receptors and the neuronal alpha-bungarotoxin binding sites. In this review we focus on the neuronal nicotinic acetylcholine receptors, their diversity, distribution, and functions as nicotine receptors or as mediators of synaptic transmission in the mammalian brain. We find that the complexity characteristic of the gene family encoding the subunits of these receptors is reflected both in the pattern of expression of the genes and in the pharmacological diversity of the expressed receptors.  相似文献   

4.
Overactivation of NMDA receptors is linked to cell death during neuronal insults. However the precise role of synaptic and extrasynaptic NMDA receptors remains to be further determined. In this study, we used the acute brain slice to examine the contributions of synaptic and extrasynaptic NMDA receptors to neuronal death. By activation of synaptic NMDA receptors with bath application of 100 μM bicuculline in acute brain slices, we observed a significant up-regulation in activation of neuronal survival-related signaling (p-CREB, p-ERK1/2 and p-AKT), without an obvious increase of LDH release and neuronal death. Interestingly, activation of extrasynaptic NMDA receptors alone by high dose of glutamate (200 μM) following blockade of synaptic NMDA receptors with co-application of 20 μM MK801 and 100 μM bicuculline, we failed to observe inhibition of neuronal survival signaling and neuronal damage. In contrast, co-activation of synaptic and extrasynaptic NMDA receptors by applying 200 μM glutamate or oxygen–glucose deprivation (OGD) to acute brain slices for 30 min, we observed a significant inhibition of CREB, ERK1/2 and AKT activation, an increase of LDH release and neuronal condensation. Together, co-activation of synaptic and extrasynaptic NMDA receptors by neuronal insults contributes to cell death in acute brain slice.  相似文献   

5.
6.
Fryer AD  Adamko DJ  Yost BL  Jacoby DB 《Life sciences》1999,64(6-7):449-455
In the lungs, acetylcholine released from the parasympathetic nerves stimulates M3 muscarinic receptors on airway smooth muscle inducing contraction and bronchoconstriction. The amount of acetylcholine released from these nerves is limited locally by neuronal M2 muscarinic receptors. These neuronal receptors are dysfunctional in asthma and in animal models of asthma. Decreased M2 muscarinic receptor function results in increased release of acetylcholine and in airway hyperreactivity. Inflammation has long been associated with hyperreactivity and the role of inflammatory cells in loss of neuronal M2 receptor function has been examined. There are several different mechanisms for loss of neuronal M2 receptor function. These include blockade by endogenous antagonists such as eosinophil major basic protein, decreased expression of M2 receptors following infection with viruses or exposure to pro inflammatory cytokines such as gamma interferon. Finally, the affinity of acetylcholine for these receptors can be decreased by exposure to neuraminidase.  相似文献   

7.
Glial cells of the central nervous system express receptors for the main inhibitory and excitatory neurotransmitters, GABA and glutamate. The glial GABA and glutamate receptors share many properties with the neuronal GABAA and kainate/quisqualate receptors, but are molecularly and, in some aspects, pharmacologically distinct from their neuronal counterparts. The functional role of these receptors is as yet speculative: They have been proposed to control proliferation of astrocytes, serve to balance ion changes at GABAergic synapses, or they could enable the glial cell to detect neuronal synaptic activity.  相似文献   

8.
The Eph receptors are multitalented tyrosine kinases capable of performing many tasks. The receptors together with their ligands--the ephrins--are well known to play a critical role in the initial assembly of neuronal circuits in the embryo. However, the recently discovered function of these receptors in the adult brain is now receiving significant acclaim. Three new articles show that the Eph receptors continue to be important in modifying the strength of existing neuronal connections (synapses). They do so in close association with at least one family of ion channels, the NMDA receptors.  相似文献   

9.
The frog toxin epibatidine is one of the most powerful ligands of the neuronal nicotinic receptors and derivatives show promising possibilities for labeling in positron emission tomography studies. In an attempt to reduce epibatidine toxicity, new methyl derivatives were synthesized, tested in positron emission tomography imaging and in electrophysiology. labeling as well as physiological experiments highlighted the differences in sensitivity of the neuronal nicotinic acetylcholine receptors between two methyl enantiomers and the reduction in sensitivity caused by introducing the methyl group. At present, epibatidine derivatives seem the most promising compounds for in vivo labeling of neuronal nicotinic acetylcholine receptors.  相似文献   

10.
Reelin, lipoprotein receptors and synaptic plasticity   总被引:1,自引:0,他引:1  
Apolipoprotein E (APOE) is a cholesterol transport protein and an isoform-specific major risk factor for neurodegenerative diseases. The lipoprotein receptors that bind APOE have recently been recognized as pivotal components of the neuronal signalling machinery. The interaction between APOE receptors and one of their ligands, reelin, allows them to function directly as signal transduction receptors at the plasma membrane to control not only neuronal positioning during brain development, but also synaptic plasticity in the adult brain. Here, we review the molecular mechanisms through which APOE, cholesterol, reelin and APOE receptors control synaptic functions that are essential for cognition, learning, memory, behaviour and neuronal survival.  相似文献   

11.
Membrane receptors and ion channels respond to various stimuli and relay that information across the plasma membrane by triggering specific and timed processes. These include activation of second messengers, allowing ion permeation, and changing cellular excitability, to name a few. Gaining control over equivalent processes is essential to understand neuronal physiology and pathophysiology. Recently, new optical techniques have emerged proffering new remote means to control various functions of defined neuronal populations by light, dubbed optogenetics. Still, optogenetic tools do not typically address the activity of receptors and channels native to neurons (or of neuronal origin), nor gain access to their signaling mechanisms. A related method—synthetic optogenetics—bridges this gap by endowing light sensitivity to endogenous neuronal receptors and channels by the appending of synthetic, light‐receptive molecules, or photoswitches. This provides the means to photoregulate neuronal receptors and channels and tap into their native signaling mechanisms in select regions of the neurons, such as the synapse. This review discusses the development of synthetic optogenetics as a means to study neuronal receptors and channels remotely, in their natural environment, with unprecedented spatial and temporal precision, and provides an overview of tool design, mode of action, potential clinical applications and insights and achievements gained.  相似文献   

12.
Previous evidence has suggested that brain catecholamine levels are important in the regulation of central angiotensin II receptors. In the present study, the effects of norepinephrine and 3,4-dihydroxyphenylethylamine (dopamine) on angiotensin II receptor regulation in neuronal cultures from rat hypothalamus and brainstem have been examined. Both catecholamines elicit significant decreases in [125I]angiotensin II-specific binding to neuronal cultures prepared from normotensive rats, effects that are dose dependent and that are maximal within 4-8 h of preincubation. Saturation and Scatchard analyses revealed that the norepinephrine-induced decrease in the binding is due to a decrease in the number of angiotensin II receptors in neuronal cultures, with little effect on the receptor affinity. Norepinephrine has no significant actions on [125I]angiotensin II binding in cultures prepared from spontaneously hypertensive rats. The downregulation of angiotensin II receptors by norepinephrine or dopamine is blocked by alpha 1-adrenergic and not by other adrenergic antagonists, a result suggesting that this effect is initiated at the cell surface involving alpha 1-adrenergic receptors. This is further supported by our data indicating a parallel downregulation of specific alpha 1-adrenergic receptors elicited by norepinephrine. In summary, these results show that norepinephrine and dopamine are able to alter the regulation of neuronal angiotensin II receptors by acting at alpha 1-adrenergic receptors, which is a novel finding.  相似文献   

13.
In anesthetized rats, midbrain dopamine (DA) neuronal firing rate was differentially sensitive to focal brain microinjection of cholecystokinin peptides (CCK-4 and CCK-8) and N-methyl-D-aspartate (NMDA) into nucleus accumbens, amygdala and prefrontal cortex. Whereas changes in DA neuronal firing rate were frequently observed in response to intra-amygdalar microinjection of CCK peptides, NMDA was most effective in eliciting changes in DA neuronal activity following intra-accumbal microinjection. Thus, stimulation of amygdalar CCK receptors and accumbal excitatory amino acid receptors may participate in the afferent regulation of midbrain DA neuronal function.  相似文献   

14.
Binding of [125I]α-bungarotoxin to nicotinic cholinergic receptors (α-bungarotoxin receptors) was investigated in the rat superior cervical ganglion by light and electron microscope autoradiography. Both techniques indicated that labelling, which was inhibited by d-tubocurarine, occurred around and/or over neuronal perikarya. In particular, ultrastructural autoradiography showed that the synapses were devoid of radioactivity, suggesting that α-bungarotoxin receptors in the rat superior cervical ganglion are molecules distinct from the nicotinic (postsynaptic) receptors normally involved in ganglionic transmission. By contrast, specific labelling was found in extrasynaptic areas of the neuronal membrane in contact with satellite cells (neuron-satellite cell boundary). Quantitative analysis indicated that at that level silver grains were present on both the neuronal membrane and satellite cells. Furthermore, beside neuronal perikarya, radioactivity was also found around nerve fibres, probably in relation to both the axonal and interstitial sides of the ensheathing Schwann cells. Only a few grains were clearly accumulated inside nerve fibres. Finally, significant amounts of specific radioactivity were detected in the neuronal cytoplasm, especially at the level of rough endoplasmic reticulum and Golgi apparatus. However, parallel diffusion experiments with [125I]α-bungarotoxin and [3H]inulin (a marker for the extracellular space) provided no evidence that the toxin enters the neuronal cytoplasm. Thus, the intraneuronal (specific) labeling was probably a reflection of α-bungarotoxin binding to membrane receptors and the subsequent internalization of the toxin-receptor complex in the neurons. We conclude that in the rat superior cervical ganglion extrasynaptic nicotinic acetylcholine receptors (α-bungarotoxin receptors) may be widely located on the neuronal membrane as well as on the plasma membrane of satellite and Schwann cells. The physiological significance of this molecular architecture is discussed.  相似文献   

15.
Kainate receptors exhibit a highly compartmentalized distribution within the brain; however, the molecular and cellular mechanisms that coordinate their expression at neuronal sites of action are poorly characterized. Here we report that the GluK1 and GluK2 kainate receptor subunits interact with the spectrin-actin binding scaffolding protein 4.1N through a membrane-proximal domain in the C-terminal tail. We found that this interaction is important for the forward trafficking of GluK2a receptors, their distribution in the neuronal plasma membrane, and regulation of receptor endocytosis. The association between GluK2a receptors and 4.1N was regulated by both palmitoylation and protein kinase C (PKC) phosphorylation of the receptor subunit. Palmitoylation of the GluK2a subunit promoted 4.1N association, and palmitoylation-deficient receptors exhibited reduced neuronal surface expression and compromised endocytosis. Conversely, PKC activation decreased 4.1N interaction with GluK2/3-containing kainate receptors in acute brain slices, an effect that was reversed after inhibition of PKC. Our data and previous studies therefore demonstrate that these two post-translational modifications have opposing effects on 4.1N association with GluK2 kainate and GluA1 AMPA receptors. The convergence of the signaling pathways regulating 4.1N protein association could thus result in the selective removal of AMPA receptors from the plasma membrane while simultaneously promoting the insertion and stabilization of kainate receptors, which may be important for tuning neuronal excitability and synaptic plasticity.  相似文献   

16.
R G Pertwee 《Life sciences》1999,65(6-7):597-605
The discovery of CB1 and CB2 receptors and of endogenous agonists for these receptors has sparked renewed interest in the therapeutic potential of cannabinoids. This has led to a need for strategies that will provide a better separation of wanted from unwanted effects, particularly for CB1 receptor agonists. Possible strategies are to target CB1 receptors present on neurones outside the central nervous system or novel types or subtypes of neuronal cannabinoid receptor. This paper reviews evidence for the presence of CB1 receptors on peripheral neurones and for the existence of neuronal non-CB1 cannabinoid receptors.  相似文献   

17.
Evidence suggests that transmission of barosensitive input from arterial baroreceptors and cardiac mechanoreceptors at nucleus tractus solitarius (NTS) neurons involves non-N-methyl-d-aspartate (NMDA) glutamate receptors, but there is a possibility that the contribution of NMDA receptors might increase during periods of increased afferent input, when enhanced neuronal depolarization could increase the activation of NMDA receptors by removal of a Mg(2+) block. Thus the effects of NMDA on cardiac mechanoreceptor-modulated NTS neuronal discharges were examined at different levels of arterial pressure used to change cardiac mechanoreceptor afferent input. To determine whether the response was specific to NMDA, (+/-)-alpha-amino-3-hydroxy-5-methylisoxazole-4-proprionic acid (AMPA) was also administered at different levels of neuronal discharge. In anesthetized dogs, neuronal activity was recorded from the NTS while NMDA or AMPA was picoejected at high versus low arterial stimulating pressures. NMDA, but not AMPA, produced a significantly greater discharge of mechanoreceptor-driven NTS neurons at higher versus lower levels of stimulating pressure. These data suggest that the role played by NMDA receptors is greater during periods of enhanced neuronal depolarization, which could be produced by increases in afferent barosensitive input.  相似文献   

18.
Most studies of IR effects on neural cells and tissues in the brain are still focused on loss of neural stem cells. On the other hand, the effects of IR on neuronal differentiation and its implication in IR-induced brain damage are not well defined. To investigate the effects of IR on C17.2 mouse neural stem-like cells and mouse primary neural stem cells, neurite outgrowth and expression of neuronal markers and neuronal function-related genes were examined. To understand this process, the signaling pathways including PI3K, STAT3, metabotrophic glutamate receptor 1 (mGluR1) and p53 were investigated. In C17.2 cells, irradiation significantly increased the neurite outgrowth, a morphological hallmark of neuronal differentiation, in a dose-dependent manner. Also, the expression levels of neuronal marker proteins, β-III tubulin were increased by IR. To investigate whether IR-induced differentiation is normal, the expression of neuronal function-related genes including synaptophysin, a synaptic vesicle forming proteins, synaptotagmin1, a calcium ion sensor, γ-aminobutyric acid (GABA) receptors, inhibitory neurotransmitter receptors and glutamate receptors, excitatory neurotransmitter receptors was examined and compared to that of neurotrophin-stimulated differentiation. IR increased the expression of synaptophysin, synaptotagmin1 and GABA receptors mRNA similarly to normal differentiation by stimulation of neurotrophin. Interestingly, the overall expression of glutamate receptors was significantly higher in irradiated group than normal differentiation group, suggesting that the IR-induced neuronal differentiation may cause altered neuronal function in C17.2 cells. Next, the molecular mechanism of the altered neuronal differentiation induced by IR was studied by investigating signaling pathways including p53, mGluR1, STAT3 and PI3K. Increases of neurite outgrowth, neuronal marker and neuronal function-related gene expressions by IR were abolished by inhibition of p53, mGluR-1, STAT3 or PI3K. The inhibition of PI3K blocked both p53 signaling and STAT3-mGluR1 signaling but inhibition of p53 did not affect STAT3-mGluR1 signaling in irradiated C17.2 cells. Finally, these results of the IR-induced altered differentiation in C17.2 cells were verified in ex vivo experiments using mouse primary neural stem cells. In conclusion, the results of this study demonstrated that IR is able to trigger the altered neuronal differentiation in undifferentiated neural stem-like cells through PI3K-STAT3-mGluR1 and PI3K-p53 signaling. It is suggested that the IR-induced altered neuronal differentiation may play a role in the brain dysfunction caused by IR.  相似文献   

19.
Regulation of cell surface expression of neurotransmitter receptors is crucial for determining synaptic strength and plasticity, but the underlying mechanisms are not well understood. We previously showed that proteasomal degradation of GABAB receptors via the endoplasmic reticulum (ER)-associated protein degradation (ERAD) machinery determines the number of cell surface GABAB receptors and thereby GABAB receptor-mediated neuronal inhibition. Here, we show that proteasomal degradation of GABAB receptors requires the interaction of the GABAB2 C terminus with the proteasomal AAA-ATPase Rpt6. A mutant of Rpt6 lacking ATPase activity prevented degradation of GABAB receptors but not the removal of Lys48-linked ubiquitin from GABAB2. Blocking ERAD activity diminished the interaction of Rtp6 with GABAB receptors resulting in increased total as well as cell surface expression of GABAB receptors. Modulating neuronal activity affected proteasomal activity and correspondingly the interaction level of Rpt6 with GABAB2. This resulted in altered cell surface expression of the receptors. Thus, neuronal activity-dependent proteasomal degradation of GABAB receptors by the ERAD machinery is a potent mechanism regulating the number of GABAB receptors available for signaling and is expected to contribute to homeostatic neuronal plasticity.  相似文献   

20.
AMPA receptor trafficking at excitatory synapses   总被引:46,自引:0,他引:46  
Bredt DS  Nicoll RA 《Neuron》2003,40(2):361-379
Excitatory synapses in the CNS release glutamate, which acts primarily on two sides of ionotropic receptors: AMPA receptors and NMDA receptors. AMPA receptors mediate the postsynaptic depolarization that initiates neuronal firing, whereas NMDA receptors initiate synaptic plasticity. Recent studies have emphasized that distinct mechanisms control synaptic expression of these two receptor classes. Whereas NMDA receptor proteins are relatively fixed, AMPA receptors cycle synaptic membranes on and off. A large family of interacting proteins regulates AMPA receptor turnover at synapses and thereby influences synaptic strength. Furthermore, neuronal activity controls synaptic AMPA receptor trafficking, and this dynamic process plays a key role in the synaptic plasticity that is thought to underlie aspects of learning and memory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号