首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In 11 experiments on anesthetised cats burst stimulation of peripheral cut end of right vagus nerve leads to synchronization of cardiac and vagus rhythms. Alterations of burst sequence frequency within definite limits has been synchronously reproduced by heart thus creating managed bradycardia possibility. Somatostatin (10(-8)-10(-9) M intravenously) decreases heart rate and inhibits total vagus chronotropic effect. Vagolytic effect of somatostatin caused a decrease of tonic component of the vagus chronotropic effect. On the other hand, somatostatin augmented the extent of the vagal synchronizing influences and caused enlargement of the ranges of managed bradycardia. The observed results testify to participation of the peptidergic mechanisms in genesis of vagal managed bradycardia.  相似文献   

2.
3.
In acute experiments on 21 cats it was proved that the change of afferent impulse on vagus nerves by means of either freeze-block or electrostimulation of their central ends results in differential reflex influences on rhythm and force of the cardiac contractions caused by sympathetic nervous system. The cut of the lower cardiac nerves may cause 'break-up' of the observed reflex, removing or inverting its ino- or chronotropy component. The given phenomenon was revealed in the experiments with high arterial pressure and with absence of tonic chronotropy influences of the left lower cardiac nerve.  相似文献   

4.
In 20 anesthetized dogs the thoracic autonomic nerves were carefully exposed in order to determine which produced cardiovascular responses when the afferent or efferent component of each was stimulated. Efferent parasympathetic and sympathetic fibers arise from the caudal cervical ganglion regions bilaterally as well as from the vagus caudally to that ganglion. The majority of negative chromotropic, dromotropic and inotropic fibers arise from the vagus or near the recurrent laryngeal nerves; however, some small parasympathetic fibers also arise from the vagi down to the level of the pulmonary vessels. Efferent sympathetic nerves are relatively large with the exception of the stellate cardiac nerves, and produce specific positive chronotropic or inotropic responses. Afferent fibers are numerous in the recurrent cardiac, innominate, ventromedial and dorsal nerves and not very numerous in both stellate cardiac nerves as well as in the nerves at the level of the pulmonary vessels; thus there are numerous cholinergic and adrenergic efferent fibers which exhibit specific chronotropic or inotropic responses. The correlation between neural anatomy and specific physiological cardiodynamics illustrates beautifully the interrelationship of structure and function which exists within the autonomic nervous system.  相似文献   

5.
The mechanisms of cardiac activity inhibition caused by stimulation of the stellate ganglion were studied in acute experiments on 28 dogs and 37 cats and chronic experiments on 12 cats. It was shown that inhibition of cardiac activity is caused by stimulation of the parasympathetic fibers of the vagus, anastomozing with stellate ganglion branches and ingoing as part of these fibers to the heart. The hypothesis of change over of the sympathetic nerve fibers to the intracardial cholinergic neurons and the hypothesis of the cholinergic component in the mechanism of catecholamine release by the sympathetic nerve terminals was not confirmed. Therefore, the known Dale's principle as to that one neuron exerts its efferent effect with the aid of one transmitter is quite just. alpha-Adrenoreceptors does not produce any noticeable effect on cardiac activity.  相似文献   

6.
In experiments on anesthesized cats and rats the desynchronization of the heart rate and burst stimulation of the vagus brought about severe sinus arrhythmia. Analysis of the functional dependence between the P--S interval (atrial wave of the ECG--moment of vagus stimulation) and the P--P interval showed periodical alterations in pacemaker sensitivity to the effect of the vagus during each cardiac cycle. It is supposed that natural vagus arrhythmia is the result of discoordination between heart automacy and efferent vagus bursts of central origin.  相似文献   

7.
In 29 experiments on anaesthetized cats burst stimulation of peripheral cut end of right vagus nerve leads to synchronization of heart and vagus rhythm. Influence of proserine, pilocarpine and prolonged vagus stimulation upon extent of vagus chronotropic effect and its components--tonic and synchronizing--was investigated. In all cases changes of vagus chronotropic effect during this actions were caused by unidirectional shifts of tonic component. Extent of synchronizing vagus chronotropic influences did not depend on the changes of acetylcholine concentration.  相似文献   

8.
We compared the proteins transported in the fast component of guinea pig hypoglossal motor neurons with those of guinea pig vagus (preganglionic parasympathetic) neurons. The fast component proteins of hypoglossal and vagus neurons were radioactively labeled by injecting 3H-amino acids into the hypoglossal and vagus motor nuclei. The radioactive fast component proteins obtained from each system were then compared with each other by SDS-polyacrylamide slab gel electrophoresis and fluorography. These analyses revealed at least twenty polypeptides which appear common to the fast component of each neuronal system. In addition, we identified one difference between the proteins comprising the fast component of these neuronal systems. A polypeptide, molecular weight 50,000 daltons, present in the fast component of vagus neurons was not detected in the fast component of hypoglossal motor neurons. These observations are discussed with regard to the similarities and differences between these neuronal systems.  相似文献   

9.
We compared the proteins transported in the fast component of guinea pig hypoglossal motor neurons with those of guinea pig vagus (preganglionic parasympathetic) neurons. The fast component proteins of hypoglossal and vagus neurons were radioactively labeled by injecting 3H-amino acids into the hypoglossal and vagus motor nuclei. The radioactive fast component proteins obtained from each system were then compared with each other by SDS-polyacrylamide slab gel electrophoresis and fluorography. These analyses revealed at least twenty polypeptides which appear common to the fast component of each neuronal system. In addition, we identified one difference between the proteins comprising the fast component of these neuronal systems. A polypeptide, molecular weight 50,000 daltons, present in the fast component of vagus neurons was not detected in the fast component of hypoglossal motor neurons. These observations are discussed with regard to the similarities and differences between these neuronal systems.  相似文献   

10.
Localization, amount, form of the bodies and maximal diameter of horseradish peroxidase (HP)-labelled neurons in the right stellate ganglion (SG) in the cat spinal cord have been investigated. HP application has been performed on the central parts of the SG connective branch with vagus nerve, or with the caudal cardiac nerve. In the neurons HP has been revealed after Straus or Mesulam method. In the SG, regardless the HP application place, the labelled neurons arrange in the zone, adjoining the place, where the caudal cardiac nerve and the connective branch get to the vagus nerve. In the spinal cord, when HP is applied on the connective branch, the labelled neurons are revealed in the lateral horns of the TI-TVI segments. The amount of the labelled neurons decreases in the rostro-caudal direction. Their greatest amount is revealed in the TI-TIII segments. When HP is applied on the central part of the caudal cardiac nerve, a small amount of the labelled neurons has been found in TI-TIII segments of the spinal cord only in one experiment. Thus, in the connective branch of the SG with the vagus nerve much more amount of the preganglionar fibers run than in the caudal cardiac nerve.  相似文献   

11.
A brief burst of electrical stimuli delivered to the vagus nerve during the cardiac cycle elicits a triphasic cardiac chronotropic response. The cardiac cycle length initially increases, then briefly decreases, and subsequently increases again. We studied the effects of a calcium channel blocking agent, verapamil, on these responses to vagal stimulation during sinoatrial nodal rhythm in anesthetized, open-chest dogs. Verapamil increased the basal cardiac cycle length only slightly; however, the primary cardioinhibition was accentuated approximately 40% (from 396 to 555 ms) by verapamil. Neither the acceleratory phase of this triphasic response nor the secondary cardioinhibition was significantly affected by verapamil. These results indicate that verapamil potentiates the initial action of acetylcholine at the sinoatrial node when the vagus is activated with brief stimuli.  相似文献   

12.
The role of the vagus nerve in determining heart rate (f H) and cardiorespiratory interactions was investigated in a neotropical fish, Piaractus mesopotamicus. During progressive hypoxia f H initially increased, establishing a 1:1 ratio with ventilation rate (f R). Subsequently there was a hypoxic bradycardia. Injection of atropine abolished a normoxic inhibitory tonus on the heart and the f H adjustments during progressive hypoxia, confirming that they are imposed by efferent parasympathetic inputs via the vagus nerve. Efferent activity recorded from the cardiac vagus in lightly anesthetized normoxic fish included occasional bursts of activity related to spontaneous changes in ventilation amplitude, which increased the cardiac interval. Restricting the flow of aerated water irrigating the gills resulted in increased respiratory effort and bursts of respiration-related activity in the cardiac vagus that seemed to cause f H to couple with f R. Cell bodies of cardiac vagal pre-ganglionic neurons were located in two distinct groups within the dorsal vagal motor column having an overlapping distribution with respiratory motor-neurons. A small proportion of cardiac vagal pre-ganglionic neurons (2%) was in scattered positions in the ventrolateral medulla. This division of cardiac vagal pre-ganglionic neurons into distinct motor groups may relate to their functional roles in determining cardiorespiratory interactions.  相似文献   

13.
While single vagus bursts were used in cats with an incremental time delay following P-wave of the ECG, two zones were identified within the cardiac cycle differing from each other by their chronotropic responses. At the initial (approximately 120-130 ms) part of the cardiac cycle, an increase in the P-stimulus interval evoked a "moderate" (+8-16%) increment of the chronotropic response up to its maximal amplitude. Further increase of that interval provoked an "abrupt" (-80-90%) decrease of the vagus response. Block of M1-(pirenzepine), M2-(metoctramine and gallamine) or M3-(DAMP) cholinoreceptors diminished vagally-induced minimal and maximal prolongation of the ECG P-P interval and decreased the amplitude of its alterations associated with varying the position of vagus stimulus within the cardiac cycle. The coefficient delineating magnitude of the vagus effect over a zone with "moderate" changes of the chronotropic response was decreased after blocking the M1- and M2-cholinoreceptors, whereas duration of that zone was shortened following blockade of the M1- and M3-receptors. Velocity of the original vagus response and the rate of its subsequent decline decreased following blockade of the M1- and M2-subtypes of cholinoreceptors.  相似文献   

14.
In cat experiments, the right inferior cardiac nerve was stimulated at a frequency of 2 and 4 Hz and the right vagus by bursts of 1, 2, 4, 8 and 16 impulses. Stimulation of the inferior cardiac nerve shifted the ranges of the heart rate control up the frequency scale. The shift of the range boundaries was mainly determined by the intensity of sympathetic regulation and by the number of impulses in a burst which stimulates the vagus nerve.  相似文献   

15.
The vagus nerve, or the tenth cranial nerve, innervates the heart in addition to other visceral organs, including the posterior visceral arches. In amniotes, the anterior and posterior cardiac branches arise from the branchial and intestinal portions of the vagus nerve to innervate the arterial and venous poles of the heart, respectively. The evolution of this innervation pattern has yet to be elucidated, due mainly to the lack of morphological data on the vagus in basal vertebrates. To investigate this topic, we observed the vagus nerves of the lamprey (Lethenteron japonicum), elephant shark (Callorhinchus milii), and mouse (Mus musculus), focusing on the embryonic patterns of the vagal branches in the venous pole. In the lamprey, no vagus branch was found in the venous pole throughout development, whereas the arterial pole was innervated by a branch from the branchial portion. In contrast, the vagus innervated the arterial and venous poles in the mouse and elephant shark. Based on the morphological patterns of these branches, the venous vagal branches of the mouse and elephant shark appear to belong to the intestinal part of the vagus, implying that the cardiac nerve pattern is conserved among crown gnathostomes. Furthermore, we found a topographical shift of the structures adjacent to the venous pole (i.e., the hypoglossal nerve and pronephros) between the extant gnathostomes and lamprey. Phylogenetically, the lamprey morphology is likely to be the ancestral condition for vertebrates, suggesting that the evolution of the venous branch occurred early in the gnathostome lineage, in parallel with the remodeling of the head–trunk interfacial domain during the acquisition of the neck. J. Morphol. 277:1146–1158, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

16.
The evoked potentials produced by the irritation of the heart sinus node zone in the brain cortex and bradycardia have been registered in 5 to 40-min ischemia of the left and right ventricular myocardium during the electrical stimulation of the vagus. Restricted cardiac afferentation and the heart escape from vagus influences have been revealed at the early stages of ischemia.  相似文献   

17.
Afferent and efferent spike activity from the parasympathetic (vagus) and sympathetic cardiac nerves were recorded simultaneously with ECG, and indices of heart function were measured in acute experiments on anesthetized dogs, which allowed us to study the modifications of cardio-cardiac reflex influences after a local immune heart injury. After an injury nidus has been formed in the heart, cardiogenic depressor reflexes evoked by an intracoronary application of veratrine or bradykinin were considerably suppressed or even abolished, and afferent spike activity in the vagus cardiac nerves noticeably decreased. At the same time, both the facilitation of activity in sympathetic afferent fibers and pressor reflex effects were preserved after the heart injury. Different localization of vagus and sympathetic afferent structures in the heart and their specialized sensitivity to the biologically active substances are suggested as the factors determining the pattern of cardiogenic reflex influences after a heart injury.Neirofiziologiya/Neurophysiology, Vol. 27, No. 1, pp. 18–25, January–February, 1995.  相似文献   

18.
Denervation of the heart (bilateral vagotomy and propranolol) in artificially ventilated cats didn't remove respiratory peaks on the spectrogram of heart rate, while burst stimulation of vagus nerve increased or decreased them several times by synchronization of the heart and vagus rhythms, which in its turn was observed under the bradycardia only. At the same time, the desynchronization of rhythms provoked severe sinus arrhythmia which had a distinct periodic character. Under these conditions, there were high non-respiratory peaks appearing at the spectrogram of the heart rate that indicated existence of two vagus chronotropic effects: a well known tonic one and special intracycle synchronizing effect correcting duration of every cardiac cycle.  相似文献   

19.
Central organization of the cardiac vagus has not been clarified. Retrograde changes produced in medulla oblongata neurons after section of vagal branches has favored the dorsal motor nucleus of the vagus (DMNX). Current information concerning the origin, course, and termination of vagal preganglionic fibers within cardiac ganglia is conflicting. The explicit purpose of this study was to determine if vagal fibers originated specifically within the DMNX proper. Fibers within the cardiac ganglia were labelled with 3H-leucine following injection into the DMNX. 12 adult albino rats were studied. DMNX were injected with 25 microCi 3H-leucine reconstituted to microliter. Animals were sacrificed by transcardial perfusion following a 4-day survival period. Serial cross-sections of the caudal pons, medulla oblongata, and thoracic viscera were processed for autoradiography. DMNX possessed a heavy incorporation of the radiochemical. Label was observed within the axons of the vagi. Cardiac ganglia contained labelled vagal fibers in close proximity to the postganglionic somata. Cardiac ganglia containing labelled preganglionic vagal axons were located in the cardiac plexuses and in the epicardium. Results show a labelled vagal preganglionic input to cardiac ganglia from the DMNX.  相似文献   

20.
By means of the light optic and electron microscopic methods atrial ganglia, myocytes, vessels of the right cardiac chambers have been studied in rats 2 days--3 weeks after application of 100 mcg of colchicine on the right nervus vagus. Certain changes of the neural fibers have been described at the area of the application. In the myocardium the microcirculatory bed, focal edema and hypoxic alterations of the myocyte ultrastructure have been revealed. In the ventrical ganglia destruction of some terminals of the preganglionar fibers, chromatolysis and vacuolization of single neurocytes, as well as intraganglionar granule-containing cells have been found. The changes described take place for 7 days and they nearly completely disappear in 10 days. A suggestion is made that some phenomena, in particular, destruction of the preganglionar fibers and changes of the cardiac microcirculatory bed are connected with certain disturbances of the quick transport of substances in the nervus vagus fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号