首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Enhanced production of free radicals and oxidative stress induced by hyperglycemia play a central role in the pathogenesis of diabetes and its complications. This study assessed the attenuation by dietary caloric restriction on the oxidative and lipid peroxidative effects of diabetes in the liver through reduction in body and organ weights and concomitant metabolic changes. Three-month-old male Wistar rats were subjected to ad libitum feeding and 30% caloric restriction for 9 weeks before induction of diabetes by intraperitoneal injection of 35 mg/kg body weight streptozotocin. The animals were sacrificed 2 weeks after streptozotocin treatment depicting the onset of diabetes. Caloric restriction significantly reduced the organ weights (p<0.01), malondialdehyde (p<0.01) and catalase activity (p<0.01), but significantly increased glutathione reductase activity (p<0.01), and GSH/GSSG ratios (p<0.05). Caloric restriction also non-significantly reduced reactive oxygen species, superoxide dismutase and oxidized glutathione but increased glutathione peroxidase activity and reduced glutathione levels in the diabetic rats. Our data indicate a decrease in lipid peroxidation, improvement in the antioxidant defense systems and restoration of the redox status in the liver by caloric restriction. Therefore, this could provide a non-invasive antioxidant therapy early in diabetes to prevent the development of the complications associated with the disease.  相似文献   

2.
Type 1 diabetes mellitus is a chronic disease characterized by lack of insulin production. Immune mechanisms are implicated in the pathogenesis of Type 1 diabetes. Canarium odontophyllum (CO) fruits and leaves have been shown to possess high antioxidant activity. This study was conducted to evaluate the effects of CO leaves aqueous extract on the blood glucose and T lymphocyte population in the spleen of streptozotocin (STZ)-induced diabetic rats. Nineteen male Sprague–Dawley rats were randomly divided into three groups: normal, diabetic control and CO treated diabetic groups. Diabetes was induced by a single intraperitoneal injection of 65 mg STZ/kg body weight. The extract of CO leaves was administered orally by force feeding daily at the dose of 300 mg/kg for 28 days. The rats were sacrificed at the end of the study and the spleen was harvested for flow cytometry analysis. The results showed a significant decrease in body weight of diabetic and CO treated diabetic groups compared with the normal group (p < 0.05). The fasting blood glucose level of CO treated diabetic group was significantly lower than the diabetic group (p < 0.05). Diabetic and CO treated diabetic groups showed a significant increase in the percentage of spleen CD3+ CD4+ T lymphocytes (p < 0.05) when compared with the normal group. However, there was no significant difference in the percentage of spleen CD3+ CD8+ T lymphocytes among all experimental groups. The finding suggested that an aqueous extract of CO leaves has the ability to reduce blood glucose levels in diabetic rats.  相似文献   

3.
Gerbera jamesonii H. Bolus ex Hook (Family: Asteraceae) has been successfully acclimatized from temperate to subtropical North Indian plains of Lucknow through in vitro propagation. Flower heads were collected from greenhouse, segmented into 4–16 pieces and cultured in Murashige and Skoog’s medium (MS) (Physiol Plant 15:472–497, 1962) supplemented with 2.87 μM indole-3-acetic acid (IAA) and 8.88 μM N6-benzyladenine (BA) for shoot regeneration. Shoots were subcultured on growth regulator free MS medium. Apical shoot meristems from in vitro plantlets of gerbera were tested in MS medium with different combination of cytokinins [BA, kinetin, and thidiazuron (TDZ)] alongwith 2.68 μM 1-naphthaleneacetic acid (NAA) for shoot multiplication. The optimum results were obtained with 8.88 μM BA. Regenerated plants with well-established root system were transferred to pots containing soil and sand (1:1 v/v) and were kept in humidity chamber with 80–90% relative humidity for 0, 5, 10, 15, 20, and 25 days before they were transferred to field (during October, 2005 to February, 2006). Survival percentage was higher when regenerated plantlets were kept under humidity chamber for 15 days. An attempt was made to obtain basic information on different biochemical changes during acclimatization process of in vitro raised plantlets. Increased lipid peroxidation and high H2O2 content in early stages of acclimatization process reflected a similar process of oxidative stress. Our work suggests that tissue-cultured plants develop antioxidant enzymatic protective system which determine the ability to survive in oxidative stress and up regulation of these enzymes would help to reduce the built up of reactive oxygen species (ROS).  相似文献   

4.
We investigated the effects of bisphenol A (BPA) on antioxidant system enzymes, blood lipid profile and histologic structure of liver and pancreas in rats. We used 40 8-week-old male Wistar albino rats. The animals were divided into five groups of eight: control, vehicle, BPA-5, BPA-50 and BPA-500. BPA was dissolved in ethanol, then mixed with corn oil. The control group was untreated. The vehicle group was given the ethanol-corn oil mixture. The BPA 5, BPA 50 and BPA 500 groups were given 5, 50, and 500 µg/kg body weights/day, respectively. After 8 weeks, blood and tissue samples were obtained from the animals and plasma GSH, TBARS, SOD, GPx, CAT, NO, total cholesterol, triglyceride, HDL, LDL, insulin and glucose were measured. The sections were stained using histochemical and immunohistochemical methods. BPA significantly decreased the levels of GSH, SOD, GPx and CAT, and increased the levels of TBARS and NO in plasma. There was no significant difference among the groups in plasma insulin and glucose levels. The percentage of insulin immunoreactive cells in islets increased significantly in the BPA-500 group. The H-score of the BPA-5 and BPA-50 groups decreased significantly compared to controls. We found that BPA caused oxidative stress and disruption of pancreatic β-cell function. Therefore, BPA is a risk factor for animal and human health.  相似文献   

5.
6.
Non-enzymatic glycation is implicated in the development of various diseases such as Alzheimer's and diabetes mellitus. However, it is also observed during the physiologic process of aging. There is considerable interest in the contribution of oxidative stress to diabetes mellitus. An increase in the generation of reactive oxygen species can occur by non-enzymatic glycation and glucose autoxidation. Both of these processes lead to the formation of AGEs (Advanced glycation end-products) that contribute to the irreversible modification of enzymes, proteins, lipids and DNA. In this study, the effect of chronic hyperglycemia on the antioxidant system of diabetic rats was evaluated. The working hypothesis is that the loss of glucose homeostasis reduces the capacity to respond to oxidative damage. The enzymatic activities of CAT (catalase), GPx (gluthatione peroxidase), GR (gluthatione reductase) and GSH (reduced gluthatione) were increased in the blood of healthy rats subjected to endurance training, whereas, in diabetic rats the activities of CAT, GPx and GR were unaltered by similar training. SOD showed low activity in endurance-trained rats. The administration of aminoguanidine (an inhibitor of glycation reactions) in the drinking water increased the activities of CAT, GPx and GR, suggesting that glycation may be responsible for the partial inactivation of these enzymes. These results indicate that the association of hyperglycemia with strenuous physical exercise may induce cellular damage by impairing the antioxidant defense system.  相似文献   

7.
Age composition and age-related trends of antioxidant enzyme activities superoxide dismutase (SOD), catalase (CAT), peroxidase (PER), glutathione reductase (GR) and glutathione-S-transferase (GST) in the blood of seven Black Sea teleosts (Carangidae, Centracanthidae, Gadidae, Mullidae, Gobiidae and Scorpaenidae) collected in marine coastal area of Sevastopol (Ukraine) were studied. In the catches the animals of 1 – 2 years of age dominated while in the Scorpaena porcus population the number of relatively elder individuals belonging to classes of 3–4 years was the highest. The trends of antioxidant enzyme activities in blood were not uniform. Three types of age-dependent responses were indicated in fish blood: 1. enzymatic activity did not change with age; 2. enzymatic activity decreased with age and 3. enzyme activity increased with age or varied unclearly. The interspecies differences of age-related enzymatic activities associated with the specificity of fish biology and ecology were indicated. Despite no clear evidence of age-related differences between fish species belonging to different ecological groups both benthic forms exhibited similar age-dependent trends of SOD and PER. The correlations between blood antioxidant enzyme activities in fish belonging to suprabenthic and benthic/pelagic groups demonstrated the intermediate values as compared to the benthic and pelagic forms. The results suggest the importance of age trends for biomarkers in fish monitoring studies.  相似文献   

8.
The anti-diabetic and antioxidative effect of amaranth grain (AG) and its oil fraction (AO) was studied in streptozotocin-induced diabetic rats. Male Sprague-Dawley rats were divided into four groups after induction of STZ-diabetes: normal control; diabetic control; diabetic-AG supplement (500 g kg(-1) diet); diabetic-AO supplement (100 g kg(-1) diet) and fed experimental diets for 3 weeks. Serum glucose, insulin, activities of serum marker enzymes of liver function and liver cytosolic antioxidant enzymes were measured. The AG and AO supplement significantly decreased the serum glucose and increased serum insulin level in diabetic rats. Serum concentration of liver function marker enzymes, GOT and GPT, were also normalized by AG and AO treatment in diabetic rats. Liver cytosolic SOD and GSH-reductase activities were significantly increased, and catalase, peroxidase and GSH-Px activities were decreased in diabetic rats. AG and AO supplement reverted the antioxidant enzyme activities to near normal values. Hepatic lipid peroxide product was significantly higher, and GSH content was decreased in diabetic rats. However, AG and AO supplement normalized these values. Our data suggest that AG and AO supplement, as an antioxidant therapy, may be beneficial for correcting hyperglycaemia and preventing diabetic complications.  相似文献   

9.
Analysis of the effect of several 1,4-DHP Ca(2+) channel antagonists on experimental and clinical diabetes shows that structurally similar Ca(2+) channel antagonists can exert opposite effects on Ca(2+) influx, glucose homeostasis and insulin secretion. The influence of the Ca(2+) channel antagonists on pancreatic beta cell functions is dependent on lipophilicity, interactions with the cell membrane lipid bilayer, with SNAREs protein complexes in cell and vesicle membranes, with intracellular receptors, bioavailability and time of elimination from several organs and the bloodstream. In the present work we studied the effect at several doses of new compounds synthesized in the Latvian Institute of Organic Synthesis on blood glucose levels in normal and STZ-induced diabetic rats. The compounds tested were: 1,4-DHP derivatives cerebrocrast (1), etaftoron (2), OSI-1190 (3), OSI-3802 (4), OSI-2954 (5) and known 1,4-DHP derivatives: niludipine (6), nimodipine (7) and nicardipine (8) which possess different lipophilicities. Analysis of the structure-function relationships of the effect of 1,4-DHP derivatives on glucose metabolism showed that cerebrocrast could evoke qualitative differences in activity. Insertion of an OCHF(2) group in position 2 of the 4-phenylsubstituent and propoxyethylgroup R in ester moieties in positions 3 and 5 of the DHP structure, as well as an increase in the number of carbon atoms in the ester moiety, significantly modified the properties of the compound. Thereby cerebrocrast acquired high lipophilicity and membranotropic properties. Cerebrocrast, in a single administration at low doses (0.05 and 0.5 mg x kg(-1), p.o.), significantly decreased the plasma level of glucose in normal rats and in STZ-induced diabetic rats returned plasma glucose to basal levels. This effect was characterized by a slow onset and a powerful long-lasting influence on glucose metabolism, especially in STZ-induced diabetic rats.  相似文献   

10.
11.
Majithiya JB  Balaraman R 《Life sciences》2006,78(22):2615-2624
Effect of metformin treatment on blood pressure, endothelial function and oxidative stress in streptozotocin (STZ)-induced diabetes in rats was studied. In vitro effect of metformin on vascular reactivity to various agonist in the presence of metformin in untreated nondiabetic and STZ-diabetic rats were also studied. Sprague-Dawley rats were randomized into nondiabetic and STZ-diabetic groups. Rats were further randomized to receive metformin (150 mg/kg) or vehicle for 4 weeks.Metformin treatment reduced blood pressure without having any significant effect on blood glucose level in STZ-diabetic rats. Enhanced phenylephrine (PE)-induced contraction and impaired acetylcholine (Ach)-induced relaxation in STZ-diabetic rats were restored to normal by metformin treatment. Enhanced Ach-induced relaxation in metformin-treated STZ-diabetic rats was blocked due to pretreatment with 100 μM of -nitro-l-arginine-methyl ester (l-NAME) or 10 μM of methylene blue but not 10 μM of indomethacin. Metformin treatment significantly increased antioxidant enzymes and reduced lipid peroxidation in STZ-diabetic rats. In vitro studies in aortic rings of untreated nondiabetic and STZ-diabetic rats showed that the presence of higher concentration of metformin (1 mM and 10 mM) significantly reduced PE-induced contraction and increased Ach-induced relaxation. Metformin per se relaxed precontracted aortic rings of untreated nondiabetic and STZ-diabetic rats in a dose-dependent manner. Pretreatment with l-NAME or removal of endothelium blocked metformin-induced relaxation at lower concentration (up to 30 μM) but not at higher concentration (above 30 μM). Metformin-induced relaxation was blocked in the presence of 1 mM of 4-aminopyridine, or 1 mM of tetraethylammonium but not in the presence of 100 μM of barium ion or 10 μM of glybenclamide. The restored endothelial function along with direct effect of metformin on aortic rings and reduced oxidative stress contributes to reduced blood pressure in STZ-diabetic rats. From the present study, it can be concluded that metformin administration to STZ-diabetic rats lowers blood pressure, and restores endothelial function.  相似文献   

12.
This study was designed to evaluate the effects of Cd exposure on morphological aspects of β-cell and weights of fetus and placenta in streptozotocin (STZ)-induced diabetic pregnant rats. Ninety-nine virgin female Wistar rats (200–220 g) were mated with 33 males for at least 12 h. From the onset of pregnancy, the rats were divided into four experimental groups (control, Cd treated, STZ treated, and Cd+STZ treated). The Cd-treated group was injected subcutaneously daily with CdCl2 dissolved in isotonic NaCl, starting at the onset of pregnancy throughout the experiment. Diabetes was induced on the 13th d of pregnancy by a single intraperitoneal injection of STZ in STZ-treated group. In addition to the daily injection of Cd, a single intraperitoneal injection of STZ was also given on the 13th d of pregnancy in the Cd+STZ-treated group. The rats received the last injection 24 h before being sacrificed and 10 randomly selected rats in each group were sacrificed on the 15th and 20th d of pregnancy. Blood samples were taken for the determination of the serum glucose and insulin levels. Maternal pancreases, fetuses, and placentas of sacrificed rats in all groups were harvested (fetal pancreas was also harvested only on the 20th d of pregnancy) for morphological and immunohistochemical examinations. Cd exposure alone caused a degeneration, necrosis, and weak degranulation, but Cd exposure with STZ caused a severe degeneration, necrosis, and degranulation in the β-cells of the pancreatic islets. No morphological or immunohistochemical differences were found in β-cells of fetal pancreatic islets of control or other treatment groups. Cd exposure alone also decreased the fetal and placental weights. The administration of STZ alone, on the other hand, increased the placental weight. Cd, STZ, and Cd+STZ administration increased the glucose and decreased the insulin level. The increase in glucose and decrease in insulin levels were higher when Cd and STZ were given together. All of these changes were more severe on the 20th d than those on the 15th d of the pregnancy. It is concluded that Cd exposure during pregnancy may reduce the birth and placental weights and produce necrosis, degeneration, and degranulation in β-cells of pancreatic islets, causing an increase in the serum glucose level. These changes might be severe in diabetic pregnant mothers.  相似文献   

13.
Hyperglycemia induced oxidative stress has been proposed as a cause of many complications of diabetes including cardiac dysfunction. The present study depicts the therapeutic effect of green tea extract on oxidative stress in aorta as well as heart of streptozotocin diabetic rats. Six weeks after diabetes induction, green tea was administered orally for 4 weeks [300 mg (kg body weight)(-1) day (-1)]. In aorta and heart of diabetic rats there was a significant increase in the activity of superoxide dismutase, catalase and glutathione peroxidase with an increase in lipid peroxides. Diabetic rats showed a significant decrease in the levels of serum and cardiac glutathione. Green tea administration to diabetic rats reduced lipid peroxides and activity of antioxidant enzymes whereas increased glutathione content. The results demonstrate that the induction of antioxidant enzymes in diabetic rats is not efficient and sufficient to reduce the oxidative stress. But green tea by providing a competent antioxidative mechanism ameliorates the oxidative stress in the aorta and heart of diabetic rats. The study suggests that green tea may provide a useful therapeutic option in the reversal of oxidative stress induced cardiac dysfunction in diabetes mellitus.  相似文献   

14.
Thirty streptozotocin (STZ)-induced diabetic of Wistar Albino rats were divided into five groups. The rat groups received different food (natural diet or high fat content diet) supplemented with 10% or 15% of samh seeds for 6 weeks. At the end of the study, aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phophatase (ALP) and lactate dehydrogenase (LDH) enzymes have been measured in diabetic rats liver. In addition, liver lipid profile (total cholesterol (TC), triglyceride (TAG), lipid peroxide production malondialdehyde (MDA)) and reduced glutathione (GSH) in have been measured in diabetic rats liver, and the levels of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) were also determined. The samh seeds diet supplemented with cholesterol significantly increase (P < 0.05) the levels of liver peroxide production MDA, TC and TG in diabetic rats comparing to the samh diet not supplemented with the cholesterol. However, the samh seeds significantly decrease (P < 0.05) the level of GSH. These data suggest that the samh seeds diet not supplemented with the cholesterol regulated C and TG metabolism and decrease the lipid peroxidation in the diabetic rats.  相似文献   

15.
16.
The evaluation of the anti-diabetic effects of an organic vanadium(V) complex in streptozotocin (STZ)-induced diabetic rats was investigated. The STZ-induced diabetic rats were orally administrated with sodium 4-amino-2,6-dipicolinatodioxovanadium(V) dihydrate (V5dipic-NH2), a vanadium(V) coordination compound. The compound was administered through drinking water at a concentration of 0.1 mg/mL for 20 days, and then the concentration was increased to 0.3 mg/mL for the following 20 days. At the end of the experiment, V5dipic-NH2 statistically significantly reduced the levels of blood glucose (P < 0.01), serum total cholesterol (P < 0.01), triglycerides (P < 0.01) and the activities of serum aspartate amino transferase (P < 0.05) and alkaline phosphatase (P < 0.01) compared to untreated diabetic animals. After treatment with 0.3 mg/mL V5dipic-NH2, the oral glucose tolerance was improved in diabetic animals (P < 0.01). In addition, the daily intake of elemental vanadium was markedly decreased in V5dipic-NH2-treated diabetic rats compared to vanadyl sulfate (VOSO4)-treated diabetic rats, which suggested that the anti-diabetic activity of the element vanadium was elevated after being modified with an organic ligand. These results suggested that V5dipic-NH2, as an organic vanadium compound, is more effective than inorganic vanadium salt at alleviating the symptoms of diabetes.  相似文献   

17.
In diabetic condition, endogenous glucose synthesis will be elevated due to defect in the action of vital enzymes involved in carbohydrate metabolism, which is the main cause for hyperglycemia. The current study was designed to explore the anti-hyperglycemic efficacy of Sesbania grandiflora flower (SGF) extract by evaluating the concentration of C-peptide, insulin, glucose, glycosylated hemoglobin (HbA1C), hemoglobin (Hb), glycogen and carbohydrate metabolic enzymes activities in diabetic rats. The study found to lower the level of glucose, HbA1C and simultaneously ameliorated concentrations of C-peptide, insulin, hemoglobin (Hb), glycogen and carbohydrate metabolic enzymes activities in SGF treated (250 mg/kg body weight for 45 days) diabetic rats. Moreover, SGF administered diabetic rats showed diminished consumption of food and water at the same time improved body weight. The results obtained from the present study were compared with glibenclamide treated (600 µg/kg body weight) diabetic rats. SGF were supplemented to normal rats to rule out toxic effect of SGF, to explore any significant alteration in the above parameters. Hence, the results depict that SGF modulated the carbohydrate metabolic enzymes activities through ameliorating the secretion of insulin and diminishing the level of glucose concentration in STZ-induced diabetic rats by its bioactive compounds.  相似文献   

18.
Free radicals and oxidative stress have been implicated in the etiology of diabetes and its complications. This in vivo study has examined whether subacute administration of pycnogenol, a French pine bark extract containing procyanidins that have strong antioxidant potential, alters biomarkers of oxidative stress in normal and diabetic rats. Diabetes was induced in female Sprague-Dawley rats by a single injection of streptozotocin (90 mg/kg body weight, ip), resulting (after 30 days) in subnormal body weight, increased serum glucose concentrations, and an increase in liver weight, liver/body weight ratios, total and glycated hemoglobin, and serum aspartate aminotransferase activity. Normal and diabetic rats were treated with pycnogenol (10 mg/kg body weight/day, ip) for 14 days. Pycnogenol treatment significantly reduced blood glucose concentrations in diabetic rats. Biochemical markers for oxidative stress were assessed in the liver, kidney, and heart. Elevated hepatic catalase activity in diabetic rats was restored to normal levels after pycnogenol treatment. Additionally, diabetic rats treated with pycnogenol had significantly elevated levels of reduced glutathione and glutathione redox enzyme activities. The results demonstrate that pycnogenol alters intracellular antioxidant defense mechanisms in streptozotocin-induced diabetic rats.  相似文献   

19.
To assess the dominance between hypoinsulinemia and hypoleptinemia as factors in the development of hyperphagia in streptozotocin (STZ)-induced diabetes mellitus (STZ-DM) rodents with respect to hormone-neuropeptide interactions, changes in gene expression of agouti gene-related protein (AGRP) in the arcuate nucleus of the hypothalamus were investigated using STZ-DM rats, fasting Zucker fa/fa rats and STZ-DM agouti (STZ-DM A(y)/a) mice. AGRP mRNA and neuropeptide Y mRNA were both significantly up-regulated in STZ-DM rats, which are associated with body weight loss, hyperglycemia, hypoinsulinemia and hypoleptinemia. We proceeded to analyze whether insulin or leptin played the greater role in the regulation of AGRP using Zucker fa/fa rats. The AGRP mRNA did not differ significantly between fasted fa/fa rats, which have both leptin-insensitivity and hypoinsulinemia, and fed Zuckers, which have leptin-insensitivity and hyperinsulinemia. We further found that up-regulation of AGRP expression was normalized by infusion of leptin into the third cerebroventricle (i3vt), but not by i3vt infusion of insulin, although up-regulation of AGRP was partially corrected by systemic insulin infusion. The latter finding supports hypoleptinemia as a key-modulator of STZ-DM-induced hyperphagia because systemic insulin infusion, at least partially, restored hypoleptinemia through its acceleration of fat deposition, as demonstrated by the partial recovery of lost body weight. After STZ-DM induction, A(y)/a mice whose melanocortin-4 receptor (MC4-R) was blocked by ectopic expression of agouti protein additionally accelerated hyperphagia and up-regulated AGRP mRNA, implying that the mechanism is triggered by a leptin deficit rather than by the main action of the message through MC4-R. Hypoleptinemia, but not hypoinsulinemia per se, thus develops hyperphagia in STZ-DM rodents. These results are very much in line with evidence that hypothalamic neuropeptides are potently regulated by leptin as downstream targets of its actions.  相似文献   

20.
Effects of either a single dose or a long-term administration of an alpha-glucosidase inhibitor, acarbose, on blood glucose, cholesterol concentrations in serum lipoprotein fractions, triglycerides and free fatty acids were examined in streptozotocin-induced diabetic rats. In experiment 1, starch loading tests were performed with or without adding acarbose. The addition of acarbose (0.75 mg per kg of body weight or over) significantly reduced the elevation of blood glucose levels. In experiment 2, the animals were divided into three groups: Group A fed on a control diet, Group B fed on a diet containing 5 mg acarbose in 100 g of diet and Group C fed on a diet containing 20 mg acarbose in 100 g of diet. The food intake in Group C was significantly reduced by 22% as compared to Group A, while the food intake in Group B showed no change. The high dose of acarbose showed a tendency to lower fasting blood glucose levels, but the difference was statistically insignificant. However, postprandial glucose levels in Group C at each period examined and in Group B at 30 days were significantly lower than the counterparts in Group A. Acarbose caused a dose-dependent decrease in serum total cholesterol levels and HDL-cholesterol: total cholesterol ratios were elevated in Group B and C. Serum triglyceride levels in Group B and C were extremely lower than those in Group A on and after 20 days. These results indicate that the addition of acarbose to the diet induces a decrease in postprandial blood glucose levels and simultaneously causes an improvement in lipid metabolism of streptozotocin-induced diabetic rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号