首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Adiponectin is an adipocytokine with profound anti-diabetic and anti-atherogenic effects. Even though adiponectin expression is restricted to adipocytes, serum levels are paradoxically decreased in obesity. We characterized how adiponectin expression and regulation relates to adipocyte differentiation in a human adipocyte cell culture model. Adiponectin was not expressed by human preadipocytes. Differentiation into adipocytes was necessary to induce an increasing expression of adiponectin (359 +/- 64-fold, P < 0.001) in parallel to an increasing expression of adipocyte differentiation markers. Adiponectin protein synthesis and secretion occurred specifically in mature adipocytes and may thus serve as a distinctive marker of adipocyte differentiation. Addition of serum during the course of differentiation as well as acutely to mature adipocytes significantly and concentration-dependently suppressed adiponectin to almost non-detectable levels (to 9.8 +/- 0.03%, P = 0.0043), suggesting a strong humoral serum component of adiponectin down-regulation. This serum component is present in both obese and lean individuals with a tendency to a stronger effect in obese men and women. Separation by molecular size suggests that higher molecular weight (>30 kDa) fractions exert inhibition of adiponectin. Withdrawal of adipogenic ingredients from the culture medium also resulted in a decrease of adiponectin expression and secretion to 62.01 +/- 0.09% and 70.86 +/- 0.05%, respectively. We identified insulin as a critical component to maintain adiponectin expression with a down-regulation to 61.6 +/- 0.1% (P = 0.0011) in the absence of insulin. These dynamic changes of adiponectin expression and regulation with adipocyte differentiation are of physiological interest in the light of the paradoxical decrease of adiponectin levels and the continuous recruitment of preadipocytes for differentiation in obesity.  相似文献   

3.
Adiponectin, an adipocyte-specific secretory protein, is present in serum as three oligomeric complexes. Apart from its roles as an anti-diabetic and anti-atherogenic hormone, adiponectin has been implicated as an important regulator of cell growth and tissue remodeling. Here we show that some of these functions might be mediated by the specific interactions of adiponectin with several important growth factors. Among six different growth factors examined, adiponectin was found to bind with platelet-derived growth factor BB (PDGF-BB), basic fibroblast growth factor (FGF), and heparin-binding epidermal growth factor-like growth factor (HB EGF) with distinct affinities. The bindings of adiponectin with these growth factors are oligomerization-dependent. PDGF-BB bound to the high molecular weight (HMW) and middle molecular weight (MMW) complexes, but not to the low molecular weight (LMW) complex of adiponectin. Basic FGF preferentially interacted with the HMW form, whereas HB EGF bound to all three forms with comparable affinities. These three growth factors did not compete with each other for their bindings to adiponectin, suggesting the involvement of distinct binding sites. The interactions of adiponectin with PDGF-BB, basic FGF, and HB EGF precluded the bindings to their respective membrane receptors and attenuated the DNA synthesis and cell proliferation induced by these growth factors. Small interfering RNA-mediated down-regulation of adiponectin receptors did not affect the suppressive effects of adiponectin on cell proliferation stimulated by these growth factors. These data collectively suggest that the oligomeric complexes of adiponectin can modulate the biological actions of several growth factors by controlling their bioavailability at a pre-receptor level and that this effect might partly account for the anti-atherogenic, anti-angiogenic, and anti-proliferative functions of adiponectin.  相似文献   

4.
Adiponectin, a hormone secreted by adipose tissue, circulates at high concentrations in human plasma. Paradoxically, plasma levels of adiponectin are approximately 50% lower in obese than in lean subjects. An association between low plasma levels of adiponectin and higher risk of developing breast and other cancers was recently reported. Obesity and overweight have also been associated with increased mortality from cancer. To test the hypothesis that adiponectin exerts direct antiproliferative and/or pro-apoptotic effects on cancer cells, we used the MCF7 human breast adenocarcinoma cell line. The proliferation rate of the MCF7 cells was measured using the MTT method, while apoptosis was examined by quantifying the DNA fragmentation using an ELISA assay. In addition, adiponectin receptor 1 (AdipoR1) and AdipoR2 mRNA expression was detected using RT-PCR. Adiponectin diminished the proliferation rate of MCF7 cells; this effect was significant after 48-96 hours of treatment. The presence of receptor expression suggested that the effect of adiponectin on cell proliferation was most likely specific and adiponectin receptor-mediated. Adiponectin induced no apoptosis of MCF7 cells over 48 hours. We conclude that adiponectin inhibits proliferation but causes no apoptosis of MCF7 breast cancer cells. These data suggest that adiponectin may represent a direct hormonal link between obesity and cancer.  相似文献   

5.
Maternal pregestational obesity is a well-known risk factor for offspring obesity, metabolic syndrome, cardiovascular disease and type 2 diabetes. The mechanisms by which maternal obesity can induce alterations in fetal and later neonatal metabolism are not fully elucidated due to its complexity and multifactorial causes. Two adipokines, leptin and adiponectin, are involved in fetal and postnatal growth trajectories, and both are altered in women with pregestational obesity. The placenta synthesizes leptin, which goes mainly to the maternal circulation and in lesser amount to the developing fetus. Maternal pregestational obesity and hyperleptinemia are associated with placental dysfunction and changes in nutrient transporters which directly affect fetal growth and development. By the other side, the embryo can produce its own leptin from early in development, which is associated to fetal weight and adiposity. Adiponectin, an insulin-sensitizing adipokine, is downregulated in maternal obesity. High molecular weight (HMW) adiponectin is the most abundant form and with most biological actions. In maternal obesity lower total and HMW adiponectin levels have been described in the mother, paralleled with high levels in the umbilical cord. Several studies have found that cord blood adiponectin levels are related with postnatal growth trajectories, and it has been suggested that low adiponectin levels in women with pregestational obesity enhance placental insulin sensitivity and activation of placental amino acid transport systems, supporting fetal overgrowth. The possible mechanisms by which maternal pregestational obesity, focusing in the actions of leptin and adiponectin, affects the fetal development and postnatal growth trajectories in their offspring are discussed.  相似文献   

6.
Adiponectin is an adipose derived hormone that declines in obesity. We have previously shown that exogenous administration of adiponectin reduces allergic airways responses in mice. T-cadherin (T-cad; Cdh13) is a binding protein for the high molecular weight isoforms of adiponectin. To determine whether the beneficial effects of adiponectin on allergic airways responses require T-cad, we sensitized wildtype (WT), T-cadherin deficient (T-cad(-/-)) and adiponectin and T-cad bideficient mice to ovalbumin (OVA) and challenged the mice with aerosolized OVA or PBS. Compared to WT, T-cad(-/-) mice were protected against OVA-induced airway hyperresponsiveness, increases in BAL inflammatory cells, and induction of IL-13, IL-17, and eotaxin expression. Histological analysis of the lungs of OVA-challenged T-cad(-/-) versus WT mice indicated reduced inflammation around the airways, and reduced mucous cell hyperplasia. Combined adiponectin and T-cad deficiency reversed the effects of T-cad deficiency alone, indicating that the observed effects of T-cad deficiency require adiponectin. Compared to WT, serum adiponectin was markedly increased in T-cad(-/-) mice, likely because adiponectin that is normally sequestered by endothelial T-cad remains free in the circulation. In conclusion, T-cad does not mediate the protective effects of adiponectin. Instead, mice lacking T-cad have reduced allergic airways disease, likely because elevated serum adiponectin levels act on other adiponectin signaling pathways.  相似文献   

7.
Adiponectin is an adipocytokine involved in the pathogenesis of various obesity-related disorders. Also, it has been shown that adiponectin has therapeutic potential for metabolic syndrome, systemic insulin resistance, cardiovascular disease and more recently carcinogenesis. Adiponectin can modulate breast cancer cell growth and proliferation. Anti-metastatic effects of adiponectin have also been elucidated. It has been shown that adiponectin inhibits important metastatic properties such as adhesion, invasion and migration of breast cancer cells. Examination of the underlying molecular mechanisms has shown that adiponectin treatment increases AMP-activated protein kinase (AMPK) phosphorylation and activity. Adiponectin also increases phosphorylation of downstream target of AMPK, Acetyl-CoA Carboxylase (ACC) and decreases phosphorylation of p70S6 kinase (S6K). Importantly, adiponectin treatment increases the expression of tumor suppressor gene, LKB1 in breast cancer cells. LKB1 is required for adiponectin-mediated modulation of AMPK-S6K axis and more importantly, its biological functions including inhibition of adhesion, migration and invasion of breast cancer cells. Although further studies are required to analyze the effect of adiponectin on LKB1-AMPK-S6K axis, these data present a novel mechanism involving specific upregulation of tumor suppressor gene LKB1 by which adiponectin inhibits adhesion, invasion and migration of breast cancer cells. These results highlight a new role for LKB1 in adiponectin action and may have significant implication for development of novel therapeutic options.  相似文献   

8.
Adipose tissue is a highly vascularized endocrine organ, and its secretion profiles may vary with obesity. Adiponectin is secreted by adipocytes that make up adipose tissue. Worldwide, obesity has been designated a serious health problem among women and is associated with a variety of metabolic disorders and an increased risk of developing cancer of the cervix, ovaries, uterus (uterine/endometrial), and breast. In this review, the potential link between obesity and female-specific malignancies is comprehensively presented by discussing significant features of the intriguing and complex molecule, adiponectin, with a focus on recent findings highlighting its molecular mechanism of action in female-specific carcinogenesis.  相似文献   

9.
Prostate cancer is one of the leading causes of death among men in the United States, and acquisition of hormone resistance (androgen independence) by cancer cells is a fatal event during the natural history of prostate cancer. Obesity is another serious health problem and has been shown to be associated with prostate cancer. However, little is known about the molecular basis of this association. Here we show that factor(s) secreted from adipocytes stimulate prostate cancer cell proliferation. Leptin is one of the major adipose cytokines, and it controls body weight homeostasis through food intake and energy expenditure. We identify leptin as a novel growth factor in androgen-independent prostate cancer cell growth. Strikingly, leptin stimulates cell proliferation specifically in androgen-independent DU145 and PC-3 prostate cancer cells but not in androgen-dependent LNCaP-FGC cells, although both cell types express functional leptin receptor isoforms. c-Jun NH2-terminal kinase (JNK) has been shown recently to play a crucial role in obesity and insulin resistance. Intriguingly, leptin induces JNK activation in androgen-independent prostate cancer cells, and the pharmacological inhibition of JNK blocked the leptin stimulation of androgen-independent prostate cancer cell proliferation. This suggests that JNK activation is required for leptin-mediated, androgen-independent prostate cancer cell proliferation. Furthermore, other cytokines produced by adipocytes and critical for body weight homeostasis cooperate with leptin in androgen-independent prostate cancer cell proliferation: interleukin-6 and insulin-like growth factor I demonstrate additive and synergistic effects on the leptin stimulation of androgen-independent prostate cancer cell proliferation, respectively. Therefore, adipose cytokines, as well as JNK, are key mediators between obesity and hormone-resistant prostate cancer and could be therapeutic targets.  相似文献   

10.
Adiponectin, an adipose tissue-derived hormone, has been studied intensively for the past decade because of its anti-inflammatory, anti-atherogenic, and anti-diabetic properties. Recent advances suggest that adiponectin also plays an important role in the development and progression of various cancers. Accumulating evidence suggests that adiponectin may have an important protective role in carcinogenesis. Adiponectin circulates at high concentrations in human plasma. Plasma levels of adiponectin are approximately 50 % lower in obese than in lean subjects. An association between low plasma levels of adiponectin and higher risk of developing prostate and other cancers was recently reported. Obesity and overweight have also been associated with increased mortality from cancer. To test the hypothesis that adiponectin exerts direct antiproliferative and/or pro-apoptotic effects on cancer cells, we used the PC-3 human prostate adenocarcinoma cell line. The proliferation rate of the PC-3 cells was measured using the MTT method, and apoptosis was examined by quantifying the DNA fragmentation using an ELISA assay. In addition, adiponectin receptor 1 (AdipoR1) and AdipoR2 mRNA expression was detected using RT-PCR. Adiponectin diminished the proliferation rate of PC-3 cells; this effect was significant after 48–96 h of treatment. The presence of receptor expression suggested that the effect of adiponectin on cell proliferation was most likely specific and adiponectin receptor-mediated. Adiponectin induced no apoptosis of PC-3 cells over 48 h. We conclude that adiponectin inhibits proliferation but causes no apoptosis of PC-3 prostate cancer cells.  相似文献   

11.
Adiponectin is an adipocytokine involved in the pathogenesis of various obesity-related disorders. Also, it has been shown that adiponectin has therapeutic potential for metabolic syndrome, systemic insulin resistance, cardiovascular disease and more recently carcinogenesis. Adiponectin can modulate breast cancer cell growth and proliferation. Anti-metastatic effects of adiponectin have also been elucidated. It has been shown that adiponectin inhibits important metastatic properties such as adhesion, invasion and migration of breast cancer cells. Examination of the underlying molecular mechanisms has shown that adiponectin treatment increases AMP-activated protein kinase (AMPK) phosphorylation and activity. Adiponectin also increases phosphorylation of downstream target of AMPK, Acetyl-CoA Carboxylase (ACC) and decreases phosphorylation of p70S6 kinase (S6K). Importantly, adiponectin treatment increases the expression of tumor suppressor gene, LKB1 in breast cancer cells. LKB1 is required for adiponectin-mediated modulation of AMPK-S6K axis and more importantly, its biological functions including inhibition of adhesion, migration and invasion of breast cancer cells. Although further studies are required to analyze the effect of adiponectin on LKB1-AMPK-S6K axis, these data present a novel mechanism involving specific upregulation of tumor suppressor gene LKB1 by which adiponectin inhibits adhesion, invasion and migration of breast cancer cells. These results highlight a new role for LKB1 in adiponectin action and may have significant implication for development of novel therapeutic options.Cancer research has largely focused on the molecular basis of oncogenic transformation and tumorigenesis for many years. Recent progress in cancer research has put the metastatic process at the center stage because higher metastatic potential of tumor cells is the major cause of mortality from solid tumors. Metastasis is a complex process that involves modulation of various molecular signaling networks. Tumor cells alter the microenvironment, attain greater cellular adhesion along with better ability to invade and migrate to gain access to circulation. These wandering tumor cells defy anoikis, survive in the circulation, exit into new permissive organ site and colonize distant organs.1 The microenvironment in which the tumor originates plays an important role in tumor initiation, progression and metastasis.Key words: adiponectin, LKB1, invasion, migration, cancer, AMPK, S6K  相似文献   

12.
Adiponectin is an adipose-derived protein with beneficial metabolic effects. Low adiponectin is associated with obesity and related diseases. Significant weight loss increases adiponectin, reducing disease risk. This study compared the effects of two weight-loss diets with different macronutrient compositions on adiponectin. Eighty-one obese women in two cohorts were randomized to a low-fat (LF) or a low-carbohydrate (LC) diet. All subjects underwent equivalent weight-loss intervention, with weight and other measures assessed at baseline and after 6 (cohort I) or 4 (cohort II) months. Body fat was measured by dual energy X-ray absorptiometry. Adiponectin was measured by radioimmunoassay. Diet intake was assessed using 24-h recalls and 3-day diet records. Data were analyzed via t-tests and repeated-measures factorial ANOVA using time, diet, and replicate (cohort I vs. cohort II) as factors. Age, weight, body fat, BMI, adiponectin, and diet were similar at baseline. Following intervention, macronutrient composition of the diet was vastly different between the groups, reflecting the assigned diet. Both groups lost weight and body fat (P < 0.001), with effect in LC dieters greater than LF dieters (-9.1 kg vs. -4.97 kg weight, P < 0.05 and -5.45 kg vs. -2.62 kg fat, P < 0.001). Adiponectin increased in the LC (+1.92 mcg/ml, P < 0.01), but not the LF (+0.86 mcg/ml, P = 0.81), group. There was no correlation between weight loss and increase in adiponectin. These results confirm that diet-induced loss of weight and body fat is associated with increased adiponectin concentrations. This effect is evident with weight loss of 10% or more, and may be greater with LC diets.  相似文献   

13.
14.
Serum levels of adiponectin were measured in patients with benign prostatic hyperplasia and prostate cancer of pT2 and pT3 stage. Adiponectin ELISA assay, immunohistochemistry, and selected metabolic and biochemical parameters measurement was performed in 25 patients with benign prostatic hyperplasia and 43 with prostate cancer (17 patients with organ-confined and 26 patients with locally advanced disease). Serum adiponectin levels did not differ between prostate benign hyperplasia and cancer clinical stage T2, but was significantly higher in pT3 relative to pT2 group (14.51+/-4.92 vs. 21.41+/-8.12, P = 0.003). Tissue immunohistochemistry showed enhanced staining in neoplastic prostate glands and intraepithelial neoplasia relative to benign prostatic hyperplasia without distinction between disease grade and stage. Serum adiponectin levels are higher in locally advanced relative to organ-confined prostate cancer and may thus serve as an auxiliary marker providing further improvement for discrimination between pT2 and pT3 stages.  相似文献   

15.
Adiponectin is an adipokine (adipocyte-derived hormone) with multiple salutary effects. It is secreted into the circulation as low molecular weight (LMW) and high molecular weight (HMW) multimers with the latter being more metabolically active. Extensive post-translational modifications (PTMs) are required for efficient adiponectin multimerisation and secretion. Recent studies have identified novel PTMs that contribute to the efficacy of adiponectin production and clearance. Thiol-mediated retention of adiponectin occurs during transit through the ER, via direct interactions with chaperones including ERp44 and DsbA-L, and facilitates multimerisation and secretion. Interestingly, this appears to be in direct competition with adiponectin succination. Adiponectin is also subject to O-glycosylation/sialylation which affects clearance from the circulation. In contrast to most adipokines, reduced adiponectin levels, particularly HMW, contribute to the aetiology of obesity-related diseases such as type 2 diabetes and cardiovascular disease. Strategies that modulate processes governing PTM of adiponectin represent attractive therapeutic approaches.  相似文献   

16.
Adiponectin is a recently described mediator secreted by adipose tissue. Here we report the growth promoting and pro-inflammatory actions of adiponectin on colonic epithelial cancer cells. Full-length and globular adiponectin produced an identical stimulation of HT-29 cell growth that was blocked by inhibition of adenylate cyclase and protein kinase A and partially inhibited by a pan-specific protein kinase C inhibitor, but was unaffected by specific inhibition of extracellular signal-related kinase (ERK) or p38 MAP kinase. Globular adiponectin but not full-length adiponectin significantly increased the secretion and mRNA levels of IL-8, GM-CSF and MCP-1. Globular adiponectin doubled IL-1beta-stimulated IL-8 and GM-CSF secretion. Adiponectin-stimulated cytokine secretion was blocked by pharmacological inhibitors of NF-kappaB, ERK and p38 MAP kinase. Globular adiponectin increased phosphorylation of both ERK and p38 MAP kinase and increased the nuclear translocation of active NF-kappaB. Adiponectin has pro-proliferative and pro-inflammatory actions on colonic epithelial cells; these appear to be differentially activated by the adiponectin isoforms. Adiponectin may have a role in the regulation of gastrointestinal mucosal function, inflammation and colon carcinogenesis.  相似文献   

17.
Adiponectin, an adipokine with insulin-sensitizing effect, is secreted from adipocytes into circulation as high, medium, and low molecular weight forms (HMW, MMW, and LMW). The HMW adiponectin oligomers possess the most potent insulin-sensitizing activity. WSF-P-1(N-methyl-1,2,3,4,5,6-hexahydro-1,1,5,5-tetramethyl-7H-2,4α-methanonaphthalen-7-amine) is derived from natural sesquiterpene longifolene by chemical modifications. We found that WSF-P-1 activates AMPK in both 3T3-L1 adipocytes and 293T cells in this study. Activation of AMPK by WSF-P-1 promotes the assembly of HMW adiponectin and increases the HMW/total ratio of adiponectin in 3T3-L1 adipocytes. We demonstrated that the Ca2+-dependent CaMKK signaling pathway is involved in WSF-P-1-induced AMPK activation and adiponectin multimerization. WSF-P-1 also activates GLUT1-mediated glucose uptake in 3T3-L1 adipocytes, making it a potential drug candidate for the treatment of type 2 diabetes, obesity, and other obesity-related metabolic diseases.  相似文献   

18.
《Biophysical journal》2020,118(4):885-897
The increasing prevalence of adult and adolescent obesity and its associated risk of colorectal cancer reinforces the urgent need to elucidate the underlying mechanisms contributing to the promotion of colon cancer in obese individuals. Adiponectin is an adipose tissue-derived adipokine, whose levels are reduced during obesity. Both epidemiological and preclinical data indicate that adiponectin suppresses colon tumorigenesis. We have previously demonstrated that both adiponectin and AdipoRon, a small-molecule adiponectin receptor agonist, suppress colon cancer risk in part by reducing the number of Lgr5+ stem cells in mouse colonic organoids. However, the mechanism by which the adiponectin signaling pathway attenuates colon cancer risk remains to be addressed. Here, we have hypothesized that adiponectin signaling supports colonic stem cell maintenance through modulation of the biophysical properties of the plasma membrane (PM). Specifically, we investigated the effects of adiponectin receptor activation by AdipoRon on the biophysical perturbations linked to the attenuation of Wnt-driven signaling and cell proliferation as determined by LEF luciferase reporter assay and colonic organoid proliferation, respectively. Using physicochemical sensitive dyes, Di-4-ANEPPDHQ and C-laurdan, we demonstrated that AdipoRon decreased the rigidity of the colonic cell PM. The decrease in membrane rigidity was associated with a reduction in PM free cholesterol levels and the intracellular accumulation of free cholesterol in lysosomes. These results suggest that adiponectin signaling plays a role in modulating cellular cholesterol homeostasis, PM biophysical properties, and Wnt-driven signaling. These findings are noteworthy because they may in part explain how obesity drives colon cancer progression.  相似文献   

19.
Adiponectin, the most abundant protein secreted by adipose tissue, exhibits insulin-sensitizing, anti-inflammatory, antiatherogenic, and antiproliferative properties. In addition, it appears to play an important role also in the development and progression of several obesity-related malignancies, including breast cancer.

Here, we demonstrated that adiponectin induces a dichotomic effect on breast cancer growth. Indeed, it stimulates growth in ERα+ MCF-7 cells while inhibiting proliferation of ERα? MDA-MB-231 cells. Notably, only in MCF-7 cells adiponectin exposure exerts a rapid activation of MAPK phosphorylation, which is markedly reduced when knockdown of the ERα gene occurred. In addition, adiponectin induces rapid IGF-IR phosphorylation in MCF-7 cells, and the use of ERα siRNA prevents this effect. Moreover, MAPK activation induced by adiponectin was reversed by IGF-IR siRNA. Coimmunoprecipitation studies show the existence of a multiprotein complex involving AdipoR1, APPL1, ERα, IGF-IR, and c-Src that is responsible for MAPK signaling activation in ERα+ positive breast cancer cells. It is well known that in addition to the rapid effects through non-genomic mechanisms, ERα also mediates nuclear genomic actions. In this concern, we demonstrated that adiponectin is able to transactivate ERα in MCF-7 cells. We showed the classical features of ERα transactivation: nuclear localization, downregulation of mRNA and protein levels, and upregulation of estrogen-dependent genes. Thus, our study clarifies the molecular mechanism through which adiponectin modulates breast cancer cell growth, providing evidences on the cell-type dependency of adiponectin action in relationship to ERα status.  相似文献   

20.

Background

Adiponectin is an adipose tissue derived hormone which strengthens insulin sensitivity. However, there is little data available regarding the influence of a positive energy challenge (PEC) on circulating adiponectin and the role of obesity status on this response.

Objective

The purpose of this study was to investigate how circulating adiponectin will respond to a short-term PEC and whether or not this response will differ among normal-weight(NW), overweight(OW) and obese(OB).

Design

We examined adiponectin among 64 young men (19-29 yr) before and after a 7-day overfeeding (70% above normal energy requirements). The relationship between adiponectin and obesity related phenotypes including; weight, percent body fat (%BF), percent trunk fat (%TF), percent android fat (%AF), body mass index (BMI), total cholesterol, HDLc, LDLc, glucose, insulin, homeostatic model assessment insulin resistance (HOMA-IR) and β-cell function (HOMA-β) were analyzed before and after overfeeding.

Results

Analysis of variance (ANOVA) and partial correlations were used to compute the effect of overfeeding on adiponectin and its association with adiposity measurements, respectively. Circulating Adiponectin levels significantly increased after the 7-day overfeeding in all three adiposity groups. Moreover, adiponectin at baseline was not significantly different among NW, OW and OB subjects defined by either %BF or BMI. Baseline adiponectin was negatively correlated with weight and BMI for the entire cohort and %TF, glucose, insulin and HOMA-IR in OB. However, after controlling for insulin resistance the correlation of adiponectin with weight, BMI and %TF were nullified.

Conclusion

Our study provides evidence that the protective response of adiponectin is preserved during a PEC regardless of adiposity. Baseline adiponectin level is not directly associated with obesity status and weight gain in response to short-term overfeeding. However, the significant increase of adiponectin in response to overfeeding indicates the physiological potential for adiponectin to attenuate insulin resistance during the development of obesity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号