首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
G蛋白偶联受体(G-protein-coupled receptors,GPCRs)作为跨膜蛋白,其结构和功能同时受相互作用的蛋白质和脂质分子调控.S-棕榈酰化(S-palmitoylation)能够影响GPCRs与信号蛋白及膜脂分子的相互作用,在GPCRs相关的多项生理进程中发挥重要调节作用.棕榈酸与GPCRs的半胱氨酸间形成不稳定的硫酯键,其修饰动力学过程受棕榈酰转移酶(protein acly transferases,PATs)与硫酯酶(thioesterases)之间的可逆性双重调控,与受体活性及生理状态密切相关.棕榈酰化修饰多发生在GPCRs的C末端,通过棕榈酸侧链插入到质膜内侧而形成第4和/或第5个胞内环,从而影响GPCRs的构象,促进其正确折叠与成熟,并对GPCRs胞内转运、分选、下游信号转导、失敏、内化、寡聚化等活动产生影响.此外,棕榈酰化还与磷酸化、泛素化及亚硝基化等多种翻译后修饰机制相互作用,共同参与调节GPCRs的功能.GPCRs的棕榈酰化修饰酶学机制以及GPCRs蛋白复合体棕榈酰化修饰胞内动力学过程将是未来的研究热点.  相似文献   

2.
It is well established that microtubules interact with intracellular membranes of eukaryotic cells. There is also evidence that tubulin, the major subunit of microtubules, associates directly with membranes. In many cases, this association between tubulin and membranes involves hydrophobic interactions. However, neither primary sequence nor known posttranslational modifications of tubulin can account for such an interaction. The goal of this study was to determine the molecular nature of hydrophobic interactions between tubulin and membranes. Specifically, I sought to identify a posttranslational modification of tubulin that is found in membrane proteins but not in cytoplasmic proteins. One such modification is the covalent attachment of the long chain fatty acid palmitate. The possibility that tubulin is a substrate for palmitoylation was investigated. First, I found that tubulin was palmitoylated in resting platelets and that the level of palmitoylation of tubulin decreased upon activation of platelets with thrombin. Second, to obtain quantities of palmitoylated tubulin required for protein structure analysis, a cell-free system for palmitoylation of tubulin was developed and characterized. The substrates for palmitoylation were nonpolymerized tubulin and tubulin in microtubules assembled with the slowly hydrolyzable GTP analogue guanylyl-(alpha, beta)-methylene-diphosphonate. However, tubulin in Taxol-assembled microtubules was not a substrate for palmitoylation. Likewise, palmitoylation of tubulin in the cell-free system was specifically inhibited by the antimicrotubule drugs Colcemid, podophyllotoxin, nocodazole, and vinblastine. These experiments identify a previously unknown posttranslational modification of tubulin that can account for at least one type of hydrophobic interaction with intracellular membranes.  相似文献   

3.
Synaptosomal-associated protein of 25 kDa (SNAP-25) is a palmitoylated membrane protein essential for neurotransmitter release from synaptic terminals. We used neuronal cell lines to study the biosynthesis and posttranslational processing of SNAP-25 to investigate how palmitoylation contributes to the subcellular localization of the protein. SNAP-25 was synthesized as a soluble protein that underwent palmitoylation approximately 20 min after synthesis. Palmitoylation of the protein coincided with its stable membrane association. Treatment of cells with brefeldin A or other disrupters of transport inhibited palmitoylation of newly synthesized SNAP-25 and abolished membrane association. These results demonstrate that the processing of SNAP-25 and its targeting to the plasma membrane depend on an intact transport mechanism along the exocytic pathway. The kinetics of SNAP-25 palmitoylation and membrane association and the sensitivity of these parameters to brefeldin A suggest a novel trafficking pathway for targeting proteins to the plasma membrane. In vitro, SNAP-25 stably associated with membranes was not released from the membrane after chemical deacylation. We propose that palmitoylation of SNAP-25 is required for initial membrane targeting of the protein but that other interactions can maintain membrane association in the absence of fatty acylation.  相似文献   

4.
5.
A well known function of palmitoylation is to promote protein binding to cell membranes. Until recently, it was unclear what additional roles, if any, palmitoylation has in controlling protein localization in cells. Recent studies of palmitoylated forms of the small GTPase Ras have now revealed that palmitoylation plays multiple roles in the regulation of protein trafficking, including targeting proteins into the secretory pathway and recycling proteins between the plasma membrane and Golgi complex. We here describe how quantitative fluorescence microscopy and photobleaching approaches can be used to study the intracellular targeting and trafficking of GFP-tagged palmitoylated proteins in living cells. We discuss (1) general considerations for fluorescence recovery after photobleaching (FRAP) measurements of GFP-tagged proteins; (2) FRAP-based assays to test the strength of binding of palmitoylated proteins to cell membranes; (3) methods to establish the kinetics and mechanisms of recycling of palmitoylated proteins between the Golgi complex and the plasma membrane; (4) the use of the palmitoylation inhibitor 2-bromo-palmitate as a tool to study the dynamic regulation of protein targeting and trafficking by palmitate turnover.  相似文献   

6.
Reversible protein palmitoylation is one of the most important posttranslational modifications that has been implicated in the regulation of protein signaling, trafficking, localizing and enzymatic activities in cells and tissues. In order to achieve a precise understanding of mechanisms and functions of protein palmitoylation as well as its roles in physiological processes and disease progression, it is necessary to develop techniques that can qualitatively and quantitatively monitor the dynamic protein palmitoylation in vivo and in vitro. This review will highlight recent advances in both chemical and genetic encoded probes that have been developed for accurate analysis of protein palmitoylation, including identification and quantification of acyl moieties and palmitoylated proteins, localization of amino acid residues on which acyl moieties are attached, and imaging of cellular distributions of palmitoylated proteins. The role of major techniques of fluorescence microscopy and mass spectrometry in facilitating the analysis of protein palmitoylation will also be explored.  相似文献   

7.
Regulator of G-protein signaling (RGS) proteins are potent inhibitors of heterotrimeric G-protein signaling. RGS4 attenuates G-protein activity in several tissues. Previous work demonstrated that cysteine palmitoylation on residues in the amino-terminal (Cys-2 and Cys-12) and core domains (Cys-95) of RGS4 is important for protein stability, plasma membrane targeting, and GTPase activating function. To date Cys-2 has been the priority target for RGS4 regulation by palmitoylation based on its putative role in stabilizing the RGS4 protein. Here, we investigate differences in the contribution of Cys-2 and Cys-12 to the intracellular localization and function of RGS4. Inhibition of RGS4 palmitoylation with 2-bromopalmitate dramatically reduced its localization to the plasma membrane. Similarly, mutation of the RGS4 amphipathic helix (L23D) prevented membrane localization and its G(q) inhibitory function. Together, these data suggest that both RGS4 palmitoylation and the amphipathic helix domain are required for optimal plasma membrane targeting and function of RGS4. Mutation of Cys-12 decreased RGS4 membrane targeting to a similar extent as 2-bromopalmitate, resulting in complete loss of its G(q) inhibitory function. Mutation of Cys-2 did not impair plasma membrane targeting but did partially impair its function as a G(q) inhibitor. Comparison of the endosomal distribution pattern of wild type and mutant RGS4 proteins with TGN38 indicated that palmitoylation of these two cysteines contributes differentially to the intracellular trafficking of RGS4. These data show for the first time that Cys-2 and Cys-12 play markedly different roles in the regulation of RGS4 membrane localization, intracellular trafficking, and G(q) inhibitory function via mechanisms that are unrelated to RGS4 protein stabilization.  相似文献   

8.
The cellular functions of many eukaryotic membrane proteins, including the vasopressin-regulated water channel aquaporin-2 (AQP2), are regulated by posttranslational modifications. In this article, we discuss the experimental discoveries that have advanced our understanding of how posttranslational modifications affect AQP2 function, especially as they relate to the role of AQP2 in the kidney. We review the most recent data demonstrating that glycosylation and, in particular, phosphorylation and ubiquitination are mechanisms that regulate AQP2 activity, subcellular sorting and distribution, degradation, and protein interactions. From a clinical perspective, posttranslational modification resulting in protein misrouting or degradation may explain certain forms of nephrogenic diabetes insipidus. In addition to providing major insight into the function and dynamics of renal AQP2 regulation, the analysis of AQP2 posttranslational modification may provide general clues as to the role of posttranslational modification for regulation of other membrane proteins.  相似文献   

9.
Caveolin-1 is a palmitoylated protein involved in the formation of plasma membrane subdomains termed caveolae, intracellular cholesterol transport, and assembly and regulation of signaling molecules in caveolae. Caveolin-1 interacts via a consensus binding motif with several signaling proteins, including H-Ras. Ras oncogene products function as molecular switches in several signal transduction pathways regulating cell growth and differentiation. Post-translational modifications, including palmitoylation, are critical for the membrane targeting and function of H-Ras. Subcellular localization regulates the signaling pathways engaged by H-Ras activation. We show here that H-Ras is localized at the plasma membrane in caveolin-1-expressing cells but not in caveolin-1-deficient cells. Since palmitoylation is required for trafficking of H-Ras from the endomembrane system to the plasma membrane, we tested whether the altered localization of H-Ras in caveolin-1-null cells is due to decreased H-Ras palmitoylation. Although the palmitoylation profiles of cultured embryo fibroblasts isolated from wild type and caveolin-1 gene-disrupted mice differed, suggesting that caveolin-1, or caveolae, play a role in the palmitate incorporation of a subset of palmitoylated proteins, the palmitoylation of H-Ras was not decreased in caveolin-1-null cells. We conclude that the altered localization of H-Ras in caveolin-1-deficient cells is palmitoylation-independent. This article shows two important new mechanisms by which loss of caveolin-1 expression may perturb intracellular signaling, namely the mislocalization of signaling proteins and alterations in protein palmitoylation.  相似文献   

10.
Caveolin-1 is a palmitoylated protein involved in the formation of plasma membrane subdomains termed caveolae, intracellular cholesterol transport, and assembly and regulation of signaling molecules in caveolae. Caveolin-1 interacts via a consensus binding motif with several signaling proteins, including H-Ras. Ras oncogene products function as molecular switches in several signal transduction pathways regulating cell growth and differentiation. Post-translational modifications, including palmitoylation, are critical for the membrane targeting and function of H-Ras. Subcellular localization regulates the signaling pathways engaged by H-Ras activation. We show here that H-Ras is localized at the plasma membrane in caveolin-1-expressing cells but not in caveolin-1-deficient cells. Since palmitoylation is required for trafficking of H-Ras from the endomembrane system to the plasma membrane, we tested whether the altered localization of H-Ras in caveolin-1-null cells is due to decreased H-Ras palmitoylation. Although the palmitoylation profiles of cultured embryo fibroblasts isolated from wild type and caveolin-1 gene-disrupted mice differed, suggesting that caveolin-1, or caveolae, play a role in the palmitate incorporation of a subset of palmitoylated proteins, the palmitoylation of H-Ras was not decreased in caveolin-1-null cells. We conclude that the altered localization of H-Ras in caveolin-1-deficient cells is palmitoylation-independent. This article shows two important new mechanisms by which loss of caveolin-1 expression may perturb intracellular signaling, namely the mislocalization of signaling proteins and alterations in protein palmitoylation.  相似文献   

11.
S-palmitoylation occurs on intracellular membranes and, therefore, membrane anchoring of proteins must precede palmitate transfer. However, a number of palmitoylated proteins lack any obvious membrane targeting motifs and it is unclear how this class of proteins become membrane associated before palmitoylation. Cysteine-string protein (CSP), which is extensively palmitoylated on a "string" of 14 cysteine residues, is an example of such a protein. In this study, we have investigated the mechanisms that govern initial membrane targeting, palmitoylation, and membrane trafficking of CSP. We identified a hydrophobic 31 amino acid domain, which includes the cysteine-string, as a membrane-targeting motif that associates predominantly with endoplasmic reticulum (ER) membranes. Cysteine residues in this domain are not merely sites for the addition of palmitate groups, but play an essential role in membrane recognition before palmitoylation. Membrane association of the cysteine-string domain is not sufficient to trigger palmitoylation, which requires additional downstream residues that may regulate the membrane orientation of the cysteine-string domain. CSP palmitoylation-deficient mutants remain "trapped" in the ER, suggesting that palmitoylation may regulate ER exit and correct intracellular sorting of CSP. These results reveal a dual function of the cysteine-string domain: initial membrane binding and palmitoylation-dependent sorting.  相似文献   

12.
S-palmitoylation is a posttranslational modification that regulates membrane-protein interactions. However, palmitate is more than just a hydrophobic membrane anchor, as many different types of protein are palmitoylated, including transmembrane proteins. Indeed, there is now compelling evidence that palmitoylation plays a key role in regulating various aspects of protein sorting within the cell.  相似文献   

13.
Protein palmitoylation is a reversible lipid modification that plays important roles for many proteins involved in signal transduction, but relatively little is known about the regulation of this modification and the cellular location where it occurs. We demonstrate that the human delta opioid receptor is palmitoylated at two distinct cellular locations in human embryonic kidney 293 cells and undergoes dynamic regulation at one of these sites. Although palmitoylation could be readily observed for the mature receptor (Mr 55,000), [3H]palmitate incorporation into the receptor precursor (Mr 45,000) could be detected only following transport blockade with brefeldin A, nocodazole, and monensin, indicating that the modification occurs initially during or shortly after export from the endoplasmic reticulum. Blocking of palmitoylation with 2-bromopalmitate inhibited receptor cell surface expression, indicating that it is needed for efficient intracellular transport. However, cell surface biotinylation experiments showed that receptors can also be palmitoylated once they have reached the plasma membrane. At this location, palmitoylation is regulated in a receptor activation-dependent manner, as was indicated by the opioid agonist-promoted increase in the turnover of receptor-bound palmitate. This agonist-mediated effect did not require receptor-G protein coupling and occurred at the cell surface without the need for internalization or recycling. The activation-dependent modulation of receptor palmitoylation may thus contribute to the regulation of receptor function at the plasma membrane.  相似文献   

14.
Lipid metabolites are emerging as pivotal regulators of protein function and cell signaling. The availability of intracellular fatty acid is tightly regulated by glycolipid metabolism and may affect human body through many biological mechanisms. Recent studies have demonstrated palmitate, either from exogenous fatty acid uptake or de novo fatty acid synthesis, may serve as the substrate for protein palmitoylation and regulate protein function via palmitoylation. Palmitoylation, the most-studied protein lipidation, encompasses the reversible covalent attachment of palmitate moieties to protein cysteine residues. It controls various cellular physiological processes and alters protein stability, conformation, localization, membrane association and interaction with other effectors. Dysregulation of palmitoylation has been implicated in a plethora of diseases, such as metabolic syndrome, cancers, neurological disorders and infections. Accordingly, it could be one of the molecular mechanisms underlying the impact of palmitate metabolite on cellular homeostasis and human diseases. Herein, we explore the relationship between lipid metabolites and the regulation of protein function through palmitoylation. We review the current progress made on the putative role of palmitate in altering the palmitoylation of key proteins and thus contributing to the pathogenesis of various diseases, among which we focus on metabolic disorders, cancers, inflammation and infections, neurodegenerative diseases. We also highlight the opportunities and new therapeutics to target palmitoylation in disease development.  相似文献   

15.
The fusion of synaptic vesicles with the pre-synaptic plasma membrane mediates the secretion of neurotransmitters at nerve terminals. This pathway is regulated by an array of protein–protein interactions. Of central importance are the soluble NSF ( N -ethylmaleimide-sensitive factor) attachment protein receptor (SNARE) proteins syntaxin 1 and SNAP25, which are associated with the pre-synaptic plasma membrane and vesicle-associated membrane protein (VAMP2), a synaptic vesicle SNARE. Syntaxin 1, SNAP25 and VAMP2 interact to form a tight complex bridging the vesicle and plasma membranes, which has been suggested to represent the minimal membrane fusion machinery. Synaptic vesicle fusion is stimulated by a rise in intraterminal Ca2+ levels, and a major Ca2+ sensor for vesicle fusion is synaptotagmin I. Synaptotagmin is likely to couple Ca2+ entry to vesicle fusion via Ca2+-dependent and independent interactions with membrane phospholipids and the SNARE proteins. Intriguingly, syntaxin 1, SNAP25, VAMP2 and synaptotagmin I have all been reported to be modified by palmitoylation in neurons. In this review, we discuss the mechanisms and dynamics of palmitoylation of these proteins and speculate on how palmitoylation might contribute to the regulation of synaptic vesicle fusion.  相似文献   

16.
The sites of posttranslational modifications of the influenza A virus M2 protein were examined, and the effect of these modifications on the M2 protein ion channel activity was analyzed. Cysteine residues 17 and 19 in the M2 protein ectodomain form disulfide bonds. The cytoplasmic tail is posttranslationally modified by palmitoylation, and mutagenic studies support the view that cysteine residue 50 is the site for fatty acylation. In addition, the cytoplasmic tail of the M2 protein was found to be posttranslationally modified by the addition of phosphate to specific serine residues. Site-directed mutagenesis of serine residues in the M2 protein cytoplasmic tail, combined with phosphoamino acid analysis, indicated that serine residue 64 is the predominant site for phosphorylation but that serine residues 82, 89, and 93 were also phosphorylated but to much lesser extents. Disulfide-bond formation, palmitoylation, and phosphorylation occurred on M2 protein expressed in mammalian cells infected with influenza virus, in mammalian cells in which the M2 protein was expressed from DNA expression vectors, and when the M2 protein was expressed in oocytes of Xenopus laevis. The membrane currents of oocytes of Xenopus laevis expressing wild-type and site-specifically altered forms of the M2 protein, to ablate posttranslational modifications, indicated that none of the posttranslational modifications significantly affected the ion channel activity of the M2 protein in oocytes. Therefore, these data do not indicate a functional role for posttranslational modifications of the M2 protein in its ion channel activity.  相似文献   

17.
Protein palmitoylation is a major dynamic posttranslational regulator of protein function. However, mechanisms that control palmitoylation are poorly understood. In many proteins, palmitoylation occurs at cysteine residues juxtaposed to membrane-anchoring domains such as transmembrane helices, sites of irreversible lipid modification, or hydrophobic and/or polybasic domains. In particular, polybasic domains represent an attractive mechanism to dynamically control protein palmitoylation, as the function of these domains can be dramatically influenced by protein phosphorylation. Here we demonstrate that a polybasic domain immediately upstream of palmitoylated cysteine residues within an alternatively spliced insert in the C terminus of the large conductance calcium- and voltage-activated potassium channel is an important determinant of channel palmitoylation and function. Mutation of basic amino acids to acidic residues within the polybasic domain results in inhibition of channel palmitoylation and a significant right-shift in channel half maximal voltage for activation. Importantly, protein kinase A-dependent phosphorylation of a single serine residue within the core of the polybasic domain, which results in channel inhibition, also reduces channel palmitoylation. These data demonstrate the key role of the polybasic domain in controlling stress-regulated exon palmitoylation and suggests that phosphorylation controls the domain by acting as an electrostatic switch.  相似文献   

18.
Caveolin-1 is a palmitoylated protein involved in assembly of signaling molecules in plasma membrane subdomains termed caveolae and in intracellular cholesterol transport. Three cysteine residues in the C terminus of caveolin-1 are subject to palmitoylation, which is not necessary for caveolar targeting of caveolin-1. Protein palmitoylation is a post-translational and reversible modification that may be regulated and that in turn may regulate conformation, membrane association, protein-protein interactions, and intracellular localization of the target protein. We have undertaken a detailed analysis of [(3)H]palmitate incorporation into caveolin-1 in aortic endothelial cells. The linkage of palmitate to caveolin-1 was hydroxylamine-sensitive and thus presumably a thioester bond. However, contrary to expectations, palmitate incorporation was blocked completely by the protein synthesis inhibitors cycloheximide and puromycin. In parallel experiments to show specificity, palmitoylation of aortic endothelial cell-specific nitric-oxide synthase was unaffected by these reagents. Inhibitors of protein trafficking, brefeldin A and monensin, blocked caveolin-1 palmitoylation, indicating that the modification was not cotranslational but rather required caveolin-1 transport from the endoplasmic reticulum and Golgi to the plasma membrane. In addition, immunophilin chaperones that form complexes with caveolin-1, i.e. FK506-binding protein 52, cyclophilin A, and cyclophilin 40, were not necessary for caveolin-1 palmitoylation because agents that bind immunophilins did not inhibit palmitoylation. Pulse-chase experiments showed that caveolin-1 palmitoylation is essentially irreversible because the release of [(3)H]palmitate was not significant even after 24 h. These results show that [(3)H]palmitate incorporation is limited to newly synthesized caveolin-1, not because incorporation only occurs during synthesis but because the continuous presence of palmitate on caveolin-1 prevents subsequent repalmitoylation.  相似文献   

19.
Palmitoylation is emerging as an important and dynamic regulator of ion channel function; however, the specificity with which the large family of acyl palmitoyltransferases (zinc finger Asp-His-His-Cys type-containing acyl palmitoyltransferase (DHHCs)) control channel palmitoylation is poorly understood. We have previously demonstrated that the alternatively spliced stress-regulated exon (STREX) variant of the intracellular C-terminal domain of the large conductance calcium- and voltage-activated potassium (BK) channels is palmitoylated and targets the STREX domain to the plasma membrane. Using a combined imaging, biochemical, and functional approach coupled with loss-of-function (small interfering RNA knockdown of endogenous DHHCs) and gain-of-function (overexpression of recombinant DHHCs) assays, we demonstrate that multiple DHHCs control palmitoylation of the C terminus of STREX channels, the association of the STREX domain with the plasma membrane, and functional channel regulation. Cysteine residues 12 and 13 within the STREX insert were the only endogenously palmitoylated residues in the entire C terminus of the STREX channel. Palmitoylation of this dicysteine motif was controlled by DHHCs 3, 5, 7, 9, and 17, although DHHC17 showed the greatest specificity for this site upon overexpression of the cognate DHHC. DHHCs that palmitoylated the channel also co-assembled with the channel in co-immunoprecipitation experiments, and knockdown of any of these DHHCs blocked regulation of the channel by protein kinase A-dependent phosphorylation. Taken together our data reveal that a subset of DHHCs controls STREX palmitoylation and function and suggest that DHHC17 may preferentially target cysteine-rich domains. Finally, our approach may prove useful in elucidating the specificity of DHHC palmitoylation of intracellular domains of other ion channels and transmembrane proteins.  相似文献   

20.
Apolipoprotein B (apoB) is an essential component of chylomicrons, very low density lipoproteins, and low density lipoproteins. ApoB is a palmitoylated protein. To investigate the role of palmitoylation in lipoprotein function, a palmitoylation site was mapped to Cys-1085 and removed by mutagenesis. Secreted lipoprotein particles formed by nonpalmitoylated apoB were smaller and denser and failed to assemble a proper hydrophobic core. Indeed, the relative concentrations of nonpolar lipids were three to four times lower in lipoprotein particles containing mutant apoB compared with those containing wild-type apoB, whereas levels of polar lipids isolated from wild-type or mutant apoB lipoprotein particles appeared identical. Palmitoylation localized apoB to large vesicular structures corresponding to a subcompartment of the endoplasmic reticulum, where addition of neutral lipids was postulated to occur. In contrast, nonpalmitoylated apoB was concentrated in a dense perinuclear area corresponding to the Golgi compartment. The involvement of palmitoylation as a structural requirement for proper assembly of the hydrophobic core of the lipoprotein particle and its intracellular sorting represent novel roles for this posttranslational modification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号